
WHITE PAPER

LEARN MORE AT SAUCELABS.COM

Testing mobile applications requires that the developers test under conditions that are as

close to the real world as possible. This means choosing the right selection of real devices.

Fortunately the creation of real device lab services has made procuring real devices easier

than ever to ensure app quality on multiple device platforms.

This whitepaper will explore the advantages of using real devices for manual and

automated testing.

Real Mobile Devices For
Continuous Testing

TABLE OF CONTENTS

3	 Executive Summary

3	 Real and Virtual Devices

4	 Advantages of Real Devices for Testing

6	 Real Devices and Appium

8	 Real Devices and Espresso, XCUITest

8	 Real Devices in a Cloud Environment

10	 Real Devices and Continuous Testing

LEARN MORE AT SAUCELABS.COM PAGE 3

EXECUTIVE SUMMARY

Manual and automated testing of mobile applications can take place on both

real and virtual devices. Real devices are physical phones or tablets, identical in

hardware and software to the devices users have in their pockets. Leveraging

real devices for testing unlocks a number of advantages for the tester, primarily

around fidelity—real devices provide the highest-fidelity environment for

catching or reproducing quality issues. A number of features (cell network

change handling, SMS, phone calls, etc...) can only be adequately tested on real

devices. Using a test framework like Appium makes it dead simple to switch

between real and virtual devices as necessary, simply by modifying a bit of

information in the test preamble. Once you have a number of Appium tests, it

makes sense to consider running them in the cloud, to unlock greater speed

and device coverage for your build, and to eliminate the various hassles that

come with managing your own real devices. Real device testing is an essential

aspect of Continuous Testing for mobile, and every step should be taken to

make sure that choosing real devices for testing speeds up your release cycle,

rather than bogging it down with additional complexity and expense.

REAL AND VIRTUAL DEVICES

When embarking on a QA effort for a mobile app, it’s essential to understand

the types of devices available for building out your test strategy. In general

there are three ways to test mobile apps:

1.	 On real devices. By “real devices” we mean physical phones and tablets

purchased from a vendor with an operating system like Android or iOS

installed. The device may or may not be modified to support testing different

scenarios (for example, rooting an Android device to unlock different layers

of device automation), but in general a real device is exactly the same as

what some segment of your users are actually using your app with.

2.	 On virtual devices. By “virtual devices” we mean software programs that

approximate, to some degree, the workings of a real device. There are

two mutually exclusive strategies employed by makers of virtual devices,

namely simulation and emulation. Simulators essentially implement a

version of the mobile OS which is tied to the hardware and system calls

of the host machine (real or virtual). In other words, an iOS simulator runs

a version of iOS which is still at the end of the day running on the kernel

of whichever macOS machine has the simulator open. Emulators, on the

other hand, constitute a virtual representation of the entire mobile device,

PAGE 4LEARN MORE AT SAUCELABS.COM

down to the low-level system calls. Emulators are therefore a kind of

virtual machine, whereas simulators are not. Both kinds of virtual devices

can be run on developers’ local machines to facilitate app development

or testing. Because virtual devices are simply software programs, there is

a substantial difference in the ease of acquiring and scaling virtual devices,

as compared with real devices (which must be purchased, physically

received, and physically incorporated into a test rig).

3.	 Using a desktop browser’s dev tools. For mobile web apps or hybrid apps

only (not native apps), it is often convenient to design and manually test

an application in a web browser, using a developer tool like Chrome’s

Device Mode. This mode displays the web application as if it were being

rendered on a mobile device, by adjusting window size, interpretation of

CSS, and how events are handled. Neither simulation nor emulation of

the device is happening, and this test mode is primarily useful for quickly

iterating on visual changes during development, or for manual testing of

responsive design issues.

This whitepaper focuses on the use of real devices, and the subsequent

sections will explore the benefits of using real devices for testing, how to take

advantage of cloud-based real devices, and the place of real devices in the

overall Continuous Testing (CT) paradigm.

ADVANTAGES OF REAL DEVICES FOR TESTING

Fidelity. The one word that summarizes all the advantages of using real

devices in your CT system is “fidelity”. There are higher- and lower-fidelity

tests, and higher- and lower-fidelity testing tools. Functional testing (defined

as black-box testing which manipulates the UI of an application the same

way a user would) is the highest-fidelity kind of testing there is. Compared

to, say, unit tests, functional tests most approximate real-world usage. In

fact, functional tests are basically automated versions of what a human tester

would do when running through a test scenario for a given app.

Similarly, real devices are the highest-fidelity kind of test device. Your users

are using real devices, and hopefully the same ones that you have available

for use in testing (whether manual or automated). Emulators are a significant

notch below real devices in terms of fidelity, and simulators a bit further

down yet. Most companies engage in functional testing not for the purpose

of proving that code is covered by tests, but for ensuring that important user

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/

PAGE 5LEARN MORE AT SAUCELABS.COM

flows are tested in as high-fidelity an environment as possible, utilizing the

whole app stack from UI components down to backend service integration.

From the perspective of manual testing, this is all we need to say. Nothing

beats reproducing user-reported bugs on the exact devices which the users

experienced problems with. Likewise, there is no reason (apart from cost or

difficulty of procurement) to use virtual devices instead of real devices when

it comes to manual testing. With the advent of cloud-based real device

testing, cost is minimized and the difficulty of procurement erased. We will

discuss this more below.

Speed. From the perspective of automated testing, fidelity is obviously a

core consideration for all the same reasons as manual testing. Another

critical aspect of choosing real devices for automation is speed. Because

virtual devices are either completely virtualized or running as one process

among many on a host system, they can be relatively slow. Real devices have

dedicated hardware which has been tuned by the manufacturer precisely

for the purpose of running apps like yours as fast as possible. It is usually the

case that both app performance and automation software performance are

improved when running on real devices. Incorporating real devices into your

build as much as possible therefore means your tests are likely to run faster

than on virtual devices.

Performance Testing. Because real devices have their own CPUs, GPUs, and

other hardware components, real devices are to be preferred when doing any

kind of performance testing. Virtual devices can give at best a relative view of

app performance, because they are running virtualized system instructions,

or on a host OS. Even then, relative reports need to be scrutinized closely,

because system events external to the virtual device can affect its operation.

Performance data captured from real devices is relevant even in small

quantities, because it reflects the experience of your users.

Addressing Device Fragmentation. Finally, leveraging real devices is the only

way to address device fragmentation among your user base. Especially on

Android, the number of distinct mobile devices used by your customers can

easily be in the dozens. Testing via virtual devices will never uncover device-

specific bugs before your users report them. It’s therefore a good idea to have

a solid understanding of which devices are popular among your users, and to

proactively test with them in advance of a release.

PAGE 6LEARN MORE AT SAUCELABS.COM

In addition, we can discuss specific automation capabilities available only

to real devices. For example, using Appium as the reference framework,

real devices are essential for the following test requirements:

1.	 Testing Real Networks. If you want to get feedback on your app

performance in real-world conditions, over actual 3G or LTE networks,

you will need a real device.

2.	 Testing Network Change Events. If you want to test how your app

behaves when network conditions change (for example, moving from

cellular network to WiFi), you will need a real device.

3.	 Testing SMS, Phone Calls, and Push Notifications. Android emulators

support basic synthesizing of SMS and Phone events, however iOS

simulators do not. Nor do iOS simulators support testing of Push

Notifications. If you want to test these how your app sends and receives

SMS, phone calls, or push notifications, you’re best off using a real device.

4.	 Testing Audio Input / Output. If your test case requires injecting audio

input, you need to use a real device connected to a microphone.

Generating the sound itself is outside the scope of automated test

frameworks, but regardless, you will need a real device to pick up any

sound. Likewise, if your app produces sound, the easiest way to capture

that is via a recording system connected to a real device.

REAL DEVICES AND APPIUM

Appium is a mobile automation tool that supports many platforms (including

iOS and Android), app modes (native, hybrid, web), and device modes (both

real and virtual devices). The way to use Appium to target a real device

instead of a virtual device is via the Desired Capabilities that are used to

initiate an Appium session. Each language-specific Appium client builds

Desired Capabilities in its own way. For example, here is a set of basic Desired

Capabilities used to automate an iOS app, from within the Appium Java client:

DesiredCapabilities capabilities = new DesiredCapabilities();

capabilities.setCapability(“platformName”, “iOS”);

capabilities.setCapability(“deviceName”, “iPhone 7”);

capabilities.setCapability(“platformVersion”, “11.2”);

capabilities.setCapability(“app”, “/path/to/local.app”);

https://appium.io/

PAGE 7LEARN MORE AT SAUCELABS.COM

The the DesiredCapabilities object is used to create an instance of

AppiumDriver which contains all the automation API methods on it. In the

minimal case, two updates to this set of Desired Capabilities are required

in order to successfully target a real device:

1.	 A new capability must be added, “udid”, with a value of “auto” (if only one

device is connected), or with the actual device ID of a connected device.

2.	 The value of the “app” capability must be updated to be the location of a

signed .ipa file (for iOS), or .apk file (for Android).

For iOS apps in particular, app signing and device provisioning can be a

challenge. Because of the security model adopted by Apple, only signed apps

can run on real devices. And for any app not signed by the official App Store,

it is restricted to running on devices which have been listed in a provisioning

profile tied to your application. This is a hurdle in and of itself, and has nothing

to do with Appium. Users running iOS tests on real devices must have the

appropriate signing certificates and provisioning profiles downloaded on their

system through the Xcode certificate management interface. Once this is

done, the steps to follow are:

1.	 Ensure your provisioning profile allows for a wildcard app ID, something

like “com.company.*”. This will enable the provisioning profile to validate

the install of your own app, as well as a rebuilt version of WebDriverAgent

which has been ported to this namespace, for example as “com.company.

webdriveragent“

2.	 Find your team’s Apple Team ID from your Apple Developer Portal

account.

3.	 Find the name of your signing identity on your local machine (usually it is

simply “iPhone Developer”.

1.	 Set three new capabilities in your Appium session initialization: first

“xcodeOrgId”, with the value of your team ID. Then “xcodeSigningId”

with the name of your signing identifier. Finally, “updatedWDABundleId”,

with a valid iOS bundle ID that will work with your wildcard provisioning

profile (e.g., “com.company.webdriveragent”).

With these new capabilities in place, Appium will be able to sign, install, and

run the automation libraries on the phone, and you will be off and running.

On Android, there is thankfully no requirement for devices to run only signed

PAGE 8LEARN MORE AT SAUCELABS.COM

apps, or for apps in development to be restricted to only a set of pre-

provisioned devices. In fact, on Android, starting sessions on real devices is no

different at all than starting sessions on an emulator.

REAL DEVICES AND ESPRESSO, XCUITEST

When it comes to mobile automation, Appium is not the only game in town.

All of the advantages listed above for real device-based automation also

apply to the other popular automation frameworks, Espresso and XCUITest.

Espresso is maintained by Google as their recommended tool for Android

UI automation. It is integrated tightly with the app and with the Android

Studio development environment, and many dev teams prefer Espresso for

this reason, not to mention the view synchronization features which help

to reduce test instability. XCUITest is released by Apple for the purpose of

iOS testing, designed as a set of additional libraries for use with the XCTest

framework. Like Espresso, XCUITest-based scenarios must be written in a

particular set of languages (Objective-C or Swift, whereas for Espresso it is

Java or Kotlin), and has first-class integrations with the Xcode IDE.

The requirements for running tests on real devices using Espresso or XCUITest

are basically the same as for Appium, with the consequence that getting

going with Espresso on real devices is marginally easier than with XCUITest

(because of Apple’s code-signing process). However, when staying within

Xcode to write tests, Apple’s code signing helper UI is available.

REAL DEVICES IN A CLOUD ENVIRONMENT

One of the big downsides of real device testing is the expense and manual

labor associated with procuring and maintaining a grid of devices available

for testing, especially with any kind of uptime guarantee. Real devices run

out of power, wind up on odd states, lock their screens, and in general are

less uniform than virtual devices. New devices come on the market and the

devices required for testing change. Old devices need to be repurposed or

recycled, and new devices procured (sometimes with great difficulty if the

device is popular). It is a serious investment of time, money, and expertise to

maintain an in-house real device grid. For this reason alone, many companies

choose to satisfy their real device requirement by moving to the cloud.

With a cloud service like the Sauce Labs Real Device Cloud (RDC), you have

access to real devices for manual or automated testing (via Appium, Espresso,

and XCUITest) without having to procure or maintain those devices yourself.

PAGE 9LEARN MORE AT SAUCELABS.COM

A huge variety of device models are hosted in secure datacenters around the

world, available in an on-demand fashion over secure network connections

that work even inside corporate firewalls. Private, customer-specific devices

are also available. There are 5 main benefits of cloud-based real device testing:

1.	 No setup or maintenance. In-house real device grids are a major

investment, sometimes with little return. The Sauce Labs RDC maintains

everything, so you don’t have to, and comes with uptime guarantees.

You get the value of real device testing without the effort of building it

yourself.

2.	 Access to many device models. Your test requirements change over time,

and buying and recycling devices as you need them is not a good use of

resources. The Sauce Labs RDC has an array of both currently popular

and more rare devices so that, even if you have your own device grid, you

may be able to find something in the cloud which you don’t have access

to locally.

3.	 Forget signing woes. We described above some of the complications of

real device testing due to Apple’s app security model. With the cloud, you

don’t worry about it; you simply upload your signed application, specify

the device you want via the Desired Capabilities, and the rest is taken

care of. You get to focus on your automation rather than asking your IT

department to navigate the jungle of certificates and provisioning profiles.

4.	 Speed. The Sauce Labs RDC is purpose-built to scale to meet the testing

needs of many customers. With the number of devices available, you will

be able to run many more tests at once than on your local setup. The key

to a fast release cycle is a fast build and verification process, and the key

to a fast build is running tests in parallel. It’s only with a cloud service that

you’ll be able to achieve a high enough parallelism to get your build time

low and to make your developers happy with the feedback loop.

5.	 Test Data and Analytics. Getting your tests run is only one part of

your job. The other part is debugging test failures and tracking the

health of your build over time. Without easy access to device videos

and screenshots and automation logs, you’d be unable to do your job

effectively. The Sauce Labs RDC provides all these features as well as

high-level insights into test performance over time or build-level statistics.

PAGE 10WP-19-062019

If you have Appium tests running locally, migrating them to the Sauce Labs

RDC is as easy as uploading your app in the web interface (or using a REST

API), adding your user token in the Desired Capabilities, and resetting certain

other capabilities based on the names of the devices you want to run your

test against. Similarly, moving Espresso or XCUITest test suites to the cloud

is dead simple. Check out the RDC docs for more details on how to start

leveraging Sauce Labs RDC with your mobile tests.

REAL DEVICES AND CONTINUOUS TESTING

Continuous Testing is all about integrating testing at every part of your release

cycle. Real devices are a crucial step in this process because they represent

the highest-fidelity kind of testing available. In an ideal world, all testing would

be done on real devices, many times during the development of a feature as

it moves toward production. In the real world, a mix of virtual and real devices

often makes sense given various constraints. Even so, the more real devices

can be integrated into the test process, the more confidence you will have

in the real-world performance of your app. The advent of cloud-based real

device testing makes this much more achievable than in the past. It’s possible

to have a set of smoke tests run on even one real device on every build,

simply by adjusting a few Appium capabilities and running those tests over the

network on the Sauce Labs RDC.

There are plenty of challenges to CT for mobile, from forced delays due to

gatekeeping of releases by Apple or Google to the incredible fragmentation of

devices which testers must face. Managing a grid of real devices is another big

challenge, but it’s one that’s easily outsourced to the cloud. CT as a paradigm

makes big demands on the speed of testing. Integrating testing at every

point of the development cycle only works if testing is transparent, fast, and

reliable at finding issues (no false positives). To achieve this speed, we need

to employ every available tool which can shorten the length of a build or free

testers to develop competencies more closely related to the automation of

their particular apps. Real device grid maintenance is assuredly a competency

which requires a high degree of effort and expertise, but it is unrelated to

the competency of writing robust tests for your application. Cloud-based

real device solutions like Sauce Labs enable you to offload that competency

to allow your team to focus on tightening the feedback loops which are

essential to a rapid release cycle.

https://wiki.saucelabs.com/display/DOCS/Automated+Testing+on+Real+Devices

ABOUT SAUCE L ABS

Sauce Labs is the leading provider of continuous testing solutions that deliver digital

confidence. The Sauce Labs Continuous Testing Cloud delivers a 360-degree view of

a customer’s application experience, ensuring that web and mobile applications look,

function, and perform exactly as they should on every browser, OS, and device, every

single time. Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Centerview Capital Technology, IVP, Adams Street Partners and Riverwood

Capital. For more information, please visit saucelabs.com.

SAUCE LABS INC. - HQ 116 New Montgomery Street, 3rd Fl San Francisco, CA 94105 USA

saucelabs.com/signup/trial

FREE TRIAL

https://saucelabs.com/
https://signup.saucelabs.com/signup/trial?campid=7011M0000013X6m&=utm_campaign=free+trial&utm_medium=qr&utm_source=sl

