
BROUGHT TO YOU IN PARTNERSHIP WITH

1

JavaScript
Test Automation
Frameworks
Six Essential Frameworks for Creating
Automated Tests

JUSTIN ALBANO
SOFTWARE ENGINEER, IBM

CONTENTS

• JavaScript Test Automation
Fundamentals

− A General Approach to Testing

− Testing JavaScript Applications

• Essentials of Test Automation
Frameworks

− WebDriverIO

− Nightwatch

− Puppeteer

− Playwright

− TestCafe

− Cypress

• Conclusion

Web development has changed dramatically over the last three

decades. At the advent of the Web, nearly all applications consisted

of static content rendered in one or two browsers. Since that time,

the Web has evolved into a colossal collection of dynamic web pages

and applications rendered in half-a-dozen or more browsers on

behalf of billions of users.

In addition to dramatic changes in web applications, JavaScript

test frameworks have also morphed to keep pace with this ever-

evolving ecosystem. In this Refcard, we will delve into the conceptual

underpinnings of modern JavaScript test automation frameworks

and explore six of the most popular frameworks available today.

Along this journey, we will compare the different design and

architecture decisions of each framework and how well these various

trade-offs are suited for different requirements and contexts.

JAVASCRIPT TEST AUTOMATION
FUNDAMENTALS
To understand JavaScript automated testing frameworks, we must

first have a foundational understanding of how to approach testing in

the general sense, including the purpose and structure of test cases

and the mindset we use to create effective test cases.

A GENERAL APPROACH TO TESTING

A test framework is primarily responsible for running a test suite or

a collection of test cases. Each test case is designed to exercise a

single, logical unit of behavior in an application and ensure that the

targeted behavior operates as expected. Generally, test cases are

structured in three parts:

1. Preconditions – Assertions that must be true before the

test can execute

2. Command – The logic of the test case that is intended

to verify some behavior

3. Postconditions – Assertions that must be true once

the test is complete

Written formally, using Hoare Logic, a test case can be expressed as:

{P} C {Q}

where:

• {P} are the preconditions of the test case

• {C} is the command to be executed

• {Q} are the postconditions of the test case that

we expect to be to be true

https://saucelabs.com/sign-up?utm_source=paid&utm_medium=dzone&utm_campaign=display&utm_term=refcard
http://sunnyday.mit.edu/16.355/Hoare-CACM-69.pdf

NEW

NEW

NEW

NEW

https://saucelabs.com/sign-up?utm_source=paid&utm_medium=dzone&utm_campaign=display&utm_term=refcard

3 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | JAVASCRIPT TEST AUTOMATION FR AMEWORKS

We can write tests in natural language — called Behavior-Driven

Development (BDD) — using the following clauses:

1. Given – The environment and context of the test case

2. When – The logic that is under test

3. Then – The assertions about the results of the test

For example:

Given I have addends of 3 and 5

When I sum them

Then the result is 8

Lastly, we can translate our test cases into code, as seen in the

pseudocode example below of our previous BDD test case:

// Given

a = 3

b = 5

// When

result = a + b

// Then

assert result == 8

Since our test case is now expressed as code, we can execute it the

same way we execute our application code. In practice, this means

executing all, or a specific subset, of our test cases each time we

make changes to our application. This ensures that regressions —

bugs that cause previously working components to fail — are not

introduced in our application.

Reporting is another important responsibility of a test framework.

Apart from simply denoting whether each test passed or failed,

frameworks are also responsible for describing why a test case failed.

For example, if the value of result in our previous test case was 7,

we expect that our report would include a description of the failure,

informing us that the actual result of the test, 7, does not match our

expected result, 8.

TESTING JAVASCRIPT APPLICATIONS

The generalized approach to testing and test frameworks above

holds true for nearly all programming languages and ecosystems.

While JavaScript can be executed outside of a browser using

Node.Js (Node), a vast majority of the JavaScript applications we see

today are browser-based. This is unsurprising, as JavaScript has a

significant advantage over nearly all other programming languages

in this realm: All modern browsers include a JavaScript engine that

allows JavaScript code to be executed natively within the browser,

which brings its own set of advantages and challenges.

This tight relationship between JavaScript and the browser allows

us to programmatically execute basic actions we take for granted,

such as clicking a button or hovering over a specific Hypertext

Markup Language (HTML) element. Due to JavaScript's capability to

interact with the browser and execute these actions, JavaScript test

frameworks must also be able to inspect the results of these actions,

as seen in the following diagram:

For example, if we click a button, we may want to assert that a different

HTML element changes to a specific color, a dialog box is displayed,

or a Representational State Transfer (REST) request is made to some

back-end service. Additionally, we may want to take screenshots

or videos of a test case's results — or the entire execution of a test

case — to ensure that the results match our aesthetic specifications

(e.g., graphic designs).

Since users can choose from a host of different browsers (e.g., Chrome,

Firefox, Safari, Edge), we may also want to ensure that our application

behaves and appears as expected in multiple browsers. This adds an

additional requirement to our test framework: interoperability with

different browsers.

Conceptually, each browser has its own application programming

interface (API) that allows an application to inspect the results of

an interaction with the browser. Over the years, as more and more

browsers with vastly different APIs became popular, standards were

devised that abstract the details of each browser and allow test

frameworks to interact with browsers in an agnostic fashion.

These advancements have led to three different types of JavaScript

test frameworks:

1. Standardized – Uses a standard API, which ensures

interoperability with all browsers that support the

standard, but it can be inefficient and lack support for

browser-specific features

2. Non-Standardized – Uses browser-specific protocols that

have not been standardized, which may be more efficient

and feature-rich, but it may not support all browsers

https://nodejs.org/

4 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | JAVASCRIPT TEST AUTOMATION FR AMEWORKS

3. Proprietary – Uses a customized mechanism — such as

proxying or code injection — to interact with browsers, which

can be efficient and feature-rich, but it is more complex and

may introduce quirky limitations

Each of these categories has its advantages and disadvantages, and

the frameworks that use them excel and deteriorate in different ways.

In the following section, we will look at six of the more prominent

frameworks, exploring how they utilize one of the three approaches

above to allow us to create automated tests in JavaScript.

ESSENTIALS OF TEST AUTOMATION
FRAMEWORKS
As JavaScript automated testing frameworks have matured over

the last two decades, six have risen as the most popular and can be

categorized by their protocols:

1. World Wide Web Consortium (W3C) WebDriver – WebDriverIO

and Nightwatch

2. Chrome DevTools Protocol (CDP) – Puppeteer and Playwright

3. Proprietary – TestCafe and Cypress

In this section, we will delve into how we can install and run each

framework, walk through an exploratory example of a simple test

case, and compare each framework to understand which is the best

fit for our use cases. Note: The examples that follow assume Node

and the Node Package Manager (NPM) are already installed.

WEBDRIVERIO

WebDriverIO is an open-source project that utilizes the W3C

WebDriver standard to interact with browsers in a truly cross-

compatible manner. All modern web browsers, including Chrome,

Firefox, Safari, and Edge, support the WebDriver standard, which

means that WebDriverIO supports nearly all browsers out of the box.

Unfortunately, the Web has changed significantly since the WebDriver

standard was devised, and it lags in its support for modern web

development and testing.

To supplement deficiencies of the WebDriver standard, WebDriverIO

also supports CDP, which enables the framework to use the

standardized WebDriver interactions, while also allowing us to

perform additional, more modern interactions with the browser.

This CDP interaction occurs over WebSockets to the browser, which

means WebDriverIO can interact with the browser without the need

for a patched browser or external service.

To run a WebDriverIO test, we must first create a new Node project:

mkdir webdriverio-examples

cd webdriverio-examples/

npm init -y

Note that the -y flag — “yes” — accepts all prompts during the

initialization process, removing the need for manual interaction.

Next, we must install the WebDriverIO Command Line Interface

(CLI) tool through NPM and configure the project using the

wdio config command:

npm i --save-dev @wdio/cli

npx wdio config -y

The configuration command creates a wdio.conf.js file that

contains the WebDriverIO configuration for our project. Within this

configuration file, we can see the following field:

specs: [
 './test/specs/**/*.js'

]

This specs field specifies the location of our test case specifications.

By default, a test file, example.e2e.js, will be created under the

 ./test/specs directory. We can run this test using the following

command:

npx wdio run wdio.conf.js

The example.e2e.js test will open a browser window and attempt

to authenticate using a login form. Once the test is complete, we can

see the successful results of our test case in the WebDriverIO output:

Spec Files: 1 passed, 1 total (100% completed) in

00:00:08

For more information, see the following WebDriverIO resources:

• What is WebDriver.IO?

• Automation Protocol

• Getting Started

• Boilerplate Projects

• NPM

NIGHTWATCH

Nightwatch is an open-source project similar to WebDriverIO — both

use the WebDriver standard to interact with the browser — but

Nightwatch focuses more on usability. This focus on ease-of-use

results in cleaner syntax, selection through JavaScript and CSS or

XPath, and support for Page Object Models (POMs).

The usability of Nightwatch is also reflected in how quickly a test case

can be created. Similar to WebDriverIO, we must first create a new

Node project:

mkdir nightwatch-examples

cd nightwatch-examples/

npm init -y

https://www.w3.org/TR/webdriver/
https://chromedevtools.github.io/devtools-protocol/
https://nodejs.org/en/download/
https://www.npmjs.com/
https://webdriver.io/
https://webdriver.io/docs/what-is-webdriverio#based-on-web-standards
https://webdriver.io/docs/automationProtocols/
https://webdriver.io/docs/gettingstarted/
https://webdriver.io/docs/boilerplates
https://www.npmjs.com/package/webdriverio
https://nightwatchjs.org/

5 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | JAVASCRIPT TEST AUTOMATION FR AMEWORKS

To install Nightwatch, we can run the following command:

npm i --save-dev nightwatch geckodriver \

 chromedriver

We can then run an example script, ecosia.js — contained in

node_modules/nightwatch/examples/tests/ — by running the

following command:

npx nightwatch \

 node_modules/nightwatch/examples/tests/ecosia.js

The ecosia.js script performs the following operations:

1. Opens the Ecosia Search Engine — https://www.ecosia.org/

2. Asserts that the title is Ecosia

3. Asserts that the search box is visible

4. Enters nightwatch into the search box

5. Asserts that the Search button is visible

6. Clicks the Search button

7. Asserts that the results contain Nightwatch.js

After we run this test case, we can see that all four of our assertions

have passed:

[Ecosia.org Demo] Test Suite

============================

i Connected to localhost on port 4444 (9932ms).

 Using: firefox (87.0) on linux 5.4.0-71-generic

platform.

✓ Running Demo test ecosia.org:

✓ Element <body> was visible after 466
milliseconds.

✓ Testing if the page title contains 'Ecosia'
(11ms)

✓ Testing if element <input[type=search]> is
visible (72ms)

✓ Testing if element <button[type=submit]> is
visible (56ms)

✓ Testing if element <.mainline-results> contains
text 'Nightwatch.js' (3446ms)

OK. 5 assertions passed. (7.359s)

Compared to WebDriverIO, Nightwatch is quick to start and test

cases are simple to implement. This begs the question: Why use

WebDriverIO, then? What Nightwatch gains in simplicity and agility, it

sacrifices in control. To reduce the burden on developers, Nightwatch

abstracts a large portion of the details about the interaction of the

framework with the browser.

WebDriverIO, on the other hand, exposes many of these details,

which allows us to fine-tune and tweak our test configuration as

needed. In general, Nightwatch should be preferred when simplicity

and ease-of-use are a priority, while WebDriverIO should be used

when a greater level of control is required.

For more information, see the following Nightwatch resources:

• Getting Started

• Developer Guide

• GitHub

• NPM

PUPPETEER

Puppeteer is an open-source project maintained by the Google

Chrome DevTools team that provides an abstracted API that

interacts with Chrome and Chromium browsers over CDP. By default,

Puppeteer runs headlessly, but it can be configured to run using

Chrome or Chromium — in the same manner as WebDriverIO and

Nightwatch — as well.

To get started with Puppeteer, we must create a new Node project:

mkdir puppeteer-examples

cd puppeteer-examples/

npm init -y

Next, we need to install the Puppeteer packages:

npm i --save-dev puppeteer

Note that the puppeteer package installs Puppeteer and an

accompanying version of the Chromium browser.

If we want to forgo the installation of Chromium, we can install the

puppeteer-core package instead. Regardless of our selection,

we can create a test script, example.js — from the official

Puppeteer Usage page — that opens https://example.com/ and

takes a screenshot of the browser window:

const puppeteer = require('puppeteer');

(async () => {

 const browser = await puppeteer.launch();

 const page = await browser.newPage();

 await page.goto('https://example.com');

 await page.screenshot({ path: 'example.png'

});

 await browser.close();

})();

https://www.ecosia.org/
https://nightwatchjs.org/gettingstarted/
https://nightwatchjs.org/guide/using-nightwatch/writing-tests.html
https://github.com/nightwatchjs/nightwatch
https://www.npmjs.com/package/nightwatch
https://github.com/puppeteer/puppeteer
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://github.com/puppeteer/puppeteer#usage
https://example.com/

6 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | JAVASCRIPT TEST AUTOMATION FR AMEWORKS

We can then run this script using the following command:

node example.js

Once the command completes, we can see a screenshot of https://

example.com/ in the current directory:

This is only a small fraction of the capability that Puppeteer contains.

Puppeteer also allows us to programmatically perform nearly all the

actions that we can perform manually in a browser, including:

• Providing input

• Interacting with forms

• Navigating Single-Page Applications (SPAs)

• Obtaining performance timing information

• Testing Chrome extensions

For more information, see the following Puppeteer resources:

• GitHub

• Google Web Developer page

• NPM

PLAYWRIGHT

Playwright is the spiritual successor to Puppeteer. It was created

by Microsoft in 2020 (by the same team that created the original

Puppeteer at Google) with the goal of bringing the same rich

functionality supported by Puppeteer to all mainstream browsers.

Instead of utilizing standard APIs for Firefox and WebKit browser

engines, Playwright patches these engines to enable support for

its APIs. This allows Playwright to support Chromium, Firefox, and

WebKit on Windows, Linux, and MacOS at the expense of requiring

that test cases be executed in a different browser than the one a user

will experience (i.e., a patched browser).

To create a new test case, we must create a new Node project:

mkdir playwright-examples

cd playwright-examples/

npm init -y

Once we have created the new project, we can install the playwright

package. We must also install the Playwright dependencies using the

npx playwright install-deps command.

This command ensures that the browsers we require — Chromium,

Firefox, and WebKit — are also installed and ready for use. We can

install these packages using the following commands:

npm i --save-dev playwright

sudo npx playwright install-deps

We can now create a new test case, example.js — provided by

Playwright — with the following content:

const playwright = require('playwright');

(async () => {

 for (const browserType of ['chromium',

'firefox', 'webkit']) {

 const browser = await playwright[browserType].

launch();

 const context = await browser.newContext();

 const page = await context.newPage();

 await page.goto('http://whatsmyuseragent.

org/');

 await page.screenshot({ path: `example-

${browserType}.png` });

 await browser.close();

 }

})();

This test case opens http://whatsmyuseragent.org/ in Chrome,

Firefox, and Safari, and it takes a screenshot of the web page in each

browser. We can run this test case using the following command:

node example.js

Once execution completes, we can see the following three

screenshots (note the contents of each page differs based on

the browser in which it was loaded):

Screenshot 1: Chromium

SEE SCREENSHOTS 2 AND 3 ON NEXT PAGE

https://example.com/
https://example.com/
https://github.com/puppeteer/puppeteer
https://developers.google.com/web/tools/puppeteer
https://www.npmjs.com/package/puppeteer
https://playwright.dev/
https://github.com/microsoft/playwright#examples
http://whatsmyuseragent.org/

7 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | JAVASCRIPT TEST AUTOMATION FR AMEWORKS

Screenshot 2: Firefox

Screenshot 3: WebKit

Although Playwright extends the features of Puppeteer to a wider

array of browsers, it does not replace Puppeteer. While it does offer a

greater degree of interoperability, Playwright requires that patched

browser releases be used — which introduces a disparity between

the browsers used by our applications' customers and the browsers

we use for testing.

For more information, see the following Playwright resources:

• GitHub

• NPM

TESTCAFE

TestCafe is an open-source project that acts as a proxy server and

injects the code used for testing. In practice, TestCafe executes a

test case that exercises a developer-specified URL, which is changed

by TestCafe to the URL of the proxy server, injecting the HTML and

JavaScript necessary to execute the test. This page is then delivered

to the browser and the test case is executed. When more advanced

interaction is needed, developers can use Client Scripts and Client

Functions. TestCafe also automatically waits for page objects to load,

which reduces the burden on developers when accessing certain

elements on a web page.

TestCafe is a powerful tool, and its architecture differs greatly from

the previous frameworks we have seen. This proxy architecture

ensures that tests are executed quickly and a vast array of browsers

are supported. The catch is that events — such as a button click —

are not executed natively in a browser, which differs from the user

experience and can lead to disparity in testing.

For example, a button may not be clickable when rendered by a

browser, but it is possible that a TestCafe test case can click the

button anyway.

To run a TestCafe test case, we must first create a new Node project:

mkdir testcafe-examples

cd testcafe-examples/

npm init -y

We can then install the testcafe package using the following

command:

npm i --save-dev testcafe

Next, we can create a simple test case, example.js — provided

by TestCafe — that enters text into an input field and clicks a

submit button:

import { Selector } from 'testcafe';

fixture `Getting Started`

 .page `http://devexpress.github.io/testcafe/

example`;

test('My first test', async t => {

 await t

 .typeText('#developer-name', 'John Smith')

 .click('#submit-button');

});

Finally, we can execute our test case using the following command:

npx testcafe chrome example.js

The testcafe command accepts two arguments: (1) the alias of the

browser to use and (2) the test script to execute. In our case, we want

to execute our test case in Chrome, so we supply an alias of chrome.

A complete list of browser aliases can be found on the Test Cafe

Browsers page.

https://github.com/microsoft/playwright
https://www.npmjs.com/package/playwright
https://testcafe.io/
https://testcafe.io/documentation/402843/guides/advanced-guides/inject-client-scripts
https://testcafe.io/documentation/402832/guides/basic-guides/obtain-client-side-info
https://testcafe.io/documentation/402832/guides/basic-guides/obtain-client-side-info
https://testcafe.io/documentation/402635/getting-started#performing-actions-on-the-page
https://testcafe.io/documentation/402828/guides/concepts/browsers#locally-installed-browsers
https://testcafe.io/documentation/402828/guides/concepts/browsers#locally-installed-browsers

8 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | JAVASCRIPT TEST AUTOMATION FR AMEWORKS

Once the test successfully completes, the testcafe tool outputs the

following, denoting that our test case, My first test, has passed:

Running tests in:
 - Chrome 93.0.4577.63 / Linux 0.0

 Getting Started
 ✓ My first test

 1 passed (8s)

For more information, see the following TestCafe resources:

• Getting Started

• Guides

• GitHub

• NPM

CYPRESS

Cypress is an open-source project that runs test cases directly

within the browser. Unlike other test frameworks that make remote

requests to the API of the browser or a standardized API, Cypress

runs as a Node server process, which means that it runs in the same

event-loop as our application under test. This has many distinct

advantages over alternative approaches, including:

• Faster test execution

• Access to the network layer and web traffic

• Ability to execute operating system tasks (e.g., taking

screenshots or video)

• Access to useful debugging information

Like TestCafe, Cypress also supports automatic waiting, which

removes the need for developers to add artificial waits for page

elements to load. This architecture does have some drawbacks,

though, including:

• Supports only Chrome-based and Firefox browsers

• Struggles with certain web security issues (although

workarounds are available)

• Constrains each test to a single origin

• Lacks multi-tab support

Although Cypress brings a lot to the table in terms of its continuity

with the application under test, this ability comes with some

sacrifices. Cypress can be a great automated test framework, but its

limitations should be well understood.

To run a Cypress test, we must first create a new Node project:

mkdir cypress-examples

cd cypress-examples/

npm init -y

Once we create a new project, we can install the cypress package:

npm i --save-dev cypress

With the cypress package installed, we can create a new test in the

file, cypress/integration/example_spec.js:

mkdir -p cypress/integration/

touch cypress/integration/example_spec.js

Once we create the example_spec.js file, we can add the following

content — provided by Cypress:

describe('My First Test', () => {

 it('clicking "type" navigates to a new url', ()

=> {

 cy.visit('https://example.cypress.io')

 cy.contains('type').click()

 cy.url().should('include', '/commands/

actions')

 })

})

Next, we can open the Cypress App using the following command:

npx cypress open

With the dashboard open, we can click on our example_spec.js

file to open it:

Opening our example_spec.js file (by clicking on it) will open a

browser window and execute our test case:

https://testcafe.io/documentation/402635/getting-started
https://testcafe.io/documentation/402634/guides
https://github.com/DevExpress/testcafe
https://www.npmjs.com/package/testcafe
https://www.cypress.io/
https://docs.cypress.io/guides/guides/web-security
https://docs.cypress.io/guides/references/trade-offs
https://docs.cypress.io/guides/getting-started/writing-your-first-test#Step-4-Make-an-assertion
https://docs.cypress.io/guides/getting-started/installing-cypress#Opening-Cypress

9 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | JAVASCRIPT TEST AUTOMATION FR AMEWORKS

WRITTEN BY JUSTIN ALBANO,
SOFTWARE ENGINEER, IBM

Justin Albano is a Software Engineer at IBM
responsible for building software-storage and
backup/recovery solutions for some of the largest
worldwide companies, focusing on Spring-based REST API and
MongoDB development. When not working or writing, he can be
found practicing Brazilian Jiu-Jitsu, playing or watching hockey,
drawing, or reading.

DZone, a Devada Media Property, is the resource software developers,
engineers, and architects turn to time and again to learn new skills, solve
software development problems, and share their expertise. Every day,
hundreds of thousands of developers come to DZone to read about the latest
technologies, methodologies, and best practices. That makes DZone the ideal
place for developer marketers to build product and brand awareness and drive
sales. DZone clients include some of the most innovative technology and tech-
enabled companies in the world including Red Hat, Cloud Elements, Sensu, and
Sauce Labs.

Devada, Inc.
600 Park Offices Drive
Suite 150
Research Triangle Park, NC 27709

888.678.0399 | 919.678.0300

Copyright © 2021 Devada, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or
by means of electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Apart from running our tests visually, we can also execute them

using the command line, which removes the need to open our test

case in a browser.

For more information, see the following Cypress resources:

• Getting Started Guide

• GitHub

• NPM

CONCLUSION
The Web has changed dramatically over the last 30 years, and the

JavaScript automated test ecosystem has evolved alongside it to

better suit the needs of modern web application development.

Currently, three general approaches have solidified:

1. Using standards such as WebDriver

2. Using non-standard APIs for each browser, such as CDP

3. Using proprietary approaches such as proxy servers and pure

Node code

Regardless of the technique used, each JavaScript automated test

framework has its advantages and sacrifices. As we have seen in this

Refcard, the better we understand where each framework excels and

falls short, the more equipped we are to select the test framework

that best fits our environment and context.

https://docs.cypress.io/guides/guides/command-line
https://docs.cypress.io/guides/getting-started/installing-cypress
https://github.com/cypress-io/cypress
https://www.npmjs.com/package/cypress

