So you want to build the worlds largest Jenkins cluster?

Stephen Connolly

So you want to build the world's biggest Jenkins Cluster

Stephen Connolly

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

Life

- $\mathbf{\mathbf{\Psi}}\mathbf{\mathbf{\Psi}}\mathbf{\mathbf{\Psi}}$ My wife and son
- $\Theta \Theta$ Running (Marathon x 2)

Life

•

- $\mathbf{\mathbf{\widehat{\forall \mathbf{\forall \mathbf{\forall }}}}}$ My wife and son
- $\forall \forall$ Running (Marathon x 2)
 - My L5/S1 right now...

Life

- $\mathbf{\mathbf{\widehat{\forall \mathbf{\forall \mathbf{\forall }}}}}$ My wife and son
- $\forall \forall$ Running (Marathon x 2)

Work

• IT -> Chemistry -> IT

Jenkins & OSS

- Started using and writing plugins 2006
- Inventor of the Weather column
- Written many many plugins since then
- Also Apache Maven committer & PMC

Nov 27, 2007; 2:01am Re: plugins disabled when using m2 build ? Use the freestyle project type and build with Maven The Maven2 project type is a "magic" project type that does everything This basically means that each plugin must do more work to work with it I keep on trying to use the Maven2 project type and finding it inadequate and returning to the freestyle project type. You'll have more control with the freestyle (but more control means more configuration)

> -Stephen , many plugins since then

Also Apache Maven committer & PMC

Fighting against the evil Maven Job type since 2007...

Agenda

Real world

Theory

Experiments

Applied

Before we start...

world's biggest Jenkins cluster

world's biggest Jenkins cluster

What does this mean?

world's biggest Jenkins cluster

• If we want the physically largest...

- If we want the physically largest, this is easy with AWS:
 - Master in EU (Ireland)
 - Agent in US East
 - Agent in US West
 - Agent in São Paulo
 - Agent in Asia Pacific (Tokyo)
 - Agent in Asia Pacific (Sydney)

Smallest Bounding Sphere containing all points

and the second	-0		
1	250		
		Y	
	4		/
	P		/
			7

- If we want the physically largest, this is easy with AWS:
 - Master in EU (Ireland)
 - Agent in US East
 - Agent in US West
 - Agent in São Paulo
 - Agent in Asia Pacific (Tokyo)
 - Agent in Asia Pacific (Sydney)

Smallest Bounding Sphere containing all points

Jenkins						C search	tog in
New Item							Tadd description
People	At .						
Build Hatory		w	Name 1	Last Success	Last Failure	Last Duration	
Manage Jerkins		*	ajob	NA	NA	NIA	۲
Dredentials	Room: SML				Legend	BSS for al BSS for failures (PSS for just latest builds
uild Queue							
builds in the gueve.							
and Executor Status	-						
master							
kle							
Sydney							
				d'a h			kins!!!
São Paulo		W			100es	l Jen	KINSIII
São Paulo Ide					'55~~		
São Paulo Ide Tokyo	ne	V V					
São Peulo I de Tokyo I de	ne	•••					
tde US East	ne	•••					
ide US East Ide	ne						
ide Vi East	ne						

- If we want the physically largest, this is easy with AWS:
 - Master in EU (Ireland)
 - Agent in US East
 - Agent in US West
 - Agent in São Paulo
 - Agent in Asia Pacific (Tokyo)
 - Agent in Asia Pacific (Sydney)
- If you want to beat me... add some height to get even bigger
 - A server in Leadville, CO?

Se D		0.00	
	2	-5	
	a marke	N	T
		S.	
	#JenkinsWo	irld	2

• If we want the most number of jobs...

- If we want the most number of jobs...
- Install Mock Load Builder plugin

java -jar jenkins-cli.jar \
create-mock-load-jobs 200000

ied mock-load-job-54758 with overage duration 44s wated mock-load-job-54759 with overage duration 100e noted mock-load-job-54760 with overage duration 40s reated mock-load-job-54761 with overage duration 334s ated mock-load-job-54762 with overage duration 173s ated mark-load-lab-54763 with overage duration 46s mated mack-load-job-54764 with overgoe duration 37s eated mock-load-job-54765 with average duration #7% reated mock-load-job-54766 with average duration 36s noted mock-load-job-54767 with overage duration 38s reated mack-load-job-54768 with overage duration 184s wated mock-load-job-54769 with average duration 36s reated mock-load-job-54770 with average duration 56s wated mock-load-job-54771 with average duration 58% nated mock-load-job-54772 with everage duration Bis reated mock-load-job-54773 with overage duration 12s wated mock-load-job-54774 with overage duration 45% reated mock-load-job-54775 with average duration 414s nated mock-load-job-54776 with overage duration 22s wated mack-load-job-54777 with average duration lis reated mock-load-job-54778 with overage duration 12s rested mock-load-job-54779 with overage duration 14s reated mock-load-job-54780 with overage duration 15s reated mack-load-job-54781 with overage duration 56e reated mack-load-job-54782 with average duration 17s reated mock-load-job-54783 with overage duration 22s reated mark-load-job-54784 with overage duration 241s reated mock-load-job-54785 with overage duration 26s wated mock-load-job-54786 with overage duration 17s reated mock-load-job-54787 with average duration 30% reated mock-load-job-54788 with overage duration 30% reated mock-load-job-54789 with average duration 128s reated mock-load-job-54790 with overage duration ISs reated mock-load-job-54791 with average duration 35s reated mock-load-job-54792 with average duration 121s reated mark-load-job-54793 with overage duration 42s reated mack-load-job-54794 with average duration 15s reated mock-load-job-54795 with overage duration Els created mack-load-job-54796 with overage duration #s reated mock-load-job-54797 with average duration 361s reated mock-load-job-54798 with everage duration 8s reated mock-load-job-54799 with overage duration 7s reated mock-load-job-54800 with overage duration 37s reated mock-load-job-54801 with overage duration IIs

						Q search	Baytan C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Jenkins World
7	Mere Harn Propis Build History Marage Jensity Codentation	W	orld'	s bigg	est_	lenki	ns!!	
	Build Queue	0	muck-load-job-00002	NA	NA	NA	ø	
	No builds in the queue.	0	mock load job-00003	NA	NIA	NA	۵	
_	Build Executor Status -	0	mack-load-job-00004	NIA	NIA	NA	۲	
_	R master	0	mack-load-job-00005	NIA	NIA	NA	۲	
_	1 kdw	0	mock load job-00006	NA	NA	NA	۲	
_	A Sydney	0	muck-load-job-00007	NIA	N/A	NA	۲	
_	1 kdu	0	mack-load-job-00008	NA	NA	NA	ø	
_	E São Paulo	0	mock load job-00009	NA	00	0 00		
_	M Tokyo	0	mock-load-job-00010	NA		$0,00^{\circ}$	1 101	
_	1 kfm	0	mock-load-job-00011	NIA		0,00		
_	M US East	0	mock load job-00012	NIA		•		
_	1 klie R US West	0	mock-load-job-00013	NIA	NIA	NA	۲	
Lreated mo	ck=Load-Job-199997 W	th aver	one duration	NA	NA	NA	۲	
	ck-load-job-199998 w				NIA	NA	۲	
	ck-load-job-1999999 w				NA	NA	۲	
	ck-load-job-200000 w				NA	NA	۲	
		th aver	age auration	2222	NA	NA	۲	
Expected e	erage duration: 59s xecutor multiplier: (leal max build rate: (9166666667 x	(number of buil	ds		#JenkinsWor	rld

I may need another of these

GUINNESS

							Dephen	
👰 Jenkins						Q search	Iteg in	
Jenkins +							EVAL ACCIVITED	Jenkins V
New Item							Table description	2016
People	All	•						
Duild History		w	Name	Last Success	Last Failure	Last Duration		
Manage Jerkins								
Cradentials								
Creating .	Inp		vorld's		JACT	len	kinc	
Build Queue		V.		D DIZ	<i>s</i> usu	JUI	NHIJ	
No builds in the queue.					J			
	0	-	mock-load-job-00004	NA	NA	NA	õ	
Build Executor Status	-							
R master		*	mock-load-job-00005	NIA	NA	NA	ø	
1 kfe		*	mock load job-00006	NIA				
2 ide		*	muck-load-job-00007	NA	200	001	iaba	
3 ide		- T		NA			1009	
4 kfe		*	mock-lead-job-00008	10.5			jobs) • • •
5 kBe 6 kBe		*	mock lead job-00009	NIA	· · · · · · · · · · · · · · · · · · ·	, 		
7 kfe		*	muck-load-job-00010	NIA	NA	NA	۲	
8 ide	0	*	mock-load-job-00071	NA	NA	NA	Ø	
9 kde		- T		NA	NA	NA	~	
10 kdie		*	mock lead job-00012	N/A	NIA	NA	N	
11 kile 12 kile							Ð	
13 kfe							۵	
14 kBp			$\square \square \square \square \square \square \square \square$	VACIII	r nr c		Ø	
15 kfe			005 ex	<u>ACCU</u>			~	
16 kde							2	
			mock-laad-job-00017	NIA	NA	NA	۲	
17 Me 18 Me								

I asked for the biggest Jenkins cluster

And Stephen keeps using the wrong definitions of biggest

• Maybe I just run lots of Jenkins instances in parallel...

Please don't make me pose for any more memes

We need some rules...

Rules

• Biggest means:

number of concurrent builds averaged over a 1h / 24h period

- Each node must be on-line for at least 90% of the 1h / 24h period
- Each executor must have an average utilisation of at least 90% for the 1h / 24h period

To be a Jenkins Cluster:

- any job in the cluster must be technically able to:
 - trigger any other job in the cluster
 - copy artifacts from any other job in the cluster
- users can navigate across the cluster

Note: Access permissions are allowed to restrict this for real clusters

- Jobs can be real jobs or mock load builder jobs but must:
 - output a console log (averaging at least 30 lines per minute)
 - produce JUnit style test results and archive them
 - produce build artifacts and archive them
- 20% of jobs must trigger other jobs in the cluster
- 20% of jobs must copy archived artifacts from another job in the cluster
- Job types ideally should representative of real world frequencies.

In 2016 that means:

• 75% freestyle, 15% maven, 5% matrix, 5% pipeline

Lost)

Ok, where were we...

Agenda

Real world

Theory

Experiments

Applied

Jenkins phone home!

Usage Statistics in Jenkins

#JenkinsWorld

https://wiki.jenkins-ci.org/display/JENKINS/Usage+Statistics

Usage Statistics in Jenkins

- Enabled by default, can opt out either:
 - by UI; or
 - by -Dhudson.model.UsageStatistics.disabled=true
- Runs once a day
- Sends encrypted payload to Jenkins OSS server via user's browser
- All data is anonymised

```
public boolean isDue() {
```

// user opted out. no data collection.

if(!Jenkins.getInstance().isUsageStatisticsCollected() || DISABLED) return false;

Usage Statistics in Jenkins

- Records some basic information:
 - Servlet container
 - Jenkins version
 - Each defined node
 - JVM vendor and version
 - Number of executors
 - OS
- Does not provide information on how many nodes were on-line

```
JSONObject o = new JSONObject();
o.put("stat",1);
o.put("install", j.getLegacyInstanceId());
o.put("servletContainer", j.servletContext.getServerInfo());
o.put("version", Jenkins.VERSION);
```

```
List<JSONObject> nodes = new ArrayList<JSONObject>();
for( Computer c : j.getComputers() ) {
   JSONObject n = new JSONObject();
   if(c.getNode()==j) {
        n.put("master",true);
        n.put("jvm-vendor", System.getProperty("java.vm.vendor"));
        n.put("jvm-vendor", System.getProperty("java.vm.name"));
        n.put("jvm-vension", System.getProperty("java.vm.name"));
        n.put("jvm-vension", System.getProperty("java.vm.name"));
        n.put("jvm-vension", System.getProperty("java.vension"));
        n.put("jvm-vension", System.getProperty("java.vension"));
        p.setTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLogeTopLoge
```

```
n.put("os", descriptor.get(c));
nodes.add(n);
```

```
s
o.put("nodes",nodes);
```


• As of 1st May 2016 there are 332 installations reporting at least 100 nodes

- As of 1st May 2016 there are 332 installations reporting at least 100 nodes
- The largest had 1,476 nodes and 2,941 executors

- As of 1st May 2016 there are 332 installations reporting at least 100 nodes
- The largest had 1,476 nodes and 2,941 executors
- By 1st July 2016 that instance had grown to 2,113 nodes and 4,215 executors
- By 1st September 2016 that instance had been replaced by another instance with 6,794 executors

- As of 1st May 2016 there are 332 installations reporting at least 100 nodes
- The largest had 1,476 nodes and 2,941 executors
- By 1st July 2016 that instance had grown to 2,113 nodes and 4,215 executors
- By 1st September 2016 that instance had been replaced by another instance with 6,794 nodes and 6,794 executors

6,794 nodes6,794 executors

- As of 1st May 2016 there are 332 installations reporting at least 100 nodes
- The largest had 1,476 nodes and 2,941 executors
- By 1st July 2016 that instance had grown to 2,113 nodes and 4,215 executors
- By 1st September 2016 that instance had been replaced by another instance with 6,793 nodes and 6,794 executors

6,794 nodes6,794 executors

Does not tell us how many on-line

CloudBees support bundles

- At CloudBees, our support team regularly ask for support bundles
- Bundles are generated by the OSS Support Core plugin
- We anonymise some of the information and use for deeper analysis

• Most of these bundles are from systems where customers had a requirement for support

• We ask for support bundles routinely, so some are from customers who just had questions

- Most of these bundles are from systems where customers had a requirement for support
 - We ask for support bundles routinely, so some are from customers who just had questions
- Expect short uptime

"It's not working, let's try kicking it up the arse before we call for support..."

- Most of these bundles are from systems where customers had a requirement for support
 - We ask for support bundles routinely, so some are from customers who just had questions
- Expect short uptime
- Expect low usage

"It's not working, let's not push it too hard until we get it fixed again..."

- Most of these bundles are from systems where customers had a requirement for support
 - We ask for support bundles routinely, so some are from customers who just had questions
- Expect short uptime
- Expect low usage
- Customers can censor how much of the bundle to send us

The bits we are interested in have been provided by >98% of our customers

Positives

Includes

- •# of nodes on-line
- JVM tuning arguments

Number of executors

Number of executors

Number of executors

Number of jobs

Number of jobs

HTTP/200 requests per minute

Heap usage as a function of web request rate

HTTP/200 requests per minute

Largest

- Support bundle taken after 40h of uptime
 - 1,104 nodes configured
 - 698 nodes on-line
 - 7,135 executors configured
 - 4,828 executors on-line
 - 5,784 jobs (92% freestyle)

• Master: Java 8

- -Xms4096m -Xmx4096m
- -XX:NewSize=2048m -XX:MaxNewSize=2048m
- -XX:ParallelGCThreads=4 -XX:ConcGCThreads=4
- -Dhudson.slaves.ChannelPinger.pingInterval=-1
- Agents running Java 7/8:
 - Majority SSH:
 - -Xms128m -Xmx512m
 - -Dhudson.remoting.Launcher.pingTimeoutSec=600
 - -Dhudson.remoting.Launcher.pingIntervalSec=1200
 - 5% SSH:
 - -Xms128m -Xmx512m
 - -Dhudson.remoting.Launcher.pingIntervalSec=-1
 - 1% JNLP (mostly Windows)

Root cause of support request: NFS timeouts causing agent disconnects

Second largest

- Support bundle taken after 18 minutes
 Master: Java 7 uptime
 - 326 nodes configured
 - 313 nodes online
 - 1,382 executors online
 - 1,399 executors configured
 - 7,724 jobs

- - -Xms4096m -Xmx4096m
 - -XX:NewSize=200m -XX:MaxNewSize=200m
- Agents running Java 7/8:
 - 70% SSH:
 - Default JVM Options
 - 30% JNLP:

Default JVM Options

Root cause of support request: Build history widget rendering blocked due to synchronisation bug in customer's own custom plugin

- Probably going to be ok with 4GB heap to start
 - Grow from there to meet targets for jobs / builds / concurrent users
- Ping threads initiated by the master may cause issues
- Tuning the Agent JVMs is probably not a priority issue
- Getting 2,000+ nodes per Jenkins instance is possible

Keeping them all on-line concurrently may be a separate issue 😉

Agenda

Real world

Theory

Experiments

Applied

Why scale Jenkins?

- A single instance can handle 100k+ jobs
 - Put it on a big box
 - Organise jobs with folders
 - Use SSD for storage
 - Schedule restarts for weekends

200 executors "640K ^ ought to be enough for anybody"

-Bill Gates

Joel on Software <u>http://goo.gl/mEcQpB</u> Human Task Switches Considered Harmful by Joel Spolsky

Monday, February 12, 2001

When you're managing a team of programmers, one of the first things you have to learn to get right is task allocation. That's just a five-dollar word for *giving people things to do*. It's known colloquially as "file

http://goo.gl/6VSjaz

Joel on Software <u>ht</u> Human Task Switches Considered Harmful by Joel Spolsky

Monday, February 12, 2001

When you're managing a team of programmers, one of you have to learn to get right is task allocation. That's j word for giving people things to do. It's known colloqu

http://goo.gl/mEcQpB

CODING HORROR programming and human factors

27 Sep 2006

The Multitasking Myth

In Quality Software Management: Systems Thinking, Gerald Weinberg proposed a rule of thumb to calculate the waste caused by project switching:

How much does a context switch cost a developer

THIS IS WHY YOU SHOULDN'T INTERRUPT A PROGRAMMER

How much does a context switch cost a developer

Estimates vary...

Estimates vary...

"60 minutes"

Estimates vary...

"30 minutes"

"60 minutes"

Estimates vary...

"30 minutes"

"45 minutes"

"60 minutes"

Estimates vary...

"30 minutes"

"45 minutes"

"60 minutes"

My random sampling of the web and personal experience puts it at ~45 minutes

You can pay twice for delayed builds...

- Developer commits code
- Developer starts new task
- Developer gets failed build notification
- Pay context switch to return to previous task
- Fix build
- Pay context switch to return to interrupted task
- Continue interrupted task

Get the build result to the developers as fast as possible before they context switch to the next task

by Mark Sadowski http://goo.gl/Ior3rY CC BY-SA 2.0

How?

- Little's Law tells us that the average number of customers in the store L, is the effective arrival rate $\lambda,$ times the average time that a customer spends in the store W

 $L = \lambda \times W$

• Little's Law tells us that the average number of builds in the queue L, is the effective arrival rate λ , times the sum of the average time that a job spends waiting in the queue Q and the average time that a job spends building B

 $\mathsf{L} = \lambda \times (\mathsf{Q} + \mathsf{B})$

As a Jenkins administrator we cannot change B but we can minimise Q

Queue Length vs. Capacity Utilization

Note: Assumes M/M/1/∞ Queue

Note: Assumes M/M/1/∞ Queue

TORY

EINERTSE

PRODUCT LOPER

TOOLKIT

Total Process Cost vs. Capacity Utilization

Total Process Cost vs. Capacity Utilization

http://goo.gl/8MAosu

Traditional process optimisation for sweet spot

- What is the cost in capacity for a build node?
 - Includes the cost of the server resources.
 - Correct for the developer time saved by faster response.
- For cloud resources:
 - 1 high spec machine is less than \$4k/year
 - Average Senior Developer in CA is \$100k/year
 - Only need to save 4% of one senior developers time and the resource cloud resource has paid for itself

An extra build node is cost effective if it saves one developer 2 hours/week

An extra build node is cost effective if once a week it gets a build result to one developer before they start their next task

Build server process optimisation for sweet spot

Where are these builds coming from?

How often do developers commit?

Most active GitHub users (by contributions), http://twitter.com/paulmille

E active.ed

Most active GitHub users (git.io/top)

The count of contributions (summary of Pull Requests, opened issues and commits) to public repos at GitHub.com from Pri, 19 Jun 2015 15:17:38 GMT till Sun, 19 Jun 2016 15:17:38 GMT.

Only first 1000 GitHub users according to the count of followers are taken. This is because of limitations of GitHub search. Sorting algo in pseudocode:

githubloors
.filter(user +> user.followers > 635)
.sortBy("contributions")
.slice(0, 256)

Made with data mining of GI9Hub.com (raw data, script) by @paulmilr with contribs of @lifesinger and @ahmetalpbalkan. Updated once per week.

	User	Contribs	Location	Picture
#1	GrahamCampbell (Graham Campbell)	11088	The United Kingdom	1
#2	fabpot (Fabien Potencier)	10000	Paris, France	3

http://git.io/top

Sec.

The most active developers:

• 10,000 commits per year

Assume 250 working days per year: • 40 commits per day

5 commits per developer per hour

5 commits per developer per hour

- Target 30-50% utilisation to maximise developer productivity
- Estimate developer activity that triggers builds
 - The upper limit is probably 5 commits per hour

Most developers are not Graham Campbell ->

- Estimate number of builds triggered by a commit
- Estimate build duration
- Apply Little's law => Number of executors

For average developers

For average developers

(not all Graham Campbell)

For average developers

For average developers

- Build and test only
- No deployment
- No DevOps build chains
- No CD

For average developers

With real world **test mix**

For average developers

With real world **test mix**

- Some unit tests
- Integration tests that use a DB
- Tests that require complex set-up and tear down
- Browser based tests

For average developers

With real world test mix

Basic CI usage

At least 1 Jenkins master per 200 developers (to maximise developer productivity)

Horizontal -

"The Interlace, Singapore" by Mike Cartmell <u>http://goo.gl/zDzGLs</u> CC BY 2.0

Horizontal →

Horizontal →

←Eventually you cannot get a bigger box

Have to use horizontal scaling anyway

Horizontal →

#JenkinsWorld

• Microservices

Other approaches to scaling...

- Microservices
 - Split a single application into a suite of small services
 - Running in separate processes
 - Independently deployable
 - Scale each service according to requirements

Other approaches to scaling...

- Microservices
 - Split a single application into a suite of small services
 - Running in separate processes
 - Independently deployable
 - Scale each service according to requirements
- Serverless

Other approaches to scaling...

Microservices

- Split a single application into a suite of small services
- Running in separate processes
- Independently deployable
- Scale each service according to requirements

• Serverless

- Instead of supporting a specific application, clusters of servers provide a generic execution environment for any number of applications.
- Run in stateless compute containers that are *event-triggered*, *ephemeral*, and fully managed by a 3rd party

What if I told you...

What if I told you...

...Jenkins jobs are serverless microservices?

"Jenkins is cron on steroids"

- Lindsay Holmwood

http://goo.gl/OFjInB

Microservices: Real Architectural Patterns - Camille Fournier

Cron Jobs as Microservices

... When it becomes very easy to make anything a microservice, everything becomes a microservice, including things we would traditionally run as cron jobs.

http://goo.gl/Nqj4io

Microservices: Real Architectural Patterns - Camille Fournier

Cron Jobs as Microservices

... When it becomes very easy to make anything a microservice, everything becomes a microservice, including things we would traditionally run as <u>cron jobs</u>.

http://goo.gl/Nqj4io

In short, the microservice architectural style is an approach to developing a single application as a **suite of small services**, each **running in its own process** and communicating with lightweight mechanisms, often an HTTP resource API. These services are **built around business capabilities** and **independently deployable** by fully automated deployment machinery. There is a **bare minimum of centralized management** of these services, which may be written in different programming languages and use different data storage technologies.

-- James Lewis and Martin Fowler

Microservice definition

- Small service fine grained to perform a single function
- Runs in own process
- Built around business capability
- Independently deployable
- Bare minimum of centralised management

- Small service **✓** => it just checks out and builds code
- Built around business capability **▼** => each job is targeted for a specific project
- Independently deployable ✓ => we can reconfigure individual jobs any time
- Bare minimum of centralised management $\overline{\mathbf{v}}$ => job sprawl is a real problem $\overline{\mathbf{v}}$

Pros and cons of Microservices

• Pros

- Independence of services
- Focus on business capabilities of apps
- Simplicity of adding new features
- Fault tolerance
- Cons
 - Implicit interfaces
 - Operational overhead
 - Require DevOps skills
 - Operational complexity

Pros and cons of Microservices

• Pros

- Independence of services
- Focus on business capabilities of apps
- Simplicity of adding new <u>features</u>
- Fault tolerance
- Cons
 - Implicit interfaces
 - Operational overhead
 - Require <u>DevOps</u> skills
 - Operational complexity

Pros and cons of Microservices (re-imagined for Jenkins)

• Pros

- Independence of jobs
- Focus on business capabilities of jobs
- Simplicity of adding new jobs
- Fault tolerance
- Cons
 - Implicit interfaces
 - Operational overhead
 - Require Jenkins Admin skills
 - Operational complexity

- Instead of supporting a **specific application**, clusters of servers provide a **generic execution environment** for any number of applications.
- Run in stateless compute containers that are event-triggered, ephemeral (may only last for one invocation), and fully managed by the serverless application platform

Jenkins is a platform for serverless microservices

- Instead of supporting a **specific job**, clusters of build agents provide a **generic build environment** for any number of jobs.
- Run in stateless executors that are **event-triggered**, **ephemeral** (may only last for one invocation), and fully managed by **Jenkins**

Pros and cons of serverless

• Pros

- Reduced operational cost
- Easier operational management

• Cons

- Vendor control
- Multitenancy problems
- Vendor lock-in
- Security concerns
- Repetition of logic

Pros and cons of serverless (re-imagined for Jenkins)

- Pros
 - Reduced operational cost
 - Easier operational management
- If we remove the special snowflakes

- Cons
 - Vendor control
 - Multitenancy problems
 - Vendor lock-in
 - Security concerns
 - Repetition of logic

?

Building the Butler Army...

Build History

💥 Manage Jenkins

A Credentials

👩 Chaos Butler

Build Queue	-
No builds in the queue.	
Build Executor Status	-
1 Idle	
2 Idle	
💻 jnlp	
1 Idle	

The next victim is due to be selected in 0 ms

Recent victims

Victim	When
Jenkins	Wed Aug 31 17:01:06 IST 2016

- Chaos Butler plugin => disconnect agents at random to test your processes
- Chaos Steward plugin => restart masters at random
- Latency Butler plugin => keep builds in the queue for longer
- Conformity Butler plugin => disable jobs that do not adhere to best practices
- Doctor Butler plugin => disable jobs with failing health checks
- Janitor Butler plugin => disable unused jobs... for eventual removal
- Squeaky Wheel plugin => fails a build and disables job until ACK'd

- Target 30-50% capacity utilisation to maximise developer productivity
- Plan for at least 1 Jenkins master per 200 developers
 - Need more if your developers have an above average commit rate
- Eliminate special snowflakes
- Jobs are microservices
- Jenkins is a platform for serverless microservices
- Want Simian army for Jenkins?

Agenda

Theory

Experiments

Applied

- Memory usage
 - Jobs
 - Builds
 - Nodes

- Memory usage
 - Jobs
 - Builds
 - Nodes
- Remoting
 - Performance
 - Load

- Memory usage
 - Jobs
 - Builds
 - Nodes
- Remoting
 - Performance
 - Load
- Queue

- Memory usage
 - Jobs
 - Builds
 - Nodes
- Remoting
 - Performance
 - Load
- Queue
- Executor threads

- Memory usage
 - Jobs
 - Builds
 - Nodes
- Remoting
 - Performance
 - Load
- Queue
- Executor threads
- Archiving artifacts

- Memory usage
 - Jobs
 - Builds
 - Nodes
- Remoting
 - Performance
 - Load
- Queue
- Executor threads
- Archiving artifacts

Measure memory consumption

- Memory usage
 - Jobs
 - Builds
 - Nodes
- Remoting
 - Performance
 - Load
- Queue
- Executor threads
- Archiving artifacts

Measure memory consumption

Measure scalability

- Memory usage
 - Jobs
 - Builds
 - Nodes
- Remoting
 - Performance
 - Load
- Queue
- Executor threads
- Archiving artifacts

Measure memory consumption

Measure scalability Limit Experiment

- Memory usage
 - Jobs
 - Builds
 - Nodes
- Remoting
 - Performance
 - Load
- Queue
- Executor threads
- Archiving artifacts

Measure scalability Limit Experiment Measure

Measure memory consumption

Memory usage

- We can use JAMM to measure memory usage
- JAMM walks the object graph to measure memory
- Need to use a custom implementation that understands Jenkins object graph
 - Ignores Jenkins singletons
 - Ignores parent references
 - Safely iterate run references
 - etc

https://github.com/jbellis/jamm

Demo 1

Name \downarrow	Memory usage	
job	job: 81.27 KB 7 runs. Avg: 1.23 KB. Total 8.60 KB	<- Freestyle
job2	job: 75.30 KB 3 runs. Avg: 1.17 KB. Total 3.50 KB	<- Empty builds
job3	job: 7.55 KB N/A	<- No builds
matrix	job: 86.73 KB 4 runs. Avg: 1.66 KB. Total 6.65 KB	
maven	job: 92.50 KB 6 runs. Avg: 31.84 KB. Total 191.05 KB	
pipeline	job: 75.27 KB 4 runs. Avg: 4.80 KB. Total 19.21 KB	

- Jobs with no builds are ~10kB
- Jobs with builds are ~100kB
- Builds start at ~2kB
- Maven builds start at ~30kB
- Nodes start at
 - ~210kB for JNLP
 - ~1.15MB for SSH (includes 1MB flight recording stream)

- How much load does a remoting channel generate?
 - JNLP 2
 - JNLP 3
 - JNLP 4
 - SSH
- How many remoting channels can Jenkins handle?

- Developed as part of CJOC's OperationsCenter2 remoting protocol test suite
- Single JVM for loopback or single server JVM and many client JVMs for client/server
- Sets up loop-back remoting connections
- Ramps up the number of connections
- Measures
 - average memory usage
 - JVM CPU load
 - JVM GC statistics
- Result gives the absolute upper limits for protocol on given system

agent-load-testhelp	
client HOST:PORT	: Specify to run as a client only and connect to a server on the specified HOST:PORT
clients CLIENTS	: The number of clients to simulate
collect SECONDS	: The number of seconds after all connections are established to collect stats for before stopping
connect MILLIS	: The number of milliseconds to wait between client starts
interval MILLISECONDS	: The number of milliseconds each client waits before sending a command
listen HOST:PORT	: Specify the hostname and port to listen on
protocol PROTOCOL	: The protocol to run the load test with
server	: Specify to run as a server only
size BYTES	: The number of bytes to pad the command with
stats FILE	: Filename to record stats to
warmup SECONDS	: The number of seconds after all connections are established to warm up before resetting stats

10 req/client/sec	# of clients	JVM load	Average heap usage
JNLP2	100	1.3	740 ± 140
JNLP3	100	1.3	800 ± 190
JNLP4 (TLS)	100	1.9	225 ± 50
JNLP4 (plaintext)	100	1.5	200 ± 40

10 req/client/sec	# of clients	JVM load	Average heap usage
JNLP2	100	1.3	450 ± 30
JNLP3	100	1.3	512 ± 0
JNLP4 (TLS)	100	1.9	222 ± 40
JNLP4 (plaintext)	100	1.5	166 ± 45

10 req/client/sec	# of clients	JVM load	Average heap usage
JNLP2	100	1.3	125 ± 1
JNLP3	100	2 Alexandre	2 Alexandre
JNLP4 (TLS)	100	1.9	117 ± 4
JNLP4 (plaintext)	100	1.5	97 ± 2

10 req/client/sec	# of clients	JVM load	Average heap usage
JNLP2 *nix	100	1.3	740 ± 140
JNLP4 (plain) *nix	100	1.5	200 ± 40
JNLP2 win	100	0.41	540 ± 33
JNLP4 (plain) win	100	0.41	125 ± 33

10 req/client/sec	# of clients	JVM load	Average heap usage
JNLP2 *nix	100	1.3	740 ± 140
JNLP4 (plain) *nix	100	1.5	15% difference
JNLP2 win	100	0.41	540 ± 33
JNLP4 (plain) win	100	0.41	No difference 125 ± 33

- How well does the queue scale?
- Put loads of no-op jobs in the queue and see how long it takes to complete as a function of number of executors
- Measure
 - Time it takes to enqueue all the jobs
 - Time it takes to assign all the jobs to build nodes

Demo 2

Queue

- Matrix build
- 1000 no-op combinations
- Three regions
- <20 executors
 - Executor availability
- 20-100 executors
 - Peak throughput
- >100 executors
 - Scheduling

- How much memory does an executor thread require?
- JAMM to the rescue again
- Idle executor ~ 1Kb
- Active executor ~ 50Kb
- Can be more depending on plugins in use

- How much work does archiving artifacts put on the remoting layer?
- Use a custom agent that reports:
 - Number of commands sent and received
 - Number of bytes sent and received
- Run builds with different numbers and sizes of artifacts.

Vary size of artifact

- Create various sizes of artifact
- Random bytes to ensure no compression effects

Duration = f(size)

Linear

Vary number of artifacts (total size constant)

- Create 100m of artifacts to archive
- Random bytes to ensure no compression effects
- Vary number of files

Build Duration = $f(n^2)$

Vary number of artifacts (total size constant)

- Create 100m of artifacts to archive
- Random bytes to ensure no compression effects
- Vary number of files

Build Duration = $f(n^2)$

Archive Duration = $f(n^2)$

O(n²)

Vary number of artifacts (total size constant)

- Bytes received \approx 24 n + v / 50
- Bytes sent \approx 50 n + v
- 24 byte ACK for each file
- 150 byte ACK for each 8kB packet
- ~50 byte header for each file + file data itself

[#]JenkinsWorld

- Memory usage
 - Jobs: starting from 100kB each
 - Builds: starting from 2kB each, 30kB for Maven job type
 - Nodes: starting from 210kB per JNLP and 1200kB per SSH
- Remoting
 - Performance: JNLP4 => encryption + low memory use + more clients
 - Load: 4000 requests/sec ≈ ½ a 2.3GHz Intel Core i7 (2014)
- Queue: O(n) on number of executors (n > 100)
- Executor threads: idle from 1kB, active from 50kB
- Archiving artifacts: O(n) on size, $O(n^2)$ on number of files

Real world

Theory

Experiments

Applied

Sizing the JVM heap...

- Ignoring Web UI requirements
- Absolute predicted base JVM heap average usage in MB: (you <u>will</u> need more than this)

 $40a_{JNLP} + 240a_{SSH} + 2j(10+b_{j}) + 10c$ 512 + 200 aJNLP Number of JNLP agents Average builds per job a_{ssh} Number of concurrent builds Number of SSH agents Number of jobs #JenkinsWorld

- Support bundle taken after 40h of uptime
 - 1,104 nodes configured
 - 698 nodes on-line
 - 7,135 executors configured
 - 4,828 executors on-line
 - 5,784 jobs (92% freestyle)

- Master: Java 8
 - -Xms4096m -Xmx4096m
 - -XX:NewSize=2048m -XX:MaxNewSize=2048m
 - -XX:ParallelGCThreads=4 -XX:ConcGCThreads=4
 - -Dhudson.slaves.ChannelPinger.pingInterval=-1
- Agents running Java 7/8:
 - Majority SSH:
 - -Xms128m -Xmx512m
 - -Dhudson.remoting.Launcher.pingTimeoutSec=600
 - -Dhudson.remoting.Launcher.pingIntervalSec=1200
 - 5% SSH:
 - -Xms128m -Xmx512m
 - -Dhudson.remoting.Launcher.pingIntervalSec=-1
 - 1% JNLP (mostly Windows)

- Support bundle taken after 40h of uptime
 - 1,104 nodes configured
 - 698 nodes on-line
 - 7,135 executors configured
 - 4,828 executors on-line
 - 5,784 jobs (92% freestyle)

• Master: Java 8

- -Xms4096m -Xmx4096m
- -XX:NewSize=2048m -XX:MaxNewSize=2048m
- -XX:ParallelGCThreads=4 -XX:ConcGCThreads=4
- -Dhudson.slaves.ChannelPinger.pingInterval=-1
- Agents running Java 7/8:
 - Majority SSH:
 - -Xms128m -Xmx512m
 - -Dhudson.remoting.Launcher.pingTimeoutSec=600
 - -Dhudson.remoting.Launcher.pingIntervalSec=1200
 - 5% SSH:
 - -Xms128m -Xmx512m
 - -Dhudson.remoting.Launcher.pingIntervalSec=-1
 - 1% JNLP (mostly Windows)

Validating the JVM heap sizing guide...

- Support bundle taken after 40h of uptime
 - 1,104 nodes configured
 - 698 nodes on-line
 - 7,135 executors configured
 - 4,828 executors on-line
 - 5,784 jobs (92% freestyle)

-Xms4096m -Xmx4096m

Instance sizing

- Aim for some reasonable maximums
 - 200 agents per master
 - 1000 jobs per master
 - average 15 builds per job
 - peak 100 concurrent builds

Instance sizing

- Aim for some reasonable maximums
 - 200 agents per master
 - 1000 jobs per master
 - average 15 builds per job
 - peak 100 concurrent builds
- Apply formula
 - 2.2Gb expected average memory
 - -Xms4G -Xmx4G should suffice

Instance sizing

- Aim for some reasonable maximums
 - 200 agents per master
 - 1000 jobs per master
 - average 15 builds per job
 - peak 100 concurrent builds
- Apply formula
 - 2.2Gb expected average memory
 - -Xms4G -Xmx4G should suffice

- Give each team (or group of small teams) their own master
- **Markov Plan for growth up to ~200 agents**
- **Markov Plan for growth up to ~1000 jobs**
- ☑ Use inter-master solutions to connect teams
- 4Gb is the starting point for JVM tuning

Example

100,000 concurrent builds

Summary

Image of the second state of the second sta

- ... by all means tune from there if evidence shows it is needed
- Can do 2,000 agents per master ... should do 200 (less pain to administer)
- Magents sitting idle is a good thing
 - ... means developer productivity is maximised
- Your jobs are serverless microservices, Jenkins is their platform ... manage your platform as a platform ... manage your microservices as microservices

Summary

Image of the second state of the second sta

- ... by all means tune from there if evidence shows it is needed
- Can do 2,000 agents per master ... should do 200 (less pain to administer)
- Agents sitting idle is a good thing
 ... means developer productivity is maximised
- Your jobs are serverless microservices, Jenkins is their platform ... manage your platform as a platform manage your microservices as microservices
 - ... manage your microservices as microservices

🗹 Jenkins can scale

... 100,000 concurrent builds is just a question of having enough agents

