
#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

The Need For Speed: Building Pipelines To Be Faster
Sam Van Oort, CloudBees Inc.

#JenkinsWorld

Where is our journey going?

2

•  Background: What’s the problem and why do I
care?

•  Tooling: What can I use to look at pipeline
performance?

•  Best practices: How can I use pipeline more
effectively?

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

Background

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

What Does “Fast” Really Mean: Throughput?

•  Throughput: solved by scale-out or separation of concerns
•  Distributed builds: many build agents (slaves) per master
•  Multiple masters (one per team)

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

What Does “Fast” Really Mean: Resource Use?

•  Resource Use:
•  AWS c4.xlarge: 4 vCPU, 7.5 GB RAM

•  ~$153/month On-demand ($95
reserved)

•  Each may support dozens of
engineers

•  Software Engineer: (Just salary +
vacation)

•  ~$3000-17000/month* (plus
benefits!)

•  Conclusion: Commodity Hardware is
CHEAP!

*Rough figures for US/EU engineers across geos, junior to principal level

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

What Does “Fast” Really Mean: LATENCY!

•  Latency: the King!
•  Low turn around time = ship FASTER
•  Low turn around = less context

switching for engineers
•  Context switching = lost time &

mistakes
•  Staff time >> CPU time, so…

•  YES, we have the answer!

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

What Are The Components Of Latency For Jenkins Pipelines?

1.  Triggering delay: time from commit until a
build is enqueued

2.  On-master overheads: orchestration and
tracking

3.  Queueing time: waiting for an executor slot
4.  Executor time: how long it takes to build,

test, deploy
5.  Feedback delay: time until someone that

cares sees the key result (pass/fail)

#JenkinsWorld

Let’s Get The Basics Out Of The Way: Triggering and Master

•  Triggering delay:
•  Use web hooks or commit hooks: faster than polling, easier on Jenkins and the

SCM
•  Everyone loves “GitHub API rate limit exceeded”

•  Short polling cycles can give a fast response time, but dramatically increase
resource use (see also: CloudBees support ticket history)

•  On-master overhead:

•  Delete old build records
•  Don’t give masters any executors
•  Don’t dump GBs of data to logs (should go without saying, but I’ve seen it)

8

#JenkinsWorld

Let’s Get The Basics Out Of The Way: Executor Use

•  Queueing Time
•  You must construct additional build

agents (slaves)
•  Dynamic agents are an easy solution:

cloud agents, Docker agents, etc

•  Feedback Delay
•  Limit the spam! Only the culprits.

•  Make it meaningful, failure or prod
•  Use better systems: IM not email

9

We must create additional build agents!

#JenkinsWorld

Let’s Get The Basics Out Of The Way

•  Triggering delay:
•  Use web hooks or commit hooks: faster than polling, easier on Jenkins and the

SCM
•  Short polling cycles can give a fast response time, but dramatically increase

resource use (see also: CloudBees support ticket history)
•  On-master overhead:

•  Delete old build records
•  Don’t give masters any executors
•  Don’t dump GBs of data to logs (should go without saying, but I’ve seen it)

•  Queueing Time:
•  You must construct additional build agents (slaves)
•  Dynamic slaves are an easy solution: cloud agents, Docker agents, etc

•  Notifications
•  Limit the spam (people will ignore it), use IM not email 10

#JenkinsWorld

TOOLS!

11

TOOLS!

#JenkinsWorld

Analysis, the Top Level: Pipeline Stage View

12

#JenkinsWorld

New: Pipeline Steps View As a Profiler

13

#JenkinsWorld

Alternative Approach: Blue Ocean

14

#JenkinsWorld

How Long Does Pipeline Take? (Roughly)

•  Hardware: modern AWS instance types with EBS storage (SSD)

•  Standard modern AWS instances (with EBS SSD storage) - may improve over time! 15

1ms

20ms

250ms

60,000ms

0ms 1ms 10ms 100ms 1,000ms 10,000ms 100,000ms

Echo Step (trivial)

'node' step: Obtain a workspace

Run a shell step

Quick build (1 min)

Value Axis

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

Best Practices
What should I do?

#JenkinsWorld

Hardcore Antipatterns That Can Breaking The World

17

•  Input step that locks up an executor

•  Godot wont’t show up: but angry coworkers will

#JenkinsWorld

•  We get it, things fail - network requests, downtime, slow processes
•  Computers are dumb: they don’t know when to stop
•  Pipelines persist state: unbounded loops are like leaving your garden hose on
•  Best practice within a node{ } block

Better Practice: Bounded Loops

18

#JenkinsWorld

Better Practice: Timeouts

19

•  Subtler version of retry case
•  Are you deploying? Are you doing network calls?

•  You need a timeout somewhere.
•  Yes, really.

•  Lets you safely recover from hangups
•  Yes, you can AND SHOULD mix with retries for critical bits

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

#1 Biggest Time Saver: Effective Use Of Parallel

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

#2 Biggest Time Saver: Effective Notifications

#JenkinsWorld

Optimization: Consolidate, Consolidate, Consolidate!

•  Node blocks:
•  Giving up a workspace lease means someone else might snatch it!

•  Shell/batch steps
•  Remember that ~0.25s overhead for each shell step? Consolidate!

•  Complex processing logic (XML parsing etc):

•  CPS has some significant overheads for tracking all the things
•  Use @NonCPS functions for more complex processing w/ no steps
•  Next step: use a helper script for processing

22

#JenkinsWorld

Conclusions

•  Focus on latency (turn around time)
•  Prioritizes what matters (results and technical labor) over what doesn’t (CPU

time)

•  Easier to measure, easier to use
•  Tools:

•  Stage View —> Blue Ocean for top level
•  Pipeline steps for specifics

•  Pipeline step view: step and block level
•  Blue Ocean and Stage View* for per-step stats

•  Best Practices:
•  Use parallel right, use notifications early and often
•  Don’t block things: input outside of workspace, retry, timeout 23

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

Thank you, and I hope everyone enjoyed
their time at Jenkins World!
Sam Van Oort, CloudBees, Inc

#JenkinsWorld

© 2016 CloudBees, Inc. All Rights Reserved

