
BROUGHT TO YOU IN PARTNERSHIP WITH

Getting Started
With Selenium

1

WRITTEN BY DAVE HAEFFNER
AUTHOR OF ELEMENTAL SELENIUM

UPDATED BY MARCUS MERRELL
DIRECTOR OF TECHNICAL SERVICES, SAUCE LABS

CONTENTS

∙ What Is Selenium?

∙ Getting Started

∙ Launching a Browser

∙ Commands and Operations

∙ Locators

∙ An Example Test

∙ Page Objects

∙ Waiting

∙ Screenshots on Failure

∙ Running Tests in Parallel

∙ Mobile Support

WHAT IS SELENIUM?
Selenium is a free and open-source browser automation library used

by millions of people for testing purposes and to automate repetitive

web-based administrative tasks.

It has the support of the largest browser vendors, who have

integrated Selenium into the browsers themselves. It is also the

core technology in countless other automation tools, APIs, and

frameworks used to automate application testing.

Selenium/WebDriver is now a W3C (World Wide Web Consortium)

Recommendation, which means that Selenium is the official standard

for automating web browsers.

GETTING STARTED
Selenium language bindings allow you to write tests and

communicate with browsers in multiple languages:

• Java

• JavaScript

• Python

• Ruby

• C#

In order to start writing tests, you first need to install the bindings

for your preferred programming language.

JAVA (WITH MAVEN)

In your test project, add the following to your pom.xml. Once done,

you can either let your IDE (Integrated Development Environment)

use Maven to import the dependencies or open a command-prompt,

cd, into the project directory, and run mvn clean test-compile.

<dependency>

 <groupId>org.seleniumhq.selenium</groupId>

 <artifactId>selenium-java</artifactId>

 <version>LATEST</version>

 <scope>test</scope>

</dependency>

https://saucelabs.com/resources/white-papers/the-four-keys-to-achieving-parallelization-in-automated-testing?utm_source=paid&utm_medium=dzone&utm_campaign=display&utm_term=sbanner
http://seleniumhq.org/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/

Email sales@saucelabs.com or call (855) 677-0011 to learn more.

B E F O R E S A U C E L A B S
Devices. Delays. Despair.

A F T E R S A U C E L A B S
Automated. Accelerated. Awesome.

A brief history of web and mobile app testing.

Continuous Confidence

Start your free trial today
saucelabs.com/sign-up

https://saucelabs.com/accelerate-your-software-development-process?utm_source=paid&utm_medium=dzone&utm_campaign=display&utm_term=sfullpage

3 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SELENIUM

You will need the Java Development Kit (version 8+ for 3.x and 4.x

versions of Selenium) and Maven installed on your machine. For

more details on Selenium Java bindings, see the API documentation.

JAVASCRIPT (NPM)

JavaScript offers two different approaches for incorporating

Selenium/WebDriver into your tests:

TRADITIONAL JAVASCRIPT BINDINGS

Use the following command into a command-prompt to install the

JavaScript bindings for Selenium:

npm install selenium-webdriver

You will need Node.js and NPM installed on your machine. For more

information about the Selenium JavaScript bindings, check out the

API documentation.

WEBDRIVER.IO

WebDriver.IO is a "next-gen" test framework for getting started with

WebDriver in JavaScript. It's a fully-featured, W3C-compliant test

framework, available with full documentation at webdriver.io.

PYTHON

Use the command below to install the Python bindings for Selenium:

pip install selenium

You need to install Python, pip, and setuptools in order for this

to work properly. For more information on the Selenium Python

bindings, check out the API documentation.

RUBY

Use the following command to install the Selenium Ruby bindings:

gem install selenium-webdriver

You need to install a current version of Ruby, which comes with

RubyGems. You can find instructions on the Ruby project website.

For more information on the Selenium Ruby bindings, check out the

API documentation.

C# (WITH NUGET)

Use the following commands from the Package Manager Console

window in Visual Studio to install the Selenium C# bindings:

Install-Package Selenium.WebDriver

Install-Package Selenium.Support

You need to install Microsoft Visual Studio and NuGet to install

these libraries and build your project. For more information on the

Selenium C# bindings, check out the API documentation.

The remaining examples use Java.

LAUNCHING A BROWSER
Selenium requires a "browser driver" in order to launch your

intended browser. In all cases (except Safari), this driver must be

downloaded and installed separately from the browser itself. For

each example below, the code snippet will do no more than launch a

single browser on your local machine.

CHROME

To use Chrome, you must download the ChromeDriver binary for your

operating system (the highest number is the latest version) and add it

to your System Path or specify its location during your test setup.

//Create a new instance of the ChromeDriver

WebDriver driver = new ChromeDriver();

Note: For more information about ChromeDriver, check out the

Chromium team's page for ChromeDriver.

FIREFOX

To use Firefox, you must download the latest GeckoDriver. Please see

this link for more details. You just need to request a new instance:

WebDriver driver = new FirefoxDriver();

Note: For more information about FirefoxDriver, check out Mozilla’s

geckodriver project page.

EDGE

Microsoft Edge requires Windows 10. Download a free virtual

machine with Edge for testing purposes from Microsoft's Modern.IE

developer portal and the appropriate Microsoft WebDriver server for

your build of Windows (go to Start > Settings > System > About

and locate the number next to OS Build on the screen). Then it's just

a simple matter of requesting a new instance of Edge:

WebDriver driver = new EdgeDriver();

Note: For more information about EdgeDriver, check out the main

page on the Microsoft Developer portal and the download page for

the EdgeDriver binary.

As of early 2019, Microsoft Edge now uses the same rendering

engine (Chromium) as Google's Chrome driver. This should generally

give users confidence that they will operate similarly, but it is still

currently recommended to test them as separate browsers.

SAFARI

Safari on OS X works without having to download a browser driver:

WebDriver driver = new SafariDriver();

Note: Safari only runs on MacOS systems. For more information about

SafariDriver, check out Apple's page for SafariDriver.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/
http://seleniumhq.github.io/selenium/docs/api/java/index.html
https://nodejs.org/
https://www.npmjs.org/
https://www.npmjs.com/package/selenium-webdriver
https://webdriver.io/
https://wiki.python.org/moin/BeginnersGuide/Download
https://pypi.python.org/pypi/pip/
https://pypi.python.org/pypi/setuptools
http://seleniumhq.github.io/selenium/docs/api/py/
https://www.ruby-lang.org/en/documentation/installation/
http://seleniumhq.github.io/selenium/docs/api/rb/
https://docs.nuget.org/consume/package-manager-console
https://docs.nuget.org/consume/package-manager-console
https://www.visualstudio.com/
https://www.nuget.org/
http://seleniumhq.github.io/selenium/docs/api/dotnet/
http://chromedriver.chromium.org/
http://chromedriver.chromium.org/
http://chromedriver.chromium.org/
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver
https://github.com/mozilla/geckodriver
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/platform/documentation/dev-guide/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/platform/documentation/dev-guide/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.apple.com/documentation/webkit/testing_with_webdriver_in_safari

4 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SELENIUM

INTERNET EXPLORER

For Internet Explorer on Windows, download IEDriverServer.exe

(pick the highest number for the latest version) and either add it to

your System Path or specify its location as part of your test setup.

WebDriver driver = new InternetExplorerDriver("/path/

to/IEDriverServer.exe");

Note: Internet Explorer versions older than 11 are no longer

supported by Microsoft. The InternetExplorerDriver still

maintains support for some older versions but will not guarantee any

such support after Selenium v4 ships. For more information, check out

the Selenium project Wiki page for InternetExplorerDriver.

COMMANDS AND OPERATIONS
The most common operations you'll perform in Selenium are

navigating to a page and examining WebElements. You can then

perform actions with those elements (e.g., click, type text, etc.), ask

questions about them (e.g., Is it clickable? Is it displayed?), or pull

information out of the element (e.g., the text of an element or the text

of a specific attribute within an element).

VISIT A PAGE

driver.get("http://the-internet.herokuapp.com");

FIND AN ELEMENT

// find just one, the first one Selenium finds

WebElement element = driver.findElement(locator);

// find all instances of the element on the page

List<WebElement> elements = driver.

findElements(locator);

WORK WITH A FOUND ELEMENT

// chain actions together

driver.findElement(locator).click();

// store the element and then click it

WebElement element = driver.findElement(locator);

element.click();

PERFORM MULTIPLE COMMANDS

element.click(); // clicks an element

element.submit(); // submits a form

element.clear(); // clears an input

field of its text

element.sendKeys("input text"); // types text into an

input field

ASK A QUESTION

Each of these returns a Boolean:

element.isDisplayed(); // is it visible to the human

eye?

element.isEnabled(); // can it be selected?

element.isSelected(); // is it selected?

RETRIEVE INFORMATION

Each of these returns a string:

// directly from an element

element.getText();

// by attribute name

element.getAttribute("href");

Note: For more information about working with elements, check out

the Selenium WebElement API Documentation.

COMPLEX USER GESTURES

Selenium's Actions Builder enables more complex keyboard and

mouse interactions. Things like drag-and-drop, click-and-hold,

double-click, right-click, hover, etc.

// a hover example

WebElement avatar = driver.findElement(By.

name("target"));

(new Actions(driver)).moveToElement(avatar).build().

perform();

Note: For more details about the Action Builder, check out the Actions

API documentation.

LOCATORS
In order to find an element on the page, you need to specify a

locator. There are several locator strategies supported by Selenium:

BY LOCATOR EXAMPLE (JAVA)

Class driver.findElement(By.className("dues"));

CSS Selector driver.findElement(By.cssSelector(".flash.

success"));

ID driver.findElement(By.id("username"));

Link Text driver.findElement(By.linkText("Link

Text"));

Name driver.findElement(By.name("elementName"));

Partial Link
Text

driver.findElement(By.partialLinkText("nk

Text"));

Tag Name driver.findElement(By.tagName("td"));

XPath driver.findElement(By.xpath("//input[@

id='username']"));

Note: Good locators are unique, descriptive, and unlikely to change.

So it's best to start with ID and Class locators. These are the most

performant locators available and the most likely ones to be helpfully

named. If you need to access something that doesn't have a helpful

ID or Class, then use CSS selectors or XPath. But be careful when using

these approaches, since they can be very brittle (and slow).

http://selenium-release.storage.googleapis.com/index.html
https://github.com/SeleniumHQ/selenium/wiki/InternetExplorerDriver
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/WebElement.html
http://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/interactions/Actions.html
http://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/interactions/Actions.html

5 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SELENIUM

Alternatively, talk with a developer on your team when the app does

not present simple locators. Tell them what you're trying to automate

and work with them to get more semantic markup added to the page.

This will make the application more testable and make your tests far

easier to write and maintain.

CSS SELECTORS

APPROACH LOCATOR DESCRIPTION

ID #example # denotes an ID

Class .example . denotes a Class

Classes .flash.success use . in front of each
class for multiple

Direct Child div > a finds the element in the
next child

Child/
subchild

div a finds the element in a
child or child's child

Next Sibling input.username + input finds the next adjacent
element

Attribute
Values

form input[name

='username'] a
great alternative to id
and class matches

Attribute
Values

input[name='continue']

[type='button'] can ch
main multiple attribute
filters together

Location li:nth-child(4) finds the 4th element
only if it is an li

Location li:nth-of-type(4) finds the 4th li in a list

Location *:nth-child(4) finds the 4th element
regardless of type

Sub-string a[id^='beginning_']

find
s a match that starts
with (prefix)

Sub-string a[id$='_end'] find s a match that ends with
(suffix)

Sub-string a[id*='gooey_center']

find
s a match that con-tains
(substring)

Inner Text a:contains('Log Out') an alternative to sub-
string matching

For more info see one of the following resources:

• CSS Selectors Reference

• XPath Syntax Reference

• CSS & XPath Examples by Sauce Labs

• The difference between nth-child and nth-of-type

• How To Verify Your Locators

AN EXAMPLE TEST
To tie these concepts together, here is a simple test written in Java

that demonstrates how to use Selenium to exercise a common

functionality (e.g., login) by launching a browser, visiting the target

page, interacting with the necessary elements, and verifying the

page is in the correct place. Note that this example is intended to

familiarize users with manipulating elements and the WebDriver API.

A better method for abstracting and combining commands follows.

import org.junit.Test;

import org.junit.Before;

import org.junit.After;

import static org.junit.Assert.*;

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.firefox.FirefoxDriver;

public class TestLogin {

 private WebDriver driver;

 @Before

 public void setUp() {

 driver = new FirefoxDriver();

 }

 @After

 public void tearDown() {

 driver.quit();

 }

 @Test

 public void succeeded() {

 driver.get("http://the-internet.herokuapp.com/

login");

 driver.findElement(By.id("username")).

sendKeys("tomsmith");

 driver.findElement(By.id("password")).

sendKeys("SuperSecretPassword!");

 driver.findElement(By.cssSelector("button")).

click();

 assertTrue("success message not present",

 driver.findElement(By.cssSelector(".flash.

success")).isDisplayed());

 }

}

PAGE OBJECTS
Rather than integrate the calls to Selenium directly into your test

methods, you can model your application's behavior in simple

objects. This allows you to write your tests using user-centric

language, rather than Selenium-centric language. This is called the

"Page Object Model."

When your application changes and your tests break, you only have

to update your Page Objects in one place in order to accommodate

the changes. This gives us reusable functionality across our suite of

tests, as well as more readable tests.

https://www.w3.org/TR/CSS/#selectors
https://www.w3.org/TR/xpath/#location-paths
https://saucelabs.com/resources/articles/selenium-tips-css-selectors
http://css-tricks.com/the-difference-between-nth-child-and-nth-of-type/
http://se.tips/verifyinglocators

6 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SELENIUM

Let's create a Page Object for the login example shown before, then

let's update the test to utilize it:

public class Login {

 private WebDriver driver;

 private By loginFormLocator = By.id("login");

 Private By usernameLocator = By.id("username");

 private By passwordLocator = By.id("password");

 private By submitButton =

By.cssSelector("button");

 private By successMessageLocator = By.cssSelector(".

flash.success");

 public Login(WebDriver driver) {

 this.driver = driver;

 driver.get("http://the-internet.herokuapp.com/

login");

 assertTrue("The login form is not present",

 driver.findElement(loginFormLocator).

isDisplayed());

 }

 public void with(String username, String password) {

 driver.findElement(usernameLocator).

sendKeys(username);

 driver.findElement(passwordLocator).

sendKeys(password);

 driver.findElement(submitButton).click();

 }

 public Boolean successMessagePresent() {

 return driver.findElement(successMessageLocator).

isDisplayed();

 }

}

By storing the page's locators and behavior in a central place,

we're able to reuse it in multiple tests and extend it for future use

cases. This also enables us to pull all of our Selenium commands

and locators out of our tests, making tests more concise and easier

to construct.

We're also able to verify that the page is in a "ready state" before

letting the test proceed — in this case, the constructor asserts that

the login form is displayed. If it's not visible to the user, an exception

will be thrown and the test will fail.

Now let's incorporate the Page Object into the test case itself:

public class TestLogin {

 private WebDriver driver;

 private Login login;

 @Before

 public void setUp() {

 driver = new FirefoxDriver();

 login = new Login(driver);

 }

 @After

 public void tearDown() {

 driver.quit();

 }

 @Test

 public void succeeded() {

 login.with("tomsmith", "SuperSecretPassword!");

 assertTrue("success message not present",

 login.successMessagePresent());

 }

}

Page Objects should always return some piece of information (e.g., a

predicate method like the one used in this example) or a new Page

Object that represents the page the login took you to. How you write

your Page Objects will vary depending on your context.

Here are some additional resources to consider as your use of Page

Objects grows:

• Page Objects documentation from the Selenium project

• Martin Fowler's original Page Object article

WAITING
Waiting for the whole page to load should be a thing of the past. To

make your tests work in an asynchronous, JavaScript-heavy world,

we need to tell Selenium how to wait for particular elements more

intelligently. There are two types of functions for this in Selenium:

Implicit Waits and Explicit Waits.

The recommended approach from the Selenium project is to use

Explicit Waits, or at the very least to choose either Implicit or Explicit

Waits, and to not mix them in your code.

EXPLICIT WAITS

• Recommended approach

• Specify an amount of time and a Selenium action

• Selenium will try that action repeatedly until either:

– the action can be accomplished, or

– the amount of time specified has been reached,
throwing a TimeoutException.

WebDriverWait wait = new WebDriverWait(driver,

timeout);

wait.until(ExpectedConditions.

visibilityOfElementLocated(locator));

Note: For more info, check out the case against using Implicit and

Explicit Waits together and Explicit vs. Implicit Waits.

CODE CONTINUES IN NEXT COLUMN

https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://martinfowler.com/bliki/PageObject.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/TimeoutException.html
http://stackoverflow.com/questions/15164742/combining-implicit-wait-and-explicit-wait-together-results-in-unexpected-wait-ti#answer-15174978
http://stackoverflow.com/questions/15164742/combining-implicit-wait-and-explicit-wait-together-results-in-unexpected-wait-ti#answer-15174978
http://stackoverflow.com/questions/15164742/combining-implicit-wait-and-explicit-wait-together-results-in-unexpected-wait-ti#answer-15174978

7 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SELENIUM

IMPLICIT WAITS

Using Implicit Waits is no longer recommended. It can cause

unnecessary delays in testing time, and it masks the "intent" of your

tests. There are many discussions online to study the topic more in

depth. Also see the official documentation for Implicit Waits.

SCREENSHOTS ON FAILURE
Selenium can take screenshots of the browser window. We

recommend taking a screenshot whenever a test fails. In JUnit, this

done with a TestWatcher rule.

@Rule

public TestRule watcher = new TestWatcher() {

 @Override

 protected void failed(Throwable th, Description desc)

{

 File scrFile = ((TakesScreenshot)driver).

getScreenshotAs(OutputType.FILE);

 try {

 FileUtils.copyFile(scrFile,

 new File("failshot_"

 + desc.getClassName()

 + "_" + desc.getMethodName()

 + ".png"));

 } catch (IOException ex) {

 throw new RuntimeException(ex);

 }

 }

}

RUNNING TESTS IN PARALLEL
In order to run your tests on different browser/operating system

combinations simultaneously, you need to initialize a special kind

of WebDriver: a RemoteWebDriver. This allows you to execute

your tests on a different machine that you maintain (using the

Selenium Grid) or one of the many cloud providers (e.g., Sauce Labs,

BrowserStack, etc). These providers allow you to pay for the use of

cloud servers for test execution but in an environment that you don't

have to spend time or resources to maintain.

SELENIUM GRID

There are two main elements to the Selenium Grid — a hub

to manage the tests, and nodes to execute them. The hub

ensures your tests end up on the right node and manages all

communication between the nodes and your test code. Nodes host

the browser/OS combinations and execute your test commands

while providing constant feedback to the hub.

Selenium Grid comes built into the Selenium Standalone Server,

which you can download here.

Then start the hub:

> java -jar selenium-server-standalone.jar -role hub

19:05:12.718 INFO - Launching Selenium Grid hub

...

After that, we can register nodes to the hub:

> java -jar selenium-server-standalone.jar -role node

-hub http://ip-address-or-dns-name-to-your-hub:4444/

grid/register

19:05:57.880 INFO - Launching a Selenium Grid node

...

Note: To run node processes on multiple machines, you will need to

place the standalone server on each machine and launch it with the

same registration command (providing the IP Address or DNS name of

the hub, and specifying additional parameters as needed).

Once these processes are running, you must make a small change to

your test config to create a RemoteWebDriver that will use the Grid.

FirefoxOptions options = new FirefoxOptions();

"http://ip-address-or-dns-name-to-your-hub:4444/wd/

hub";

driver = new RemoteWebDriver(new URL(url), options);

Selenium Grid is a great option for scaling your test infrastructure,

but it doesn't give you parallelization for free. It can handle as many

connections as you throw at it (within reason), but you must still find

a way to execute your tests in parallel (with your test framework, for

instance). Also, if you're considering standing up your own grid, check

out docker-selenium, ecs-selenium (requires AWS), and Zalenium.

Note: When Selenium 4.0 is officially released, these examples are

subject to change and may no longer hold true.

SELENIUM SERVICE PROVIDERS

Rather than take on the overhead of a standing up and maintaining

a test infrastructure, you can easily outsource things to a third-party

cloud provider (aka someone else's Grid) like Sauce Labs.

Note: You'll need an account to use Sauce Labs. Their free trial offers

enough to get you started. And if you're signing up because you want to

test an open-source project, then check out their Open Sauce account.

//Create the SauceOptions object with your credentials

and other info

MutableCapabilities sauceOptions = new

MutableCabilities();

sauceOptions.setCapability("username", "<username");

sauceOptions.setCapability("accesskey", "<accesskey");

//Create the ChromeOptions object with the browser info

you require

CODE CONTINUES ON NEXT PAGE

https://www.seleniumhq.org/docs/04_webdriver_advanced.jsp
https://www.seleniumhq.org/download/
https://github.com/seleniumhq/docker-selenium
https://github.com/RetailMeNotSandbox/ecs-selenium
https://opensource.zalando.com/zalenium/
https://saucelabs.com/signup/trial
https://saucelabs.com/opensauce

8 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SELENIUM

ChromeOptions chromeOptions = new ChromeOptions();

chromeOptions.setCapability("browserName", "chrome");

chromeOptions.setCapability("browserVersion", "75.0");

chromeOptions.setCapability("platform", "Windows 10");

//Apply the Sauce Options to the ChromeOptions object

chromeOptions.setCapability("sauce:options",

sauceOptions);

//Now tie it all together in a RemoteWebDriver

String sauceUrl = "http://ondemand.saucelabs.com:80/wd/

hub";

driver = new RemoteWebDriver(new URL(sauceUrl),

capabilities);

Note: Check out Sauce Labs' documentation portal for more details.

MOBILE SUPPORT
Within the WebDriver ecosystem, there are a few mobile testing

solutions for both iOS and Android. Appium supports Selenium/

WebDriver as well as the W3C standard for WebDriver and has its

own Refcard. To get started with mobile, explore the many resources

online, most notably:

• Appium (both iOS and Android)

• Selendroid (Android)

• WebDriverAgent (iOS)

Note: If you're interested in Appium, then be sure to check out the

Getting Started With Appium Refcard, as well as the Appium Bootcamp.

UPDATED BY MARCUS MERRELL,
DIRECTOR OF TECHNICAL SERVICES, SAUCE LABS

Marcus Merrell has been working in quality engineering since 2001. He is a contributor to the Selenium project, as well
as the co-chair of the Selenium Conference Organizing Committee. He has released several open source projects for
testing and IoT and speaks at conferences worldwide. As the Director of Technical Services at Sauce Labs, Marcus manages
the Solutions Architect team, which helps customers find success with the Sauce Labs platform. He is also experienced in software
development management, user analytics, and marketing automation.

Devada, Inc.
600 Park Offices Drive
Suite 150
Research Triangle Park, NC 27709

888.678.0399 919.678.0300

Copyright © 2020 Devada, Inc. All rights reserved. No part of
this publication may be reporoduced, stored in a retrieval
system, or transmitted, in any form or by means of electronic,
mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

DZone, a Devada Media Property, is the resource software
developers, engineers, and architects turn to time and
again to learn new skills, solve software development
problems, and share their expertise. Every day, hundreds
of tousands of developers come to DZone to read about the
latest technologies, methodologies, and best practices. That
makes DZone the ideal place for developer marketers to
build product and brand awareness and drive sales. DZone
clients include some of the most innovative technology and
tech-enabled companies in the world including Red Hat,
Cloud Elements, Sensu, and Sauce Labs.

https://wiki.saucelabs.com/
https://github.com/appium/appium
https://github.com/selendroid/selendroid
https://github.com/facebook/webdriveragent
https://dzone.com/refcardz/getting-started-with-appium
http://innovate.tricentis.com/forrester-devops

