
The Ultimate Feature
Flag Guide
What they are, how to use them and considerations
for scaling

Whitepaper

Contents 3

3

3

7

4

7

5

8

5

9

Getting Started With Feature Flags

What is a Feature Flag?

The History of Feature Flags

Feature Flags and Technical Debt

What Does a Feature Flag Look Like?

How to Get Started

Anatomy of a Feature Flag

Feature Flags at Scale

Ways to Use Feature Flags

Feature Flags are the Future of Continuous Delivery

The Ultimate Feature Flag Guide 2

Whitepaper

The Ultimate Feature Flag Guide 3

As any developer can tell you, deploying any code carries technical risk.
Software might crash or bugs might emerge. Deploying features carries
additional user-related risk. Users might hate the new features or run
into account management issues. With traditional deployments, all of
this risk is absorbed at once.

Thankfully, the leaders in software development (e.g., Facebook, Twitter, and Uber) pioneered a new method
of reducing risk while still enabling rapid innovation and updates in the form of something called a feature flag.
Since these companies made the practice mainstream, feature flag management has become an increasingly popular
practice across companies today.

What is a Feature Flag?
Feature flags give developers the ability to separate these types of risks, handling them one at a time. They can deploy
the new code into production, see how that goes, and then turn on the features later once it’s clear the code is working
as expected.

Simply put, a feature flag is a way to change a piece of software’s functionality without changing and re-deploying
its code. Feature flags involve creating a powerful “if statement” surrounding some chunk of functionality in software
(pockets of source code).

The History of Feature Flags
Leading Web 2.0 companies with platforms and services that must maintain performance among high traffic levels led
the way in developing and popularizing new deployment techniques. Facebook, in particular, is known as a pioneer of
feature flags and for releasing massive amounts of code at scale.

While building its massive social network more than a decade ago, the company realized that its uptime and scale
requirements could not be met with traditional site maintenance approaches. (A message saying the site was down
while they deployed version 3.0 was not going to cut it).

Instead, Facebook just quietly rolled out a never-ending stream of updates without fanfare. Day to day, the site changed
in subtle ways, adding and refining functionality.

At the time, this was a mean feat of engineering. Other tech titans such as Uber and Netflix developed similar
deployment capabilities as well. The feature flag was philosophically fundamental to this development and set the
standard for modern deployment maturity used by leading organizations everywhere today.

Getting Started With Feature Flags

https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/

Whitepaper

The Ultimate Feature Flag Guide 4

What Does a Feature Flag Look Like?
The following is a simple feature flag in code used on an e-commerce site. This software displays a “Happy holidays!”
greeting message with a “see more holiday deals” call to action when it is instructed to. The developer has a way to
toggle this functionality on and off without re-deploying the code for every holiday or across every instance where it
should appear.

It would have a construct like this for the top of a page:

And then perhaps something like this at the bottom:

Whitepaper

The Ultimate Feature Flag Guide 5

Anatomy of a Feature Flag
The following terms are helpful to review when discussing feature flags, also sometimes referred to as feature toggles,
feature flippers, feature controls, or rollout flags.

Toggle Point
In this example, the toggle point is each occurrence of a “check for feature.” isActive(“holiday-greeting”)
represents a single toggle point. Since a feature is rarely just a few linear lines of code, turning a feature on and off can
require many, many toggle points.

Toggle Router
The feature.isActive function takes the name of the feature flag as an argument and maps the toggle points to
the state of that feature flag. In this example, it would be feature.isActive(“holiday-greeting”). It acts as a
coherent, single point of knowledge for the state of the feature across many toggle points.

Toggle Context
The toggle context represents contextual information that the router takes into account when computing the feature’s
state. In the “holiday-greeting” feature example above, the date would be the toggle context. Other examples
might include the logged in user, the geolocation information of the user, a referring URL, etc.

Toggle Configuration
In addition to ambient (known) context, the results of the toggle router for a feature can also be controlled by a simple
configuration, as seen in the above example — a manual turn off capability with a toggle configuration.

Ways to Use Feature Flags
Canary Launches
Alluding to the “canary in the coal mine,” canary deployments occur when software developers release a new version
of software to just a subset of users or systems. By enabling new software within only one part of the user base,
developers can monitor any problems that arise without causing major disruption. Also known as “progressive delivery,”
this lets organizations keep general customer trust high while freeing developers to focus on innovating and delivering
excellent new functionality to customers.

Testing in Production
Conventional wisdom has historically been that testing should be performed prior to production. However, internal test
environments can never fully recreate production. Facebook, Netflix, and the other Web 2.0 organizations previously
mentioned all understood that given their scale, they could not possibly recreate their production environments for
testing purposes. As a result, they run QA in production. By using feature flags, their developers de-risk deploying
functionality whose production behavior is unknown to them, which results in faster releases.

Whitepaper

The Ultimate Feature Flag Guide 6

Turning off Functionality With a Kill Switch
In the same way that organizations can increase the number of users who see a feature, they can also decrease that
number to zero, creating a kill switch. This capability comes in handy when a feature doesn’t behave as planned.
Developers can roll back the change and let life go back to normal for users. It’s also useful for sunsetting and then
decommissioning legacy features. Kill switches absorb much of the risk, stress, and overhead from a release for
developers as it’s simple to roll back a feature.

Running Experiments
Production experiments are another popular way of using feature flags. The most common example is an A/B test,
through which an organization deploys two different versions of a feature to see which performs best. In the example
of an e-commerce site, a brand might test whether a green or red “buy” button results in more transactions. The brand
would deploy both button colors — using a feature flag to split its user base in half — and see which color performs the
best. The possibilities for production experiments are endless and the results can significantly improve your application.
When used correctly, experiments provide product owners and developers with a much shorter feedback loop with
their end users, resulting in improved customer acquisition and retention.

Removing Risk From Migrations
Feature flags provide a low-risk alternative to the forklift upgrade of years past that often ended in fire drills. Rather
than rewriting large swaths of code for a one-time migration that causes issues, developers can use feature flags to
start building calls to the new service or database directly into the existing application. Then they can discreetly test out
the new connection at a more secure time to see if it’s working. When it is time to completely migrate, the code
will have been in production for a long time and flipping the switch will be a non-event.

Improving Developer Productivity
Feature branching has been a long-time continuous integration practice that allows teams to work with their own
copies of the code and, in general, merge all changes less frequently. However, long-lived feature branches can
cause their own headaches as changes to the trunk and additions from other branches can result in what developers
call “merge hell.” It’s easier for developers to add their branches back to the trunk — wrapped within a feature flag
and toggled off — to create the best of both worlds for feature branching without the merge hell commonly
associated with it.

Also, as flags allow independent development and deployment, developers no longer have to be on call to deploy
features once they’re finished. This frees up more time for development and improves developer satisfaction.

Whitepaper

The Ultimate Feature Flag Guide 7

Feature Flags and Technical Debt
One of the historical knocks on the use of feature flags is that they create technical debt. This is an understandable
sentiment since, if implemented by hand, they can lead to massive, ad hoc tangles of conditional logic in the codebase.
And that can be downright nasty.

Technical debt is one of the various reasons why it can make sense to consider adopting third-party management
systems. These systems can actually save you from technical debt, even as your own, homegrown solution may cause it.
But even with such a system, you have to be careful.

In general, codebases tend toward entropy — they tend to rot unless you actively curate them. It’s no different with
your implementation of feature flag management. Do your best to group toggle points as close together as possible,
rather than having features sprawl all over the application. Adhering to the SOLID principles will help with this, as will
keeping your code (and feature flag logic) DRY. And make sure to ruthlessly cull outdated toggle points and routers and
to plan to retire your feature flags.

How to Get Started
It may seem like turning on or off one little thing in an application is over-engineering. Consider the idea of application
logging, however. If a developer were brand new to programming or writing some kind of toy implementation, it might
actually be easier to just use their language’s file API to dump some random text to a file than it would be to install and
configure a full-blown logging framework.

But how long would that last? Would they hold out until they had to consider log levels? Different styles of appender?
Multi-threading? Sooner or later, it would become more painful to keep rolling it themselves than going back and using
an established solution.

The same goes for feature flag management. If a developer or team is new to it and dabbling, then it makes sense
to implement it manually. They will develop an understanding of how it works and make better decisions later. But
if they find themselves in over their heads, remember that mature, third-party feature flag management systems
exist for a reason.

https://rollout.io/blog/feature-flags-as-a-service/
https://rollout.io/blog/feature-flags-as-a-service/
https://rollout.io/blog/feature-flag-management-technical-debt/
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://rollout.io/blog/feature-flag-retirement/
https://www.cloudbees.com/products/feature-management

Whitepaper

The Ultimate Feature Flag Guide 8

Feature Flags at Scale
Many organizations start using feature flags with homegrown systems that their developers create. These can be
effective for smaller teams and companies. However, once a company is ready to scale their feature flags across their
organization and make them a staple of their continuous delivery efforts, they need to consider whether their internal
system will scale.

Asking the following questions can help determine which approach is the best fit:

Overhead
How many hours a week am I willing to devote to maintaining my internal flagging system? Am I comfortable dedicating
developer hours to system maintenance and updates?

Visibility and Governance
How will technical and non-technical users be able to see which features are flagged, and when? How will I be able to
ensure only correct users can flag items at the correct time, and those flags are retired appropriately?

Security and Data Privacy
How will I ensure that only the right users have access to flags? How do I create clear audit trails for my flags? How
will I handle personally identifiable information (PII) within my flagging system analytics? Conversely, would I be
comfortable storing my customers’ PII on vendors’ external platforms?

Analytics
How will I ensure I’m accurately getting feedback on my features in real time? Do I want to maintain another analytics
dashboard, or do I want to integrate feature information into my current dashboards?

Developer Productivity
Are my developers most productive using an internal system as-is? Or would they benefit from using an external
platform with reduced maintenance and likely greater developer-focused features? Is my current system as developer
friendly as possible using new methodologies such as configuration as code?

As the number of feature flags used internally increases, the answers to these questions become increasingly complex.
In fact, in a recent study, 90 percent of developers surveyed said they would consider moving to an external system as
the overhead and complexity grew with their flag usage.

https://devops.com/feature-flagging-poised-for-wider-adoption/

Whitepaper

Title of Whitepaper 9

CloudBees, Inc.
4 North Second Street | Suite 1270

San Jose, CA 95113
United States

www.cloudbees.com
info@cloudbees.com

CloudBees CI is built on top of Jenkins, an independent community project. Read more about Jenkins at: www.cloudbees.com/jenkins/about

© 2020 CloudBees, Inc. CloudBees is a registered trademark and CloudBees CI, CloudBees CD, CloudBees Cloud Native CI/CD, CloudBees
Engineering Efficiency, CloudBees Feature Management, CloudBees Build Acceleration and CloudBees CodeShip are trademarks of CloudBees.
Other products or brand names may be trademarks or registered trademarks of their respective holders.

1120v04

Learn More
www.cloudbees.com/products

A guide to Android feature flags

A guide to JavaScript feature flags

A guide to NodeJS feature flags

The following resources are tech stack-specific guides to getting started with feature flags:

Feature Flags are the Future of Continuous Delivery
While there are many considerations for adding feature flags into a software delivery lifecycle, the benefits of flagging
most, if not all, features are clear. As the methodology and platforms mature, feature flags will become an integrated
part of the software development infrastructure, and there may be a time when every feature is released wrapped in a
flag for maximum safety and velocity.

At the same time, organizations will move from “if” to “how” in regard to better automating and integrating flags into
their strategy. There is a maturity scale that should be considered for getting started with flags — from developing an
internal system to most likely choosing an external platform to manage flags and integrate with the greater SDLC.

If you are just getting started, it will be a journey, no question. But the benefits will be worth the effort.

https://www.cloudbees.com/products/feature-management
https://rollout.io/blog/guide-getting-started-quickly-android-feature-flags/
https://rollout.io/blog/started-quickly-javascript-feature-flags/
https://rollout.io/blog/getting-started-nodejs-feature-flags/
https://app.rollout.io/signup?utm_medium=guide&utm_content=ultimate_feature_flag_guide&utm_campaign=rollout_trial

