
Performance Testing in 
Continuous Delivery Pipelines

Andrey Pokhilko
Chief Scientist, BlazeMeter



 Importance of CI and CD

● Machine time costs nothing, human time priceless

● De-facto winning practice

● Most advanced teams go with CD

● A lot of teams are still in process of adopting it



Agenda

1. Things we put into CI

2. Best practice (for now)

3. Challenges of testing in CI

4. Jenkins for Performance Testing



Things we put into CI



 Triggering and Preparations

● When to do the job

● VCS checkout + dependencies checkout

● Building project (compiling etc.)

● Put resulting packages into repos



 Quality Control

1. Static code analysis

2. Unit tests

3. Functional tests

4. Performance tests
needs deployment



 Deployment

● To QA environment (for further manual tests)

● To staging environment

● To production environment



The Best Practice



 

VCS Checkout + 
Dependencies

Build Unit Tests

Functional 
Tests

Perfromance 
Tests

Deployment

Filter Filter Filter Filter

One Way Road (Driverless)



 VCS-Driven Pipeline 

● Natural evolution of CI systems

● Branching and pull requests

● Jenkins 2.0 pipelines

● Taurus Tool as part of this approach



Why testing is challenging in CI



 Challenge #1: Test Environment

● Applications are complex

● Lots of dependencies

● Third-party systems

Databases

Microservices

Third-parties



 Challenge #2: Time Consuming

● Preparations

● A lot of functional tests

● Performance tests are naturally long



 Challenge #3: Debugging CI Jobs

● Evolving test complexity

● Debugging and troubleshooting

● Build history is a value



 Challenge #4: Results Analysis

● Rich reporting needed

● Jenkins UI has its limits

● Automated decision making for CD

● Collaboration for non-tech people

wut???



Overcoming Challenges



 Overcome: Test Environment

● Containers help (you have to use containers :)

● You don’t need to be as realistic

≈



 Overcome: Time Consuming

● Prepare what you can upfront - in the night 

● Reuse what you can

● Short tests can reveal a lot of things

● Don’t try to put spike and endurance tests into CI

● Parallelize tests, Jenkins 2.0 or Taurus helps



 Overcome: Debugging and Improving

● Taurus Tool, the handheld piece of CI



 Overcome: Debugging and Improving

Load Test Job

Local Debugging



 Overcome: Reporting & Result Consumption

● Purpose-built services with integrations

● Overview & Status in Jenkins



 Overcome: Decision Making

● Deploy to staging is great win

● Have pass/fail criteria, including APM info

● It’s ok to have deploy as separate job 

(for UAT, to avoid disruptions)



Jenkins for Performance Testing



 Why Use Jenkins for Testing?

● Multi-step process

● Long process

● Repetitive process



 Start Simple

Load Test 1

Load Test 2

Load Test 3

Center of Excellence

Developer

Operations

QA

Maintain Jobs



 Become Continuous

● Periodic jobs have many applications

● Have valid failure criteria (thresholds)

● Use non-blocking downstream jobs



 Pursue Continuous Delivery

Fast
FeedbackDeveloper / 

DevOps

Build + xUnit
Functional 

Tests

Load 
Tests Deploy Staging

Slower
Feedback



Some Useful Plugins



 Plot Plugin



 Performance Publisher Plugin



 BlazeMeter Plugin



 Taurus Tool

● Why not plugin, but command-line tool

● Universal plug for tests inside Jenkins

● Taurus designed to work with other Jenkins plugins

gettaurus.org



Final Summary

1. We have to test inside CI

2. There are ways to start it simple

3. There are tools & plugins to help

4. Jenkins 2.0 pipelines FTW!



Thank you!
Any questions?


