
WHITE PAPER

LEARN MORE AT SAUCELABS.COM

Guide to Mobile Test
Automation with Appium,
XCUITest, and Espresso

TABLE OF CONTENTS

3 Executive Summary

3 The Complex Mobile Development Landscape

4 Leveraging Mobile Test Automation

5 Mobile Test Automation Options

5 Choosing the Right Mobile Test Automation

Framework

6 Understanding Cross-Platform vs. Native

Frameworks

6 Advantages and Disadvantages of Appium

7 Advantages and Disadvantages of Native

 Frameworks

9 Choosing the Right Framework: Appium vs.

Espresso vs. XCUITest

9 Who Will Run the Tests?

9 Is the App Cross-Platform?

10 Engineer Background and Skill Sets

10 Is Full Source Code Available?

10 How Fast Does the Development

 Pipeline Move?

11 Comparison Summary

12 Leveraging a Test Cloud

13 Conclusion: How to Select a Mobile Test

Automation Framework

13 Scaling Mobile Test Automation with Sauce Labs

LEARN MORE AT SAUCELABS.COM PAGE 3

EXECUTIVE SUMMARY

The landscape surrounding mobile test automation is becoming increasingly

complex for a variety of reasons. Not only are mobile device, operating

system, and browser combinations growing more numerous all the time,

but developers seeking to leverage mobile test automation must also decide

between multiple frameworks to find the right testing solution for each app.

This is a challenging task given the many variables at play in choosing a

testing framework. Teams must consider not only the technical dimensions

of testing frameworks (such as which languages they use to write tests), but

also the relative pros and cons of the different frameworks for supporting

strategies like shift-left testing or enabling engineers in varying roles to write

and execute tests.

To provide guidance on these questions, this whitepaper helps teams

understand the key mobile test automation solutions available today and

determine which ones to use for which testing needs. As the following pages

explain, there is no single test automation framework for mobile apps that is

best for all needs and use cases. Instead, the right test automation tool for a

given job will depend on the nature of the application being tested, as well as

the resources and priorities of the development team.

THE COMPLEX MOBILE DEVELOPMENT

L ANDSCAPE

Today, building high-quality mobile applications that delight users is a tall

order. According to the official Android website, there are more than 24,000

distinct models of phones designed to run Android, each with different screen

sizes, input features, battery life expectations, and so on. Combine that with

the various generations and variations of Apple iPhones, and it’s clear that

mobile apps need to be able to run across a dizzying array of different device

types and hardware profiles.

At the same time, there are dozens of different versions of the Android and

iOS operating systems, adding more variables that developers must manage in

order to ensure a smooth end-user experience across whichever device/OS

combination their users happen to choose. Matters become more complicated

still in the case of browser-based or hybrid mobile apps, whose performance

can vary depending on which browser or Web framework they run on.

https://www.android.com/everyone/#:~:text=So%20consumers%20get%20more%20choices%20when%20it%20comes%20to%20devices%20and%20apps.&text=There%20are%20now%20nearly%201%2C300,Android%20Fragmentation%20Visualized%20%2D%20August%202015.

PAGE 4

Ensuring that applications perform well across all of these mobile host

environments can be tremendously challenging because individual devices,

operating systems, or browsers may have configuration quirks that cause

bugs or unexpected behavior within mobile applications that developers did

not anticipate when writing the application code.

Nonetheless, managing all of these variables is a must for mobile developers,

especially in a world where customers quickly abandon apps that under-

perform, and where a majority of users expect apps to start in as little as

four seconds and respond to input in under two seconds, no matter which

platform hosts the apps.

LEVERAGING MOBILE TEST AUTOMATION

Given the mind-bogglingly complex set of variables that shape the software

environments in which mobile apps run, how can mobile development teams

ensure that their applications perform as required, no matter which mobile

platforms their customers happen to use? The answer is mobile test automation.

Mobile test automation allows teams to write tests that automatically evaluate

the performance of software during the development process, allowing

developers to identify bugs before applications are deployed to end-users.

Without mobile automation testing, developers would have to test mobile

applications manually by evaluating app performance by hand. Not only would

such a strategy be time-consuming, but it would also allow developers to

execute only a fraction of the tests that they could run when using automation.

With mobile test automation, however, teams can quickly and efficiently

assess application performance and behavior across hundreds or thousands

of different device/OS/browser combinations. They can catch and fix bugs

that arise under certain configurations, then take steps to fix them so that

all of their customers enjoy quality, high-performing applications. This is

especially true when teams combine test automation with mobile device test

clouds, which provide access to a wide variety of different mobile devices on

which to run tests.

LEARN MORE AT SAUCELABS.COM

https://www.statista.com/statistics/271628/percentage-of-apps-used-once-in-the-us/
https://www.statista.com/statistics/271628/percentage-of-apps-used-once-in-the-us/
https://techbeacon.com/app-dev-testing/how-negative-reviews-kill-mobile-apps#:~:text=Negative%20reviews%20can%20kill%20your,to%20inputs%20within%202%20seconds
https://techbeacon.com/app-dev-testing/how-negative-reviews-kill-mobile-apps#:~:text=Negative%20reviews%20can%20kill%20your,to%20inputs%20within%202%20seconds

PAGE 5LEARN MORE AT SAUCELABS.COM

MOBILE TEST AUTOMATION OPTIONS

Several mobile test automation frameworks exist to help development teams

write and run tests. They fall into two main categories.

The first are cross-platform mobile test automation tools, which can work

with any major mobile operating system and environment. Appium, an open

source test automation framework first released in 2011, is the most popular

option in this category.

The second category of mobile test automation solutions consists of native

frameworks. These are testing frameworks that are built into specific operating

systems. Espresso is the leading native test automation framework for Google’s

Android OS, while XCUITest is the main native option for Apple iOS testing.

CHOOSING THE RIGHT MOBILE TEST

AUTOMATION FRAMEWORK

With multiple mobile test automation frameworks out there, choosing the

right solution for each mobile application or testing need can be a challenge.

In the following pages, we compare the leading cross-platform and native

test automation frameworks, explaining the pros and cons of each in terms

of performance, test execution processes, and more.

The goal of this resource is to empower mobile development teams to

choose the right test automation solution for each job and to ensure that they

understand how to get the most out of the test automation routines they may

already have in place (for example, by leveraging test clouds to provide simple

access to as many device types as possible).

PAGE 6

UNDERSTANDING CROSS-PL ATFORM VS.

NATIVE FRAMEWORKS

As noted above, mobile test automation frameworks break down into two

main categories:

• Cross-platform frameworks, where Appium is the leading solution.

• Native frameworks, with Espresso and XCUITest serving as the main

solutions on Android and iOS, respectively.

Let’s take a look at the pros and cons of each type of testing framework.

ADVANTAGES AND DISADVANTAGES OF APPIUM

Appium offers several important advantages for many mobile testing needs:

• Cross-platform support: Perhaps most obvious, Appium is a cross-

platform solution that developers can use to test almost any type of

mobile application, no matter which OS it runs on or which language it

is written in. (Indeed, Appium can be used for non-mobile testing, too,

although other frameworks are more common for that situation.) This

means that with Appium, teams can write a single set of tests and deploy

them for both the Android and iOS versions of their applications.

• Support for native, Web-based, and hybrid apps: Along similar lines,

Appium can test applications that run directly on mobile devices as native

apps, as well as Web-based apps and hybrid apps that combine native and

Web-based features. It’s even possible to automate the operating system

itself, which truly maximizes the flexibility of Appium testing.

• Write tests in multiple languages: Appium supports tests written in Java,

Ruby, Python, PHP, JavaScript and C#. No matter which language your

test engineers prefer, it’s likely that Appium can handle tests written in it.

• Support for testing complex interactions: In addition to testing individual

applications, Appium tests can be used to evaluate how apps interact with

other apps, as well as with different browsers and operating systems. This

makes Appium a highly flexible testing solution that can support a broad

range of use cases.

• Similarities to Selenium: Appium is derived from Selenium, a popular test

automation framework for non-mobile apps. For developers who are

already familiar with Selenium, then, getting started with Appium is likely

to be easier than having to learn a totally new framework.

LEARN MORE AT SAUCELABS.COM

PAGE 7

These strengths make Appium a reliable choice for teams that need to test

applications that will be deployed across multiple types of operating systems

or browsers, and that want to do it all with a single test automation framework.

On the other hand, Appium has some drawbacks:

• Slower test execution: Compared to native testing frameworks, Appium tests

take longer to run. This is due to Appium’s testing architecture, in which tests

live outside the app and are executed with HTTP calls. Slower test execution

can slow down the overall development pipeline, especially if teams have a

large number of tests to run and cannot run them all in parallel.

• Testing code is separate from application code: With Appium, teams

typically write and maintain test automation scripts separately from

application code. This practice adds complexity to the code management

process and the software delivery pipeline.

• The need for test customization: Appium is a cross-platform framework

that makes it possible, in theory, to write one series of tests that can run

on both Android and iOS. However, in practice tests often need to be

customized for each platform. When this happens, it becomes a drawback

because it increases the work that test engineers must perform to run tests.

ADVANTAGES AND DISADVANTAGES OF NATIVE FRAMEWORKS

Espresso and XCUITest come with their own set of pros and cons. Advantages

of these native frameworks include:

• Speed of test execution: In most cases, native tests will run faster than

those of Appium or another cross-platform framework. That is because

native tests are not isolated from the application. They can also access

application code directly, rather than having to use a method like HTTP

calls to interact with applications.

PAGE 8

• Shared test language: With native frameworks, tests are typically written

in the same language as the application itself. This can make it easier to

involve developers in testing if desired. It also makes it possible for tests

to access internal application code directly, allowing engineers to create

atomic and isolated tests that Appium would not be able to support.

• Official platform support: The native test frameworks are developed

and officially supported by Google and Apple for their respective mobile

platforms. That means that the native frameworks are kept up to speed

with changes in OS libraries, features, and so on. As a third-party project,

Appium can take time to catch up with platform changes.

• Different tests for different platforms: Because Espresso and XCUITest

are tied to specific mobile platforms, the tests that engineers write using

these frameworks will also be customized for those frameworks. In some

respects, this can make it easier to write and maintain tests than in the case

of Appium, where a single set of tests sometimes needs to be customized

for each platform prior to test execution.

• Test code lives alongside application code: The tight coupling between

native test frameworks and specific platforms also means that test

code can be easily written and managed as part of the main application

codebase, which simplifies the overall software delivery pipeline.

At the same time, the native frameworks are subject to some notable disadvantages:

• No cross-platform support: A key limitation is that native frameworks

support only specific operating systems. That means engineers have to

write and execute entirely separate sets of tests – one for each platform –

if they are testing cross-platform apps.

• Difficulty of testing user flows: Compared to Appium, native

frameworks allow little in the way of testing user flows by evaluating

variables like application-browser interaction, testing how applications

behave based on different device settings or assessing interactions

between different applications.

• Steeper learning curves: Each native platform has its own set of tools and

test execution routines. Engineers therefore have to learn each framework

separately, a process that can take time and may require greater expertise

on the part of the development team.

• Focus on UI testing: Espresso and XCUITest are primarily designed for

UI testing, which means that application interfaces appear and behave

as expected.

PAGE 9

CHOOSING THE RIGHT FRAMEWORK:

APPIUM VS. ESPRESSO VS. XCUITEST

It would be a mistake to deem one testing framework superior to all of the others.

Each solution is well suited for some use cases and poorly suited for others.

To evaluate which mobile test automation framework to use for which job,

then, teams should ask themselves a series of questions.

WHO WILL RUN THE TESTS?

Generally speaking, Appium is a testing solution designed first and foremost

for Quality Assurance (QA) and test engineers. In contrast, the native

frameworks cater to developers, who can use these frameworks to write test

code alongside application code.

For that reason, organizations with dedicated QA or testing teams are more

likely to find Appium to be a good fit, while teams without testing specialists

may wish to stick with a native framework.

In addition, because native frameworks empower developers to write tests,

they can be a useful means of enabling “shift-left” testing, which means

running tests early in the development cycle. Instead of waiting for application

code to be fully integrated, written, and built before running tests, developers

can use native frameworks to test code before they push it into the pre-

deployment environment.

The native frameworks are also more useful for teams aiming to perform

“gray-box” tests, meaning tests in which engineers already have some

understanding of the internal workings of the application and plan to use that

knowledge to contextualize their interpretation of tests by writing atomic or

isolated tests, for instance. In contrast, Appium is a black-box testing solution

in which test data does not align with, or require special knowledge of,

internal application architecture or code.

IS THE APP CROSS-PLATFORM?

The most basic question to ask is whether the application you are testing is

cross-platform. If the answer is no – if, in other words, it is an app that will

run only on Android or only on iOS – it will likely be easier to write more

sophisticated tests using the native testing framework of the target platform.

That said, it could still make sense to use Appium for a single-platform app if

engineers are already familiar with Appium (or Selenium-based) test frameworks.

PAGE 10

If the app is cross-platform, it may or may not make sense to test it using a

cross-platform framework like Appium or a combination of native frameworks.

The answer in this case will depend on the other factors outlined below.

ENGINEER BACKGROUND AND SKILL SETS

Along similar lines, it’s important to consider the skill sets of the teams that

will be writing and executing tests. If your engineers are already familiar with

Selenium, then Appium may be a better mobile test automation choice than

a native framework because it will require less time for the team to learn.

On the other hand, if your tests will be written by developers, they may find it

easier to write tests in a native framework – especially if they already know the

programming languages that the native frameworks use to write tests (which

are Objective-C/Swift in the case of XCUITest, and Java or Kotlin for Appium).

IS FULL SOURCE CODE AVAILABLE?

The native testing frameworks require access to source code, while

Appium does not.

In most cases, this difference is not important because teams that develop

in-house mobile applications typically have full access to the application

source code. However, in certain situations – such as an application that

depends on upstream components whose source code is not available to the

development team – it may only be possible to use a framework like Appium

that doesn’t require full source code.

HOW FAST DOES THE DEVELOPMENT PIPELINE MOVE?

The fact that native frameworks enable faster test execution is an advantage

for development pipelines where teams build new features rapidly – such

as on a daily basis. In those contexts, waiting for tests to execute can slow

the overall delivery pipeline and undercut the ability of the team to push out

application updates quickly.

On the other hand, if developers are releasing new features only once every

week (or longer), the ability to execute tests as quickly as possible is less likely

to be a priority.

LEARN MORE AT SAUCELABS.COM

PAGE 11

COMPARISON SUMMARY

LEARN MORE AT SAUCELABS.COM

Application Type Mobile Web, Native/

Hybrid Mobile Apps

Native/Hybrid Mobile

Apps

Native/Hybrid Mobile

Apps

Operating System Cross-platform iOS Android

Languages Language Agnostic Objective-C/ Swift Java/Kotlin

Key Users QA, Test Engineers Developers (iOS) Developers (Android)

Enables Shift-right Shift-left Shift-left

Testing Type Black box Gray box Gray box

Source Code Required No Yes Yes

Flakiness of Tests High Low Low

Speed Slower Faster Faster

Updates Trails iOS/ XCode,

Android/ UI automator

changes

Current/ Up-to-date Current/ Up-to-date

PAGE 12

LEVERAGING A TEST CLOUD

No matter which type of testing framework you choose, you can optimize

the speed by running tests in parallel, while also improving test reliability,

by running them in a test cloud.

Test clouds provide access to thousands of real or simulated mobile devices,

making it easy to test applications across a range of different device profiles

at once. Achieving the same device coverage using local testing infrastructure

would be very complicated and expensive, because teams would need to set

up and manage large-scale device emulators and/or physical devices, which

would be a complex task.

Test clouds also offer the advantage of testing that can scale rapidly. Whether

you need to run just a few tests or hundreds, a test cloud provides access to

all of the infrastructure necessary to run the tests quickly, without the risk of

delays caused by the exhaustion of available infrastructure.

And because test clouds from vendors like Sauce Labs offer enriched test

reports that provide additional context about test results, they make it easier

for teams to interpret test data and debug applications, regardless of which

test framework or frameworks the teams use.

LEARN MORE AT SAUCELABS.COM

PAGE 13

CONCLUSION: HOW TO SELECT A MOBILE

TEST AUTOMATION FRAMEWORK

Modern developers and test engineers have a variety of mobile test automation

solutions available to them. While this level of choice is advantageous in that

it makes it easy to select different frameworks depending on the nature of the

application being tested and the priorities of the development team, the task of

choosing the right framework can also present a challenge.

As your team evaluates the various options that are available, consider factors

such as how many platforms your application needs to support, how rapidly

you need the tests to execute, which members of your team are performing

the testing, and whether techniques like shift-left testing are important to

your team. The best testing framework for each application will vary based

on factors like these.

Remember, too, that there is no reason why you can’t use multiple frameworks

at once. Not only is it common to use multiple native frameworks side-by-side

for testing cross-platform applications, but it’s also possible to use Appium

and native frameworks at the same time, provided that your team has the skills

to write and execute tests in each framework, and that it is manageable to

maintain multiple sets of test code.

Whatever framework you use, however, don’t make the mistake of allowing

your mobile test infrastructure to constrict your ability to run tests as quickly

and as broadly as you require. Instead, leverage a platform like the Sauce Labs

testing cloud, which makes it simple to execute tests across hundreds or even

thousands of devices at once.

SCALING MOBILE TEST AUTOMATION WITH SAUCE LABS

Sauce Labs mobile testing solution supports popular mobile testing frameworks

like Appium, Espresso, and XCUITest on a single platform allowing mobile app

developers and QA engineers to maximize productivity by running automated

tests on the framework of their choice, and working in the environment and

language they already know and use. Sauce Labs uses a framework agnostic

test orchestrator saucectl to execute Espresso and XCUITest tests (along with

other frameworks) and enables teams to compare the test results across

different environments and frameworks all in one view, thereby accelerating

feedback loops and improving visibility into the application quality.

WP-33-072021

https://saucelabs.com/platform/mobile-testing
https://docs.staging.saucelabs.net/testrunner-toolkit/index.html

ABOUT SAUCE L ABS

Sauce Labs is the leading provider of continuous testing solutions that deliver digital

confidence. The Sauce Labs Continuous Testing Cloud delivers a 360-degree view of

a customer’s application experience, ensuring that web and mobile applications look,

function, and perform exactly as they should on every browser, OS, and device, every

single time. Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Centerview Capital Technology, IVP, Adams Street Partners and Riverwood

Capital. For more information, please visit saucelabs.com.

SAUCE LABS INC. - HQ 116 New Montgomery Street, 3rd Fl San Francisco, CA 94105 USA

saucelabs.com/signup/trial

FREE TRIAL

https://saucelabs.com/
https://signup.saucelabs.com/signup/trial?campid=7011M0000013X6m&=utm_campaign=free+trial&utm_medium=qr&utm_source=sl

