
HEADLESS TESTING -  
WHEN, WHERE AND HOW?
A BRIEF ON BEST PRACTICES TO ENSURE EARLY PIPELINE TESTING SUCCESS

As testing development organizations look to shift left and integrate 

more quality checks into their software delivery pipeline, headless 

browser testing has emerged as an effective strategy to increase  

release velocity and improve productivity. By providing developers with 

a lightweight and easily scalable infrastructure, headless browser testing 

allows for fast feedback on the code quality, and keep features moving 

through the pipeline quickly. However, it is important to understand the 

specific use case for headless browsers, and how to effectively integrate 

them into a larger continuous testing strategy. This technical paper 

will answer three key questions teams must answer when considering 

headless browsers as an option, and offer practical advice on how to 

successfully implement early pipeline testing.
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INTRODUCTION

As testing development organizations look to shift left (“test early and often”) 

and integrate more quality checks into their software delivery pipeline, 

headless browser testing has emerged as an effective strategy to increase 

release velocity and improve productivity. By providing developers with a 

lightweight and easily scalable infrastructure, headless browser testing allows 

for fast feedback on the code quality, and keep features moving through the 

pipeline quickly.

However, this also means that teams that have traditionally implemented 

testing by a QA function at the end of the development pipeline are finding new 

challenges as they attempt to shift quality left to the developer. These include:

•	 How do I get developers to test their own code, or even write their own tests?

•	 Which of my existing tests can be run in headless browsers?

•	 What about mobile?

This technical paper will answer these three questions, and offer practical 

advice on how to successfully implement early pipeline testing with  

headless browsers.

DEVELOPERS AND TESTING - A PERFECT MATCH

In the old days of software development, there was a very tight connection 

between developers and the quality of their code. With the rise of “shift 

left” testing methods, this culture is starting to make its return. Now more 

than ever, developers are being asked, and in some cases required, to take 

responsibility for the quality of the code that they write, and ensure that it 

works as expected before merging into the larger pipeline.

This doesn’t mean that traditional QA is going away. To the contrary, 

seasoned QA professionals, especially those with automation experience, 

are leading the charge to implement some of these cultural shifts. In modern 

development organizations, testers are often embedded in Agile teams, or 

are seen as subject matter experts who train multiple groups on testing best 

practices. QA professionals are invaluable to development organizations 

that want to shift left because of their knowledge on how the application is 

supposed to behave in its entirety, along with their focus on the end-user 

and understanding their behaviors. Because of this, they often become the 

stewards of quality in the organization, and are uniquely positioned to lead 
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the charge in enabling developers to test earlier and more often, leading to 

fewer bugs deployed to production, and increasing release velocity.

Providing development teams with headless browsers to test against can ease 

that adoption barrier. By giving them access to dedicated resources that are 

lightweight and easily scalable, headless allows for fast feedback on code 

quality, and can show developers the benefits of testing earlier in the pipeline 

- fewer rollbacks, faster releases, and improved productivity.

HEADLESS VS CROSS-BROWSER TESTS

Since they are a more lightweight, cost-effective solution, some might consider 

moving all of their functional tests to headless browsers. However, it is important 

to remember that headless browsers serve a much different purpose than full, 

cross-browser testing. Headless browsers are perfect for developers who are 

working on smaller components of an application, and gives them the basic 

infrastructure they need to confirm the question, “Does my code work as 

expected?” Further along in the pipeline, after everything as been integrated, QA 

or SDETs need to run their end-to-end regression tests on every browser and 

operating system available to mimic real-world conditions and confirm, “Does 

the application in its entirety work as expected?”. This distinction means that 

complete continuous testing pipelines will contain a mix of headless and full 

cross-browser testing strategies that give everyone the tools they need to run 

their tests at scale, without slowing down pipeline velocity.

When expanding testing to include early pipeline component tests or sanity 

checks, many teams also ask the question, “Should I just take all of my UI and 

regression tests and run them on headless browsers?” And while the answer to this 

question varies from team to team, there are some things to consider broadly.
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First, we should eliminate the thought process of “headless tests” versus 

“cross-browser tests.” Instead we should realize that there is quite a bit of 

overlap in the types of tests that developers should implement as part of their 

workflow. Remember, headless browsers are great for early pipeline testing 

because they provide fast feedback and answer the question: does my code 

work as expected before I merge? To that end, consider what already existing 

tests you have, and whether they would be good candidates to shift left with 

headless browsers. In general, these tests should have a few key traits:

1.	 Short - if the key to early pipeline testing is to give fast feedback, it 

is imperative that the tests that developers run should be capable of 

doing so. Long tests lead to long wait times for them to pass, effectively 

counteracting the benefits of headless testing.

2.	 Atomic - because we are testing smaller components of an application, 

it’s important that early pipeline tests are focused on a single function.

3.	 Autonomous - in the same vein, autonomous tests are great candidates 

for shifting left because they ensure that there are no dependencies 

(either within the application or outside of it). The more complicated a 

test becomes, the more chance for flakes, timeout errors, or long run 

times (which translate to long wait times for feedback).

Of course, we recommend you follow these best practices with all of your 

tests throughout your development pipeline. But especially in the case 

of early pipeline testing, it’s crucial that these tests be optimized to give 

developers fast feedback. This not only keeps stable code moving through the 

pipeline smoothly, it also breaks down barriers that prevent developers from 

adopting testing by giving them the fast feedback they require.
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import AppHeader from ‘../../../page-objects/appHeader’;
import InventoryListScreen from ‘../../../page-objects/inventoryList’;

describe(‘Parallelization - Inventory list’, () => {
    beforeEach(() => {
        // Load the url
        browser.url(‘’);

        // Set the storage
        browser.execute(‘sessionStorage.setItem(“session-username”, “standard_
user”)’);

        // Now got to the inventory page
        browser.url(‘/inventory.html’);
    });

    it(‘should validate that all products are present’, () => {
        // Wait for the inventory screen and check it
        expect(InventoryListScreen.waitForIsDisplayed()).toEqual(
            true,
            ‘Inventory List screen was not shown’,
        );
        expect(InventoryListScreen.swagItems.length).toEqual(
            6,
            ‘Amount of items was not equal to 6’,
        );
    });

    it(‘should validate that a product can be added to a cart’, () => {
        // Wait for the inventory screen and check it
        expect(InventoryListScreen.waitForIsDisplayed()).toEqual(
            true,
            ‘Inventory List screen was not shown’,
        );
        expect(AppHeader.getCartAmount()).toEqual(
            ‘’,
            ‘The amount of cart items is not equal to nothing’,
        );

        // Add an item to the cart
        InventoryListScreen.addSwagItemToCart(0);
        expect(AppHeader.getCartAmount()).toEqual(
            ‘1’,
            ‘The amount of cart items is not equal to 1’,
        );
    });

});

The above is a typical test that a developer would choose to run, pre-commit, 

through a headless browser. Set to run against the Sauce Labs demo app, 

this test succinctly checks a single function in a component of a retail web 

application, “add item to cart”. Running this test on a cross-browser platform 

would still give the same feedback, but the developer might be resource 

constrained, as QA uses most cross-browser infrastructure for end-to-end 

regressions. Using headless browsers, a developer can get the basic feedback 

on the quality of their code without having to wait in line, and then check in 

their code with confidence knowing that this particular component works 

before merging into the master.
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HEADLESS BROWSERS AND MOBILE

Headless browsers are obviously a great tool for testing desktop web 

applications. But what about mobile? Of course, there isn’t a way to use 

headless browsers for native mobile applications, but is a use case for using 

headless for mobile web testing.

Kwo Ding’s Mobile Testing Pyramid provides a practical strategy for building 

mobile test automation, along with insight into what kind of infrastructure 

requirements you need for testing your apps throughout the pipeline. 

While real devices are still necessary to mirror real-world conditions, Ding 

recommends re-sized browser windows can offer a scalable and cost-

effective solution when testing earlier in the pipeline. To that effect, headless 

browsers’ responsive designs allows for playing with user agents and checking 

for compatibility with different screen sizes at the click of a button, or by 

dragging to resize, and are ideal for quick sanity checks or component tests.

So while there is still a need for emulators, simulators, and real devices at 

different points in the pipeline, headless browsers can offer a scalable and 

cost effective solution for validating functionality earlier in the pipeline for all 

web applications, no matter the screen size.

CONCLUSION

When considering implementing headless browsers, remember that they are 

only a single tool in a larger toolbox of test platform options. None of your 

users are navigating to your apps with a headless browser, and so there is 

still a need for cross-browser testing and real devices for E2E regressions 

and other tests later in the pipeline to mimic real-world conditions. Headless 

browsers have a specific place in the pipeline to help developers embrace 

“shift left” testing. By providing them with their own scalable infrastructure, 

they are able to get fast feedback on the quality of their code, keep stable 

features moving through the pipeline faster, and deploy with confidence 

knowing that they can continue developing new features without fear of 

rollbacks. This allows for every team in the organization to deliver on their 

core promise - delight users with high quality applications.

Sauce Labs has recently released a headless browser testing platform -  

Sauce Headless. To learn more, visit our website or contact our team  

to get started with a free trial.
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https://saucelabs.com/blog/boost-your-mobile-testing-strategy-the-mobile-test-pyramid-approach
https://saucelabs.com/platform/sauce-headless
https://saucelabs.com/contact
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