Welcome Letter
From Sauce Labs

JOHN KELLY, CHIEF STRATEGY OFFICER

Time to market is everything. When the cloud started to
proliferate in the 2000s, it created a revolution in software
development, allowing developers to minimize and sometimes
skip entire procurement processes, environmental
configuration, and network security for the running of the
software. You could “rent” the equipment, and have a
prototype environment ready within minutes. All from a web
browser.

A similar revolution is taking place today in the actual
development of the software, through low-code development
platforms.

Traditional software development processes tend to create
below-the-line work, requiring developers to cobble features
together from disparate libraries using the programming
equivalent of duct tape and bailing wire. It's not much different
from the procurement process to get new equipment.

Some teams still spend all their time on tech debt and library
maintenance, and may never even touch customer-facing
features. Low-code/no-code tools give developers a head-
start, allowing them to jump-start the software process, and
relying on the tool vendors to keep up with tech debt and
library maintenance. This allows them to focus on the
business outcomes, not the duct tape: they can prioritize the
customers’ needs and delights, not the tech at the bottom of
the stack.

However, what hasn’t gone away—and likely never will-is the
fact that your business solves a unique problem, in a unique
way. This requires rigorous design, development, and testing
to make sure it's delivering value to your customers without
the risk of crippling software defects.

As you'll read in this Forrester Report, software developed
with low-code solutions requires a different approach to
testing. Low-code obviates some of the testing altogether
(which is great!), but some of the work may require more
energy and attention to detail than before

In short, you need a holistic test strategy. In a low-code
world, the onus is on how your business processes and
workflows are assembled. Bugs are likely harder to find
overall, they might be more subtle, and they might manifest
themselves differently depending on different data sets or
changing workflow conditions.

To add yet more complexity, the world now revolves around
SaaS applications - managing sales workflows, HR
processes, customer support ticketing, and a myriad of other
functions. These platforms have mostly supplanted the
spreadsheet-based nightmare that companies have been
living since the 1970s.

More and more, companies are writing software to interact
with these platforms, and the integration of low-code
solutions with these tools makes it easier than ever, right?
Well, yes—but with the added risk that inattention to detail
and thorough testing might miss some key edge cases.
Low-code testing solutions that combine purpose-built SaaS
platform testing with custom software capabilities is a
promising new field, aiming to cover all bases using intent-
based, declarative test scripts.

Testing is too often isolated from real business outcomes
and the key journeys that real customers take. Management
sometimes misses the mark, hoping the testers will just
rubber stamp the latest features so they can put it into
production. Some teams get it right, relying on the tester as
a customer advocate and advisor. With low-code software
development, much of the testing process can be centered
on the user experience, data consistency, and business
outcomes. In short, low code platforms help both developers
and testers focus more of their time and energy on the real
results that the business needs.

ester Report Prepared For Matt Wyman With Sau

We Must Address Testing
In Low-Code
Development

Start With Key Areas: Functional, Unit, And
Component Testing

October 2, 2020

By John Bratincevic, Diego Lo Giudice, John Rymer, Julia Caldwell with Chris Gardner, Andrew
Dobak, Kara Hartig

FORRESTER

https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Forrester Report Prepared For Matt Wyman With Sauce Labs Inc.

THE RISKS OF NOT TESTING LOW-CODE APPLICATIONS ARE CLEAR

More and more enterprises are delivering applications using low-code development
platforms, and not just departmental teams. Businesses are taking advantage of low
code for 1) speed to market; 2) cheaper bespoke development; 3) more easily tailored
core systems; and 4) extendable architecture. Moreover, AD&D leaders are starting to
use low-code platforms to deliver large-scale, complex, highly reliable, and/or
secure/compliant applications. (see endnote 1) As low-code applications assume more
business risk in mission-critical contexts, AD&D leaders and teams ignore testing and

quality assurance at their own peril.
Those using low-code platforms who ignore testing face two pitfalls:

+ As low-code developers take on mission-critical work, the stakes are higher.
More low-code development introduces the potential for more bugs hitting
production, more failed integrations, more performance slowdowns, and more
business functionality gone awry. An inconvenience in a limited rollout might have
widespread consequences for employee and client experiences as use of low code
expands. Objectivity, a services firm with practices in three low-code platforms, built

testing practices for each to validate the quality of its mission-critical projects.

+ What you build might not match what you wanted. Just because low code
abstracts code does not mean users can have blind faith their applications will
behave as envisioned. An administrator at a US utility asks reviewers to validate and
feedback on simple apps. But for apps with complex logic, including rules driving
the data field engineers see, she relies on the low-code platform's validation tool.
As logic grows in complexity, the chances that the logic doesn't match the outcome
increases and thus the need for testing intensifies. "This is important when writing

logic addressing multiple fields," the administrator said.

LOW-CODE VENDORS AND CUSTOMERS SHARE THE TESTING
BURDEN

In low-code application delivery, testing is different than it is in development for
traditional coding. It also can be less of a burden on developers. Why? Because it is a
shared responsibility:

Not Licensed For Distribution.
© 2021 Forrester Research, Inc. All trademarks are property of their respective owners.
For more information, see the Citation Policy, contact citations@forrester.com, or call +1 866-367-7378.

https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Forrester Report Prepared For Matt Wyman With Sauce Labs Inc.

Developers use vendor-tested components to build apps. Low-code platforms
include building blocks developers reuse when developing applications. The low-
code platform vendor already tests and validates these building blocks, so they do
not require unit testing by developers. Your vendor should guarantee these building
blocks and their interoperability with one another. Thus, customers do not need to
test vendor-provided content, which reduces the volume of necessary application

testing (see Figure 1).

+ Many platforms provide automatic validation and warnings. Incomplete process
logic, malformed syntax, gaps in application models, etc., commonly trigger alerts or
are outright prohibited for developers in low-code development environments.

« Coding and libraries to supplement low-code platforms must be customer tested.
The customer still owns testing beyond the platform building blocks when using

open source components, writing customizations, developing plug-ins, etc.

+ Low-code platform vendors may not provide complete testing tools. A further
challenge exists for AD&D pros: Vendor tooling for supporting customer testing
practices is uneven. Those vendors focused on the citizen developer market
typically have minimal tooling for structured testing or test automation (beyond
simple error trapping of syntax). So testing of any type must happen manually.
Vendors focused on professional developers are typically more mature, with some
testing tools built into the platform or provided through integrations with other

vendors, but these approaches also vary widely.

Not Licensed For Distribution.
© 2021 Forrester Research, Inc. All trademarks are property of their respective owners.
For more information, see the Citation Policy, contact citations@forrester.com, or call +1 866-367-7378.

https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Forrester Report Prepared For Matt Wyman With Sauce Labs Inc.

Figure 1: Low-Code Testing Is A Shared Responsibility

zomponent and platform configurations

Business logic: calculations and rules Customer's
testing
responsibilities

Custom platform Custom integration

Custom Ul code St Tl _— _
extensions (i.e., plug-ins) connectors

Low-code platform:
vendor's testing
responsibilities

162135 Source: Forrester Research, Inc, Unauthorized reproduction, citation, or distribution prohibited.

SEPARATE TWO METHODS OF DEVELOPMENT IN LOW-CODE
TESTING

The key to new testing practices for low-code development: Distinguish declarative
development from coding. Fundamentally, the purpose of low-code platforms is to
reduce the coding and technical expertise needed to develop applications and test
them. However, two development approaches coexist in most low-code platforms,
representing opposite ends of a spectrum:

+ Purely declarative (no-code) development using native platform tooling. These
techniques include click-and-drag Ul design, formula-style business logic, visual
process modelers, rules engines, prebuilt components, and the like. This form of
development can still be complex (especially when writing lengthy business logic)

but does not employ true lower-level coding.

+ Custom code development to go beyond native platform tooling. These
customizations are typically written in languages such as JavaScript, CSS, and SQL.
Examples include plug-ins, custom Uls, database scripts, complex algorithms, and

custom integrations.

The Methods Of Development Drive The Modes Of Testing

Not Licensed For Distribution.
© 2021 Forrester Research, Inc. All trademarks are property of their respective owners.
For more information, see the Citation Policy, contact citations@forrester.com, or call +1 866-367-7378.

https://clientnew.siriusdecisions.com/pimages/forrester/imported/forresterDotCom/Research/162135/162135_1q.gif
https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Forrester Report Prepared For Matt Wyman With Sauce Labs Inc.

Understanding these methods of development informs the way customers can start to
think about testing practices in low code (see Figure 2). The level of platform
constraints, complexity of the application, and scale of deployment must all be
considered to determine the granularity of testing for a given scenario. These essential

observations about testing in low code can serve as a starting point:

 Unit testing applies to few low-code situations. Unit, or white-box, testing,
although ill defined, is the lowest level of testing. (see endnote 2) A unit test will
check the correctness of the structure, design, and implementation of the code
being tested. In unit testing, the tester chooses inputs to exercise paths through the
code to make sure execution and outcomes are correct. Use of purely declarative
tooling to develop applications does not generally require unit testing. You should
not need to test the validity of the bundles of code from the vendor any more than
you would need to test the code of a packaged application. However, once you
start extending these out-of-the-box capabilities with custom code, unit testing
again becomes valuable.

« Component testing — a new form of testing — applies to most low-code projects.
Business logic written with high-level formula syntax or visual modelers can be
underestimated. As one Mendix executive said: "If you look at the type of decisions
made in a nested flow, it's pretty complex. Every piece needs to function right."
Developers writing sophisticated or high-risk apps will often test isolated pieces of
business logic to validate that these pieces function as intended. This middle
ground between unit testing and functional testing is component testing.
Component testing can be a gray area but applies when the business logic
becomes too complex or risky to trust without testing. For example, one developer
in real estate lending broke down and tested the individual inputs into a multiline

formula for a complex ROI calculation to ensure each piece worked as intended.

+ Functional testing applies to all low-code projects. Functional testing is not only
relevant across low-code scenarios. Regardless of the platform or application type,
end-to-end testing of application functionality must be the core of any organization's
testing strategy when using low code. Demand on functional testing is going up.

Not Licensed For Distribution.
© 2021 Forrester Research, Inc. All trademarks are property of their respective owners.
For more information, see the Citation Policy, contact citations@forrester.com, or call +1 866-367-7378.

https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Forrester Report Prepared For Matt Wyman With Sauce Labs Inc.

Figure 2: Figure 2 Foundations Of Low-Code Testing

MNew!
_

Key question: Will it run? Key question: Is it correct?

esting 3 o * Black-box testing

» Mo test cases required = » Test cases required
* Who: developers only S Bquire » Who: testing and business

SMEs

ava g
C++ method or) stz z « Granularity: coarse (e.g.,
= ariable login, request balance)

I | | |

Tests technical aspects Tests business aspects
162135 Source: Forrester Research, Inc. Unauthorized reproduction, citation, or distribution prohibited.
RECOMMENDATIONS

Minimize Custom Code To Reduce The Testing Burden

Utilizing the native, declarative tooling of the platform and avoiding custom code
provides an opportunity to reduce the application testing burden, speed application
delivery, and reduce technical debt, all without sacrificing application quality (see
Figure 3). While the tooling and formal practices for low-code testing are still emerging,

we recommend testing patterns that vary by scenario:

« Scenario number one: no custom code and simple declarative logic. Use
functional testing only. In this scenario, a developer constructs an application using
only highly abstracted language and development tooling from the platform. For
example, a warehouse supervisor with little technical acumen might use drag-and-
drop features to build out a digital process for efficiently loading trucks. The
supervisor only tests to ensure the application is functioning according to his vision
as a domain expert. And he may seek testing experts to provide guidance.

Not Licensed For Distribution.

© 2021 Forrester Research, Inc. All trademarks are property of their respective owners.
For more information, see the Citation Policy, contact citations@forrester.com, or call +1 866-367-7378.

https://clientnew.siriusdecisions.com/pimages/forrester/imported/forresterDotCom/Research/162135/162135_2q.gif
https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Forrester Report Prepared For Matt Wyman With Sauce Labs Inc.

Regardless, applying a functional test scenario to the end-to-end process with
varying types of input data suffices.

+ Scenario number two: no custom code and complex declarative logic. Use
functional and component testing. For example, a more advanced developer might
construct a complex financial calculation based on a long series of data inputs or
business rules. Unit testing is not required (because true coding language is not
used), but if the application is high-risk or the logic is too complex to trust without
testing, both functional and component testing apply to ensure there are no unseen
gaps in the logic. Systematically breaking down the calculation or rules into smaller
pieces (components) and testing them individually is advised; some platforms have
tooling for this under various labels. For example, Mendix has tooling for testing
microflows.

+ Scenario number three: custom code. Use both unit and functional testing. If
possible, leverage existing open source or commercial testing tools. For de facto
standard languages such as C++, C#, Java, and JavaScript, use open source unit
testing frameworks like xUnit, NUnit, and JUnit. And for functional testing, leverage
open source frameworks such as Selenium or Appium and/or market-leading
commercial testing tools like Tricentis Tosca, Parasoft, and AccelQ, among others.
(see endnote 3) Also use component testing if required. Avoid customizations and

only utilize the native platform tooling whenever possible.

Figure 3: More Code Means More Testing

—

——
— T

-t _

—
— —

—
— -
- -
B

High custom code

*Regression, nonregression, and user acceptance testing

162135 Source: Forrester Research, Inc. Unauthorized reproduction, citation, or distribution prohibited.

Not Licensed For Distribution.
© 2021 Forrester Research, Inc. All trademarks are property of their respective owners.
For more information, see the Citation Policy, contact citations@forrester.com, or call +1 866-367-7378.

https://clientnew.siriusdecisions.com/pimages/forrester/imported/forresterDotCom/Research/162135/162135_3q.gif
https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Forrester Report Prepared For Matt Wyman With Sauce Labs Inc.

SUPPLEMENTAL MATERIAL

Companies Interviewed For This Report

We would like to thank the individuals from the following companies who generously

gave their time during the research for this report.
« Acto Technologies
« Appian
« AppSheet (Google)
+ Infinite Blue Platform
+ Kentucky Power
+ Mendix
+ Microsoft
+ Netcall
+ Novulo
« Objectivity
« OutSystems
+ Pegasystems
+ Salesforce
+ ServiceNow
» Team Resilience

Endnotes

1. For more information, see the Forrester report "When And How To Modernize Core
Applications Using Low-Code Platforms."

Not Licensed For Distribution.
© 2021 Forrester Research, Inc. All trademarks are property of their respective owners.
For more information, see the Citation Policy, contact citations@forrester.com, or call +1 866-367-7378.

file:///F:/go?objectid=RES155943
file:///F:/go?objectid=RES155943
https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Forrester Report Prepared For Matt Wyman With Sauce Labs Inc.

2. For more information on unit testing, refer to the 2014 article by Martin Fowler.
Source: Martin Fowler, "UnitTest," MartinFowler.com, May 5, 2014
(https://martinfowler.com/bliki/UnitTest.html).

3. For more information on continuous functional test automation, see the Forrester
report "The Forrester Wave™: Continuous Functional Test Automation Suites, Q2
2020."

Not Licensed For Distribution.
© 2021 Forrester Research, Inc. All trademarks are property of their respective owners.
For more information, see the Citation Policy, contact citations@forrester.com, or call +1 866-367-7378.

file:///F:/go?objectid=RES157267
file:///F:/go?objectid=RES157267
https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Forrester Report Prepared For Matt Wyman With Sauce Labs Inc.

FORRESTER

We help business and technology leaders use
customer obsession to accelerate growth.

FORRESTER.COM

FOLLOW FORRESTER m ’ n

Contact Us

Contact Forrester at www.forrester.com/contactus. For information on hard-copy or electronic
reprints, please contact your Account Team or reprints@forrester.com. We offer quantity
discounts and special pricing for academic and nonprofit institutions.

Forrester Research, Inc., 60 Acorn Park Drive, Cambridge, MA 02140 USA
Tel: +1 617-613-6000 | Fax: +1 617-613-5000 | forrester.com

Not Licensed For Distribution.
© 2021 Forrester Research, Inc. All trademarks are property of their respective owners.
For more information, see the Citation Policy, contact citations@forrester.com, or call +1 866-367-7378.

https://go.forrester.com/research/
https://go.forrester.com/consulting/
https://go.forrester.com/events/
https://www.forrester.com/
https://www.linkedin.com/company/forrester-research/
https://twitter.com/forrester
https://www.instagram.com/forrester_global/
https://www.youtube.com/user/ForresterResearch
https://www.forrester.com/contactus
mailto:reprints@forrester.com
https://go.forrester.com/policies/citations-policy/
mailto:citations@forrester.com

Let MaCh i nes Code You create the test case. We

generate the scripts. Al-driven

You Y Tests. You Do end-to-end test automation
. includes powerful natural
The I nte reStI ng StUH. language processing capabilitites.

1. Open website https://g il NSEeReR Rt ¢ [oJoJo R N-JRST=T-Tal¢

2. Enter Search The Greg Map<String. Statement>

3. Hit Enter private RemoteWebDrive
4. Click on Great Pyra DesiredCapabilities dc

5. Wait 5 Secs private StringBuffer v

=9 Intelligent Test Management - Manage testing through constant changes,
“ frequent upgrades and new functionality across end-to-end business processes.

= Self-Configuring Reusable Test Assets - Create reusable test components
:@ customized for your any web application and add them to new test scenarios

with a single click.

’3 API Testing - Increase the breadth, scope, and velocity of your API testing and
Q decrease the time between finding defects and resolution.

Deep-Learning and Machine Learning Capabilities - Detect changes and

B enable self-healing for test assets giving you critical real-time feedback to
ensure long-term durability and scalability.

Learn more @ SAUCELABS

https://saucelabs.com/platform/low-code-testing?utm_source=paid&utm_medium=dzone&utm_campaign=lowcode&utm_term=tr

	We Must Address Testing In LowCode Development.pdf
	15103742-dzone-trendreport-lowcode-2021

