
#JenkinsWorld

No, You Shouldn't Do That!
Lessons from Using Pipeline

Robert Sandell
James Nord

© 2016 CloudBees, Inc. All Rights Reserved

#JenkinsWorld

No, You Shouldn't Do That!
Lessons from Using Pipeline
Robert Sandell, CloudBees, Inc.
James Nord, CloudBees, Inc.

© 2016 CloudBees, Inc. All Rights Reserved

#JenkinsWorld

No, You shouldn’t

do that!

#JenkinsWorld

The Reality (mid 2015)

Plugin XYZ was released

last week – did anyone

update the WAR?
What’s the status of the

test suites?

@Kohsuke – the wars are

ready can you build the

installers?

Ignore the build failure –

the test is flaky

Hey – that change broke

something unrelated

The test run failed – ask

me the status in 8 hours

Where are the release

notes for FooBar 1.2.3?I’ve just started the test

run for CloudBees

Jenkins Enterprise

1.609.1 – it’s build #44

I’m about to kick off the

release – nobody commit

anything. Going for a

run YOLO!!

#JenkinsWorld

The Vision

Build
product
and run

test suites

Jenkins core change

OSS plugin
change

Proprietary plugin
change

#JenkinsWorld

Run the tests, produce the installers.

Build Packages and Test

(3 products, 5 packages/product)

Plugins and
dependencies

(100+)

release
☑

commit
☑

PR
☑

OSS Jenkins

(2 + security 😒)

release
☑

commit
☑

PR
☑

Test suites
(3-5ish)

Release
☑

commit
☑

PR
☑

#JenkinsWorld

And at the same time…

Dogfood © (CC BY-SA 2.0) Ketzirah Lesser & Art Drauglis https://www.flickr.com/photos/wiredwitch/11330858474

https://www.flickr.com/photos/wiredwitch/11330858474

#JenkinsWorld

The Start

Requirements:

• Code review of the pipelines

• Re-use of the pipelines

• Running on our CI server (DEV@cloud)

• Need to support OSS plugins as well

Solution:

• GitHub

• Global pipeline library

#JenkinsWorld

The Start

But:

• The global library is not available on DEV@cloud
• Global Variables or passing Objects

Solution:

• Store all the flows and libraries on GitHub and have a common loader to

load the correct flow for each job.

• Avoid religious wars during prototyping

#JenkinsWorld

The Start

#JenkinsWorld

The Start

But:

Pipeline Remote Loader Plugin

But this week:

stage 'Load a file from GitHub'
def helloworld = fileLoader.fromGit('examples/fileLoader/helloworld',

'https://github.com/jenkinsci/workflow-remote-loader-plugin.git',
'master', null, '')

stage 'Run method from the loaded file'
helloworld.printHello()

@Library('somelib@1.0')

https://github.com/jenkinsci/workflow-remote-loader-plugin

#JenkinsWorld

Story #1 The Native Installers...

https://github.com/jenkinsci/packaging
• Runs on multiple platforms (Debian, OSX, Windows)
• Runs linearly (builds one platform then the next)
• Needs snowflakes (including the Debian!)
• Uses distfork-plugin
• Need to be able to get the installers for testing (a web server)
• Need approval from the elite before uploading to production site

Solution:
• Change the installer creation scripts
• Use node('some_label') to run on arbitrary nodes
• Can do the builds in parallel
• Jenkins even has ToolInstallers
• Jenkins is a web server!

https://github.com/jenkinsci/packaging

#JenkinsWorld

Story #1 The native installers...

But:

• Changing the packaging scripts proved to be a mammoth task
• The packaging scripts are heavily templated with make & bash and

some ruby thrown in for good measure.

• so was never completed 😢

• Custom tools plugin was not pipeline friendly

#JenkinsWorld

Story #1 The native installers...

So:

• Give up on being good, resort to being OK:

• Just run make dist -> get approval -> make publish...

But:

• We have no group support on our auth system

• we want more than 1 approver

– input can take only take a single user or group.

• Dist-fork plugin ignores node properties (for PATH etc)

• make publish needs the files - otherwise it rebuilds everything again

– so what you publish may not be what you tested

#JenkinsWorld

Story #1 The native installers...

So:

• Give up on being OK, resort to being pragmatic:

• Snowflakes slaves 😱
• Use input outside of the node.

– Don’t limit the approval to a single user

– ask for a magic token (from a Jenkin’s secret) and loop until someone guesses

correctly 😱

• Use stash/unstash to store and restore the workspace either side of the

input to prevent rebuilding

• Keep make happy (I don’t want to build stuff again).
– sh 'find . -exec touch -d "`date`" {} \;'

#JenkinsWorld

Story #1 The native installers...

Make it work first with what you have.

Then go (back) and improve it

#JenkinsWorld

Story #2 Build Orchestration

Rule#1

• Don’t put build logic in the pipeline

But:

• We need to control flow so we need some logic for that…

• And we need information from the build to utilize elsewhere in the pipeline

– Version (war, plugin…)

#JenkinsWorld

Story #2 Build Orchestration

So:

• Can use sh steps and commands (unzip) with readFile

But:

• Windows

So:

• if (isWindows()) { batch 'blah' } else { sh 'blah'}

#JenkinsWorld

Story #2 Build Orchestration

But:

• unzip on windows?

So:

• Use powershell

• Install Cygwin

But:

• No powershell support
1. Write a temp file (the powershell)
2. Run a batch step with a command to load the powershell script

• I am the only one that knows powershell

• Cygwin = Snowflake servers

• Docker slaves?

#JenkinsWorld

Use shell steps!

#JenkinsWorld

Story #2 Build Orchestration

So:

• When it is true utility functions

• When it is quick to run

• When it is just easier…

• Write a plugin with some custom steps

– https://github.com/jenkinsci/pipeline-utility-steps-plugin/

https://github.com/jenkinsci/pipeline-utility-steps-plugin/blob/master/docs/STEPS.md

#JenkinsWorld

Those forking test suites

#JenkinsWorld

Story #3 (forking test suite logic)

Needed to make the test suite faster

1. Run fewer tests
2. Make the tests run faster
3. Get faster hardware

4. Run tests in parallel

Started with option 4, looking at option 1.

At the same time DEV@cloud has moved to faster instances.
Soon we are moving from DEV@cloud to a dedicated CJOC cluster in AWS.

But we had 3 different test suites...

#JenkinsWorld

Story #3 ATH parallelisation

https://github.com/jenkinsci/acceptance-test-harness

Community project to run “black box” tests on Jenkins itself with Selenium.
Could take more than 8 hours to run.

https://wiki.jenkins-ci.org/display/JENKINS/Parallel+Test+Executor+Plugin

The splitTests step analyzes test results from the last successful build of
this job, if any. It returns a set of roughly equal “splits”, each representing one
chunk of work. Typically you will use the parallel step to run each chunk in
its own node, passing split information to the build tool in various ways.

https://github.com/jenkinsci/acceptance-test-harness
https://wiki.jenkins-ci.org/display/JENKINS/Parallel+Test+Executor+Plugin

#JenkinsWorld

Story #3 ATH parallelisation

But:

The JUnit publisher archives all test results it collects into one big list and adds
to that list each time the step is run in a pipeline.

The Parallel Test Executor splits on that big list. Resulting in a big mash of
splits from all the various test executions.

YOU WERE THE CHOSEN ONE

YOU WERE SUPPOSED TO END THE

ENDLESS JOB CHAINS

Solution:

A new pipeline Job for each Test suite 😢

Using the build step and copy artifacts,
the traditional way.

But it has been said that matrix support is coming… for a long time...soon...ish...

#JenkinsWorld

Story #3 PCT parallelisation

Plugin Compat Tester - https://github.com/jenkinsci/plugin-compat-tester

Runs the tests of plugins against a specific core version to provide an indication
of how well the plugin will work on that Jenkins version.
I’ve seen build times up to 16 hours on just the plugins we package in CJE.

Solution:

Write a similar algorithm as splitTests, but
split on plugins instead of tests. The pipeline
DSL is a Groovy script after all so I can code
whatever I want, right!?

A short while later I had about 20 lines of
Groovy code that did so...

● Find an archived report.xml from a
previous build

● Copy it to the workspace with
CopyArtifacts plugin

● Slurp it up and extract all the short-
names

● Divide them up into equal size buckets
and invert to blacklist

● Use the buckets as --excludes in a
parallel step.

https://github.com/jenkinsci/plugin-compat-tester

#JenkinsWorld

Story #3 PCT parallelisation

But
• Most DefaultGroovyMethods, ex: each, collect, findAll etc. don’t work

in GroovyCPS; the engine that runs the Pipeline DSL.
• All variables in your pipeline script needs to be Serializable

• The default whitelist in the sandbox is far from complete.
– Map.size() WHUT!

Expect many visits to the approval page before your script is done.

• The sandbox also has some other issues
– Like the anonymous properties in XmlSlurper’s GPathResult

o XmlSlurper.parseText(xml).document.plugin.each {...}

Nope!

#JenkinsWorld

Story #3 PCT parallelisation

Annotating a function with @NonCPS will
make pipeline to not run the function in
GroovyCPS.

In that function you can then use each, collect
and the other nice Groovy thingies.

But the code will still be processed by the
sandbox*, so any quirks it has is still in
effect.

If you call any build steps from inside that
function, the @NonCPS annotation will be
“void”.

*Unless it is a trusted global library, or you are running without the sandbox for some

other reason.

@NonCPS

boolean hasApples(String basket) {

return basket.split(",").find {it == "apple"} != null

}

String basket = readFile file: "basket.csv"

if (hasApples(basket)) {

dir("apples") {

sh "mvn clean package"

}

}

@NonCPS

boolean hasApples() {

String basket = readFile file: "basket.csv"

return basket.split(",").find {it == "apple"} != null

}

if (hasApples(basket)) {

dir("apples") {

sh "mvn clean package"

}

}

#JenkinsWorld

After “reducing” my code down to
something that could run,

20 lines had turned into 200.

#JenkinsWorld

Story #3 PCT parallelisation

So..

• Don’t try to be fancy!

• Pipeline is an orchestration layer first and foremost.

• Keep logic in external scripts if possible.

• When not possible, KISS!

• Multiple jobs are the current workaround for matrix

• Don’t re-use these job – keep them triggered by the pipeline only

#JenkinsWorld

When Things Go Wrong….
And they will

#JenkinsWorld

Bug hunting, reporting

• No good saying the build failed at the end in an email

– Your flow is not doing just one thing any more

– Why did it fail and when
o try catch/finally

• Track your library version
– Use changelog: true with all your checkouts

– echo the library version when loaded

• Report flaky tests so you can fix them (or remove them)

• Use smaller functions in your library to make it quicker to test

#JenkinsWorld

Optimisation

• Don't do inputs inside a node - as you lock the executor.

• Similar with timeouts outside of nodes when script is coming back from

restart

• stage “concurrency” -> great in theory in practice not expected

behaviour. 😢

– Use “lock”s to gate execution

– Use milestones to prevent build backlog; but it’s not available 😢

• Use stash over archive for moving files between stages or nodes.

#JenkinsWorld

So
Repeat after me

#JenkinsWorld

Lessons learned

• Convert what you have as is, then adapt and improve.

• Know your build environment and try to keep it consistent.

• Don’t try to be fancy, unless you have lots of extra time

– Keep the pipeline simple, it is built to be an orchestration layer

not a build script.

– Put build logic in external scripts if possible, to avoid things like

@NonCPS and method whitelisting problems.

– If you really need to build libraries use the new shared libraries

feature

#JenkinsWorld

Thanks for Listening

#JenkinsWorld

Questions?

#JenkinsWorld

Thank you!
DFTBA

#JenkinsWorld

Pipeline is

awesome!

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

#JenkinsWorld

Input approval

def magicValue

node {

withCredentials([[$class: 'StringBinding', credentialsId: 'production_magic', variable:

'tmpMagicValue']]) {

magicValue = env.tmpMagicValue

}

}

while (true) {

def pass = input id: 'PushToProduction', message: 'Please enter the magic value for publishing to

production', parameters: [[$class:

'com.michelin.cio.hudson.plugins.passwordparam.PasswordParameterDefinition', defaultValue:

'wibble', description: 'The magic token to show you have rights to push to production', name:

'authentication token']]

if (magicValue != pass) {

echo "incorrect value entered"

}

else {

echo "Push to production approved by magic"

break

}

}

