
WHITE PAPER

LEARN MORE AT SAUCELABS.COM

As more organizations embrace Continuous Integration (CI) and Continuous Delivery

(CD) as a mechanism to release apps faster, many find that there are a number of options

to consider when making this transformational shift. However, while there is significant

thought put into how development practices will change, very few teams consider how

CI/CD will change the way they test the code that they create.

This technical paper is the final in a series outlining various topics development

organizations of all sizes should consider when optimizing their processes for CI/CD, and

how they relate specifically to testing. This critical piece of your engineering strategy can

influence not only the quality of your applications, but also how quickly you can deliver

them to your users. For many teams, these considerations can effectively make or break

your CI/CD initiatives.

Optimizing CI/CD for Continuous
Testing - Codebase Improvements
C O N T I N U O U S T E S T I N G S TA R T S W I T H T E S TA B L E C O D E

TABLE OF CONTENTS

3 Intro

3 Leveraging APIs for Testability

4 Managing Code Dependencies With

Software Craftsmanship

5 Conclusion

LEARN MORE AT SAUCELABS.COM PAGE 3

INTRO

Moving to an effective and efficient CI/CD pipeline requires significant effort

from organizations. It involves process and policy changes across every team.

The payoff can be extraordinary; continual improvement as the organization

moves to consistently deliver high quality digital experiences to their

customers at speed. However, as your release velocity begins to increase,

how can you still ensure your apps are well-tested?

Adding continuous testing best practices from the outset can dramatically

enhance the transformation to CI/CD by allowing code to move through

an accelerated pipeline without testing becoming a bottleneck. To achieve

this requires an entirely new set of features -- testability features -- built into

the architecture itself, along with other changes to the way software is built.

Without these changes, organizations typically struggle to see the benefits

that CI/CD promise. This technical paper is the final in a series discussing the

approaches, requirements and processes to consider when implementing

continuous testing in a CI/CD workflow, and will focus on improving

your codebase.

LEVERAGING APIS FOR TESTABILITY

Public APIs are a crucial piece of any well-architected system, regardless

of whether it’s a monolithic system or one composed of numerous service-

based components. These APIs provide an effective way to dramatically improve

automated testing of a system as it’s moving through a delivery pipeline.

A previous technical paper in this series mentioned dual-purpose features

that provide test data or feature switching. Automating calls to these features

is best done through an API, versus re-writing configuration files or injecting

changes into a database. Using APIs ensures appropriate business rules for the

general feature are followed.

Such an approach is critical when setting up an environment for automated

and/or exploratory testing. This might include such steps as validating that

catalog items are in stock and available when pulling SKU data from a retail

data warehouse. It might ensure that only active customers are exported from

a database. It could also appropriate pre-requisite steps when creating unique

data for automated testing.

https://saucelabs.com/resources/white-papers/optimizing-ci-cd-for-continuous-testing-feature-management

PAGE 4LEARN MORE AT SAUCELABS.COM

Imagine a test that checks if a customer can search for a particular item and

place it in a shopping cart. All good automated tests avoid sharing state and

data between themselves due to the extreme fragility of such an approach.

This requires all data for a test to be randomly or uniquely generated. Pseudo

code for setting up prerequisites might look similar to this:

 Create_test_customer

 Randomly generate customer name, address, etc.

 Call system APIs to create a customer with random data

 Create_test_store_item

 Generate an item with random name, description, etc.

 Call system APIs to create a store item with random data

 Create_test_customer_cart(test_customer)

 Call system APIs to create a cart for test customer from above

Each pseudo method uses something like the Faker library to randomly

generate appropriate data and in turn calls the true system APIs to create real

objects with the randomly generated data. Again, the system APIs do all the

proper validation (is the new customer’s phone correct? Is the store item’s

price correct? etc.), relieving the team of having to rewrite and possibly inject

bugs in their own prerequisite or validation code.

MANAGING CODE DEPENDENCIES WITH SOFTWARE CRAFTSMANSHIP

Perhaps the most fundamental concept for fast-moving, CI/CD environments

is managing dependencies at the lowest level of the system. Using

sound Software Craftsmanship principles ensures external services and

dependencies can be properly mocked or substituted in various environments

through the delivery pipeline.

Software Craftsmanship is a complex, varied school of practice for software

construction. While there are many tenants to it, including a Manifesto, one

of its basic principles is ensuring software is flexible and adaptable. Part of

that concept is handled by ensuring dependency management is carefully

thought out and implemented. Using one form or another of dependency

injection means no component is responsible for creating dependencies it

relies on. Instead, those components have their dependencies injected or

passed into them.

Injecting dependencies on external services is one way teams can stand

up systems in lower environments without being reliant on those external

https://en.wikipedia.org/wiki/Software_craftsmanship

PAGE 5WP-25-072019

systems. As an example, imagine a payroll system. Editing an employee’s

hourly rates or annual salary should require a security check to ensure the

user doing the editing is indeed authorized to do it. That security check likely

relies on some system outside the payroll system—a larger human resources

system, for example.

With a properly architected system, a test of the employee wage edit feature

could simply swap out a call to the “real” security system for a fake call that

simply approves a test user for the edit. This cuts the dependency on an

external system, ensuring tests could run in lower environments, or within

unit tests themselves.

CONCLUSION

Our previous technical papers in this series have focused on a number of

factors that contribute to the success of continuous testing in CI/CD, such

as environment and feature management, as well as adapting processes. This

last topic really gets to the nuts and bolts of what makes a CI/CD pipeline

run, which is the code that developers create. Codebase improvements are

a crucial element because it requires developers to consider quality and

testability before they write their first line of code. From a theory standpoint,

it’s important to understand that everyone in the organization, not just

developers, is committed to the ideals of Software Craftsmanship. This, along

with tactical strategies such as leveraging APIs to improve the testability of

code, not only make the QA teams’ lives easier but also development, Ops

and across your organization.

Sauce Labs provides the world’s most comprehensive Continuous Testing

Cloud. Optimized for CI/CD with integrations to the industry’s most popular

tools, Sauce Labs is the perfect platform for all of your continuous testing

requirements throughout your CI/CD pipeline. To learn more, take a look at

this tech talk on integrating continuous testing into your CI/CD pipeline.

https://saucelabs.com/resources/white-papers/optimizing-ci-cd-for-continuous-testing-environment-management
https://saucelabs.com/resources/white-papers/optimizing-ci-cd-for-continuous-testing-feature-management
https://saucelabs.com/resources/white-papers/optimizing-cicd-for-continuous-testing-adapting-processes
https://info.saucelabs.com/tech-talk-cicd-integration.html

ABOUT SAUCE L ABS

Sauce Labs is the leading provider of continuous testing solutions that deliver digital

confidence. The Sauce Labs Continuous Testing Cloud delivers a 360-degree view of

a customer’s application experience, ensuring that web and mobile applications look,

function, and perform exactly as they should on every browser, OS, and device, every

single time. Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Centerview Capital Technology, IVP, Adams Street Partners and Riverwood

Capital. For more information, please visit saucelabs.com.

SAUCE LABS INC. - HQ 116 New Montgomery Street, 3rd Fl San Francisco, CA 94105 USA

saucelabs.com/signup/trial

FREE TRIAL

https://saucelabs.com/
https://signup.saucelabs.com/signup/trial?campid=7011M0000013X6m&=utm_campaign=free+trial&utm_medium=qr&utm_source=sl

