
WHITE PAPER

LEARN MORE AT SAUCELABS.COM

As more organizations embrace Continuous Integration (CI) and Continuous Delivery

(CD) as a mechanism to release apps faster, many find that there are a number of options

to consider when making this transformational shift. However, while there is significant

thought put into how development practices will change, very few teams consider how

CI/CD will change the way they test the code that they create.

This technical paper is the second in a series outlining various topics development

organizations of all sizes should consider when optimizing their processes for CI/CD,

and how they relate specifically to testing. This critical piece of your engineering strategy

can influence not only the quality of your applications, but also how quickly you can deliver

them to your users. For many teams, these considerations can effectively make or break

their CI/CD initiatives.

Optimizing CI/CD for Continuous
Testing - Feature Management
B R E A K U P T H E M O N O L I T H A N D D E L I V E R N E W F E AT U R E S FA S T E R

TABLE OF CONTENTS

3 Introduction

3 Smaller Features

4 Switchable Features

5 Conclusion

LEARN MORE AT SAUCELABS.COM PAGE 3

INTRODUCTION

Moving to an effective and efficient CI/CD pipeline requires significant effort

from organizations. It involves process and policy changes across every team.

The payoff can be extraordinary:

• Continual product improvement

• Consistently deliver high quality digital experiences to their customers

• Speed without adding risk

However, as your release velocity begins to increase, how can you ensure

your apps are still thoroughly tested?

Adding continuous testing best practices from the outset can enable the

transformation to CI/CD by allowing code to move through an accelerated

pipeline without testing becoming a bottleneck. To achieve this requires an

entirely new set of features -- testability features -- built into the architecture

itself, along with other changes to the way software is built. Without these

changes, organizations typically struggle to see the benefits that CI/CD

promise. This technical paper is the second in a series discussing the

approaches, requirements and processes to consider when implementing

continuous testing in a CI/CD workflow, and will focus on feature management

- including how you should consider selecting, conceiving and coding them up.

SMALLER FEATURES

Similar to application development’s shift to microservices, learning to

decompose large monolithic “features” into smaller ones takes hard work.

These changes don’t just hit technical issues; more importantly, they also

impact business concerns. Stakeholders, product owners, and engineers

all need to understand the advantages of a microservices architecture.

Smaller features are generally less complex, thereby making them easier

to incorporate into a CI/CD pipeline. It’s far easier to build, integrate, and

deploy a smaller component with a small set of APIs, database changes, and

UI, versus a huge footprint of massive schema updates, interwoven service

dependencies, and numerous components to be installed for the end user.

The other major benefit to this approach is that it makes each feature easier

to test. By limiting feature branches to the component level, it is much easier

to write automated tests that are both atomic (short, succinct, focused only

PAGE 4LEARN MORE AT SAUCELABS.COM

on one feature) and autonomous (not dependent on the results of another

test to run successfully). These tests, when written correctly, can be integrated

throughout the CI/CD pipeline. Whether it’s part of the end-to-end regression

cycle, or shifted left earlier in the pipeline to provide fast feedback to developers

pre-commit, testing smaller components in isolation allows for bugs to be

caught earlier, and stable code to move through the pipeline more quickly.

Small features will be easier to turn off (make switchable). To be successful

with larger features under CI/CD, organizations will need to understand and

use feature flags to make features switchable.

SWITCHABLE FEATURES

Here’s a common scenario - a skilled team asks “How do I test CAPTCHA

in my user registration form?” because they are struggling with automating

a tool (CAPTCHA) that is specifically designed to prevent automation.

The answer? “Don’t test it. Cheat instead.”

What’s meant by this is to design your test architecture so that you can turn

off features wholesale to make the system more testable. In this case, you

don’t need to test CAPTCHA itself; it’s a well-tested, high-quality third-party

component. You obviously need to test its integration and functionality, but

that’s likely a one-time thing.

Instead of trying to incorporate it into your checks, automating tests for your

user registration process should first disable CAPTCHA, run the test, then turn

CAPTCHA back on. This requires coding and engineering effort to make the

feature switchable, but it’s an extraordinary help when trying to wrap testing

into your CI/CD pipeline.

Moreover, feature switching can be used for much larger chunks of

functionality- -a technique sometimes called “canary releases.” You could

deploy features to your entire production farm, but enable them only on a

carefully monitored small number of servers. This allows you to gradually roll

out your features to a small population, ensure they’re working properly, and

gradually turn on those features to more and more users.

PAGE 5WP-23-072019

CONCLUSION

Implementing CI/CD means not only rethinking your pipeline, but also the

way you create your apps. By decomposing your monolithic applications into

smaller, more manageable features, allows for continuous iteration, deploys

and testing. It keeps autonomous teams more productive, as no one is left

waiting when something inevitably breaks. And most importantly, it allows for

mechanisms that allow for gradual deploys to ensure that teams are delivering

the best quality experiences to users.

Sauce Labs provides the world’s most comprehensive Continuous Testing

Cloud. Optimized for CI/CD with integrations to the industry’s most popular

tools, Sauce Labs is the perfect platform for all of your continuous testing

requirements throughout your CI/CD pipeline. To learn more, take a look

at this tech talk on integrating continuous testing into your CI/CD pipeline.

https://info.saucelabs.com/tech-talk-cicd-integration.html

ABOUT SAUCE L ABS

Sauce Labs is the leading provider of continuous testing solutions that deliver digital

confidence. The Sauce Labs Continuous Testing Cloud delivers a 360-degree view of

a customer’s application experience, ensuring that web and mobile applications look,

function, and perform exactly as they should on every browser, OS, and device, every

single time. Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Centerview Capital Technology, IVP, Adams Street Partners and Riverwood

Capital. For more information, please visit saucelabs.com.

SAUCE LABS INC. - HQ 116 New Montgomery Street, 3rd Fl San Francisco, CA 94105 USA

saucelabs.com/signup/trial

FREE TRIAL

https://saucelabs.com/
https://signup.saucelabs.com/signup/trial?campid=7011M0000013X6m&=utm_campaign=free+trial&utm_medium=qr&utm_source=sl

