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Data science process

from https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

Business 
understanding


Data 
acquisition
 Modeling Deployment Customer 

acceptance

- Define objectives

- Identify data 

sources

- Ingest data

- Explore data

- Update data

- Feature selection

- Create model

- Train model

- Operationalize - Testing and 
validation


- Handoff

- Re-train and re-

score

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview


Data science process

Modeling

Deployment

Customer 
acceptance


Challenges: 
- starting fast

- being flexible

- integrating in 

current 
infrastructure



•Data preprocessing


•DL/ML training


•DL/ML inference

Production pipeline steps



• Challenges


• Getting and transforming data from multiple sources


• Combination of multiple frameworks and libraries


• Scaling based on load


• Combination of heavy processing, long running processing and 
parallel one

Data preprocessing



• Challenges


• High cost of GPU instances


• Checking multiple sets of hyperparameters


• Handling semi-automatic logic

ML/DL training



• Challenges


• Handling multiple frameworks


• Handling model versioning


• Scaling based on load


• Implementing custom logic for choosing the result

ML/DL inference



• Use scalable processing nodes AWS Lambda for short/parallel 
processing


• Use scalable container service AWS Batch for heavy and parallel 
processing and GPU training jobs


• Use Amazon SageMaker for GPU training jobs and distributed training


• Use scalable container service AWS Fargate for long running 
processing


• Use orchestrator AWS Step Functions to organize workflows

Serverless approach
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Container/Function-as-a-Service
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• On-demand cluster/worker to scale with your consumption


• Requires to define just code and launching configuration


• Scaling technique:


• scales based on job queue (AWS Batch)


• starts VM per job (AWS Fargate, Amazon SageMaker)


• starts worker per job (AWS Lambda) 

'Serverless' cluster



'Serverless' cluster comparison
Lambda SageMaker Fargate Batch

Type FaaS
 Pure container(s) as a 
service


Pure container as a service
 Service which starts 
cluster and executes jobs 
on it
Pros Fast startup time  

(~100ms)


Price per 100ms


Very scalable

Most instance types  
available


Build-in dashboard


Spot instances available


Customizable instances


Medium startup time 
(~10-20s)


Spot instances available

Full control VM


Spot instances available


Cons Higher price per CPU/
second


Timeout limit 


Only CPU


Medium startup time 
(~30-1min)


Price per 1s (min 1 min)

Price per 1s (min 1 minute)


Only CPU

Slow startup time    
(~1-4min)


Price per 1s (min 1 minute)

Use 
cases

Short term processes GPU long running 
processes

CPU long running 
processes

CPU/GPU medium running 
multiple tasks processes



• Speed of single inference/training


• Speed of batch inference


• Cost per inference/training


• Scalability

CPU vs GPU for ML



Inference cost - Inception V3
Service Type Inference 

time (s) Cost per hour Cost per 
prediction

Cost of 1M 
predictions

Cost per 
month

Lambda 
predictions

Lambda 3GB RAM

2vCPU 0.338 $0.18 $0.0000179 $17.9

AWS EC2 c5a.large

on demand 0.177 $0.077 $0.000003786 $3.79 $55.44 3.1M

AWS EC2 c5a.large

spot 0.177 $0.032 $0.000001573 $1.57 $23.04 1.29M

AWS EC2 p2.xlarge

on demand 0.057 $0.9 $0.00001425 $14.25 $648.00 36.2M

AWS EC2 p2.xlarge

spot 0.057 $0.27 $0.000004275 $4.28 $194.40 10.86M

AWS EC2 inf1.large

on demand 0.0095 $0.368 $0.000000971 $0.97 $264.96 14.8M

AWS EC2 inf1.large

spot 0.0095 $0.1104 $0.000000291 $0.29 $79.49 4.44M



• C5 Large Instance - 2 vCPU 4GB RAM 
• AWS Lambda 
• 3GB RAM x 0.00001667 x 3600                = 0.18$ per hour 

• AWS Fargate 
• 4GB RAM x 0.0044 + 2 vCPU x 0.0404   = 0.098$ per hour 

• AWS Batch 
• C5 Large On Demand                              = 0.085$ per hour 
• C5 Large Spot                                          = 0.033$ per hour

Price comparison - CPU



• P2 Xlarge Instance - 1 NVIDIA K80 GPU, 4 vCPU 
• Amazon SageMaker 
• P2 Xlarge ML instance                             = 1.26$ per hour 
• P2 Xlarge ML instance Spot                     = 0.37$ per hour 

• AWS Batch 
• P2 Xlarge On Demand                             = 0.90$ per hour 
• P2 Xlarge Reserved                                 = 0.42$ per hour 
• P2 Xlarge Spot                                         = 0.27$ per hour

Price comparison - GPU



Modular approach

GPU

Deep learning application



Modular approach

GPU

Data 
gathering

Data 
preprocessing

Model 
training

Model 
upload



Modular approach

GPU

Data 
gathering

Data 
preprocessing

Model 
training

Model 
upload

Multicore CPU

FaaS

FaaS

FaaS

FaaS
CPU



Platform-as-a-Service
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Rest API Event queue Orchestrator
Synchronous process


Short-term process


Simple intermediate logic


Doesn’t trace the whole 
process


Cheap

Asynchronous process


Long-term process


Simple intermediate logic


Doesn’t trace the whole 
process


Cheap

Asynchronous process


Long-term process


Complex intermediate 
logic


Traces the process


Expensive

Microservice connectors



• Native support for FaaS and CaaS 

• Central monitoring 

• Central logging and tracing 

• On-demand scaling

Cloud native orchestrators



• Graph-based description 
• Processing nodes: FaaS or Clusters 
• Task state and waiting for the node 
• Invocation of processing node 

• Logic for error handling 
• Parallel execution 
• Branching and loops 
• Scheduler

Orchestrators for hybrid architecture



• Challenges


• Getting and transforming data from multiple sources


• Combination of multiple frameworks and libraries


• Scaling based on load


• Combination of heavy processing, long running processing and 
parallel one

Data pipeline



• Modular approach

• Parallel data download and 

parsing

• FaaS for parallel  

processing

• Cluster for heavy 

processing

Heavy CPU processing

Data download

LambdLambdLambdScalable 
processing

Data pipeline



How do you know if this is for you
• You have peak loads and want to scale automatically


• You have custom logic (scheduler, error handling, etc) in business 
logic


• You want to make customizable pipeline with multiple frameworks



Repositories to check
https://github.com/ryfeus/stepfunctions2processing


• Serverless configuration files which allows to deploy:


• AWS Step Functions


• AWS Lambda


• AWS Batch + AWS Fargate

https://github.com/ryfeus/stepfunctions2processing


• Challenges


• High cost of GPU instances


• Checking multiple sets of hyperparameters


• Handling semi-automatic logic

ML/DL training pipeline



• Automatic handling of hyper 
parameters and metrics


• Automatic handling of model and 
input data


• Automatic hyperparameters 
optimization


• Handling error on each branch

• Distributed training

Preprocessor

SageMaker

Mapper

Handler

Amazon SageMaker



• Parallel training on multiple 
sets of hyper parameters 


• Central gathering of the 
results


• Handling error on each 
branch


• Capability for feedback loop

• Test after training

ML 

Preprocessor

ML ML Batch

Mapper

Publisher

AWS Batch

S3

S3

parameters 
data

model



• Integrating production 
cloud environment with 
on-premise 
infrastructure


• Preparing data and 
providing access


• Handle publishing 
completed model

Preprocessor

External infrastructure

S3

S3Handler

Async task External 
GPU

model 
metrics

parameters 
data



Repositories to check
https://github.com/ryfeus/stepfunctions2processing


• Serverless configuration files which allows to deploy:


• AWS Step Functions


• AWS Lambda


• AWS Batch, Amazon SageMaker

https://github.com/ryfeus/stepfunctions2processing


• Challenges


• Handling multiple frameworks


• Handling model versioning


• Scaling based on load


• Implementing custom logic for choosing the result

ML/DL inference pipeline



Route 53 ECR EC2

ASG

SpotECSALB

Usual AWS architecture for inference



Route 53 API Gateway

Lambda

Architecture using Lambda



SQS

Lambda

Architecture using Lambda



SQS

Lambda

Step function

Architecture using Lambda



• A/B testing to test performance 
of multiple models - either in 
parallel or separately


• Scalable inference which 
allows to run batches in parallel


• Allows modular approach 
(multiple frameworks)

Post processor

Preprocessor/feature extractor

Gather 
data

Inference A Inference B

ML/DL inference pipeline



Import from S3:


•Keras - h5 files


•TensorFlow - pb/ckpt files


•PyTorch - path files


Models in package:


•TensorFlow - TFlite export


•PyTorch - ONNX export

How to import models



Inference cost - Inception V3
Framework RAM Cold 

invocation
Warm 

invocation
Cold inv 
per 1$

Warm inv 
per 1$

Tensorflow 3 GB 2.9s 0.6s 6.8K 32K

Tensorflow 1.5 GB 3.6s 1.1s 10.1K 35K

TFLite 3 GB 8.5s 0.4s 2.3K 47K

TFLite 1.5 GB 8.8s 0.7s 4.5K 54K



Lifehacks for serverless inference
• Store model in memory for warm invocations


• Use AWS EFS for storing the model


• Store part of the model with the libraries


• Download model in parallel from storage


• Separate layers on multiple lambdas and chain them


• Batch the workload


• Balance RAM/Timeout to optimize your costs



How do you know if this is for you
• You want to deploy your model for pet project


• You want to make s simple MVP for your startup/project


• You have simple model and this architecture will reduce cost


• You have peak loads and it is hard to manage clusters



How do you know if this is NOT for you
• You want to have real time response


• Your model requires a lot of data


• Your model requires a lot of processing power


• You want to handle large number of requests (>10M per month)



Repositories to check
https://github.com/ryfeus/lambda-packs    https://github.com/ryfeus/gcf-packs


• Packages for AWS Lambda and Google Cloud Functions including:


• Tensorflow (including 2.0), PyTorch - Deep Learning


• Scikit Learn, LightGBM, H2O - Machine Learning


• Scikit Image, Scipy, OpenCV, Tesseract - Image processing


• Spacy - Natural Language Processing

https://github.com/ryfeus/lambda-packs
https://github.com/ryfeus/gcf-packs


• Cloud native orchestrators are convenient for constructing 
scalable end-to-end deep learning pipelines


• There are multiple services at your disposal for constructing deep 
learning workflow and it depends on your context


• You can deploy this kind of workflows pretty easily even for 
research projects

Summary



Thank you!
Packages for AWS Lambda and Google Cloud Functions


https://github.com/ryfeus/lambda-packs 


https://github.com/ryfeus/gcf-packs


Infrastructure configuration files for AWS Step Functions, AWS Batch, 
AWS Fargate, Amazon Sagemaker


https://github.com/ryfeus/stepfunctions2processing


Link to my website: https://ryfeus.io

https://github.com/ryfeus/lambda-packs
https://github.com/ryfeus/gcf-packs
https://github.com/ryfeus/stepfunctions2processing
https://ryfeus.io

