
Building Scalable End-to-End Deep

Learning Pipeline in the Cloud

Rustem Feyzkhanov

Machine Learning Engineer @ Instrumental

AWS Machine Learning Hero 

Data science process

from https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

Business
understanding

Data
acquisition
 Modeling Deployment Customer

acceptance

- Define objectives

- Identify data

sources

- Ingest data

- Explore data

- Update data

- Feature selection

- Create model

- Train model

- Operationalize - Testing and
validation

- Handoff

- Re-train and re-

score

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

Data science process

Modeling

Deployment

Customer
acceptance

Challenges:
- starting fast

- being flexible

- integrating in

current
infrastructure

•Data preprocessing

•DL/ML training

•DL/ML inference

Production pipeline steps

• Challenges

• Getting and transforming data from multiple sources

• Combination of multiple frameworks and libraries

• Scaling based on load

• Combination of heavy processing, long running processing and
parallel one

Data preprocessing

• Challenges

• High cost of GPU instances

• Checking multiple sets of hyperparameters

• Handling semi-automatic logic

ML/DL training

• Challenges

• Handling multiple frameworks

• Handling model versioning

• Scaling based on load

• Implementing custom logic for choosing the result

ML/DL inference

• Use scalable processing nodes AWS Lambda for short/parallel
processing

• Use scalable container service AWS Batch for heavy and parallel
processing and GPU training jobs

• Use Amazon SageMaker for GPU training jobs and distributed training

• Use scalable container service AWS Fargate for long running
processing

• Use orchestrator AWS Step Functions to organize workflows

Serverless approach

What is serverless
On premise Iaas CaaS PaaS FaaS SaaS

Functions Functions Functions Functions Functions Functions
Application Application Application Application Application Application

Runtime Runtime Runtime Runtime Runtime Runtime
Container Container Container Container Container Container

Operating system Operating system Operating system Operating system Operating system Operating system
Vizualization Vizualization Vizualization Vizualization Vizualization Vizualization
Networking Networking Networking Networking Networking Networking

Storage Storage Storage Storage Storage Storage
Hardware Hardware Hardware Hardware Hardware Hardware

What is serverless
On premise Iaas CaaS PaaS FaaS SaaS

Functions Functions Functions Functions Functions Functions
Application Application Application Application Application Application

Runtime Runtime Runtime Runtime Runtime Runtime
Container Container Container Container Container Container

Operating system Operating system Operating system Operating system Operating system Operating system
Vizualization Vizualization Vizualization Vizualization Vizualization Vizualization
Networking Networking Networking Networking Networking Networking

Storage Storage Storage Storage Storage Storage
Hardware Hardware Hardware Hardware Hardware Hardware

Container/Function-as-a-Service
On premise Iaas CaaS PaaS FaaS SaaS

Functions Functions Functions Functions Functions Functions
Application Application Application Application Application Application

Runtime Runtime Runtime Runtime Runtime Runtime
Container Container Container Container Container Container

Operating system Operating system Operating system Operating system Operating system Operating system
Vizualization Vizualization Vizualization Vizualization Vizualization Vizualization
Networking Networking Networking Networking Networking Networking

Storage Storage Storage Storage Storage Storage
Hardware Hardware Hardware Hardware Hardware Hardware

• On-demand cluster/worker to scale with your consumption

• Requires to define just code and launching configuration

• Scaling technique:

• scales based on job queue (AWS Batch)

• starts VM per job (AWS Fargate, Amazon SageMaker)

• starts worker per job (AWS Lambda)

'Serverless' cluster

'Serverless' cluster comparison
Lambda SageMaker Fargate Batch

Type FaaS
 Pure container(s) as a
service

Pure container as a service
 Service which starts
cluster and executes jobs
on it
Pros Fast startup time

(~100ms)

Price per 100ms

Very scalable

Most instance types
available

Build-in dashboard

Spot instances available

Customizable instances

Medium startup time
(~10-20s)

Spot instances available

Full control VM

Spot instances available

Cons Higher price per CPU/
second

Timeout limit

Only CPU

Medium startup time
(~30-1min)

Price per 1s (min 1 min)

Price per 1s (min 1 minute)

Only CPU

Slow startup time
(~1-4min)

Price per 1s (min 1 minute)

Use
cases

Short term processes GPU long running
processes

CPU long running
processes

CPU/GPU medium running
multiple tasks processes

• Speed of single inference/training

• Speed of batch inference

• Cost per inference/training

• Scalability

CPU vs GPU for ML

Inference cost - Inception V3
Service Type Inference

time (s) Cost per hour Cost per
prediction

Cost of 1M
predictions

Cost per
month

Lambda
predictions

Lambda 3GB RAM

2vCPU 0.338 $0.18 $0.0000179 $17.9

AWS EC2 c5a.large

on demand 0.177 $0.077 $0.000003786 $3.79 $55.44 3.1M

AWS EC2 c5a.large

spot 0.177 $0.032 $0.000001573 $1.57 $23.04 1.29M

AWS EC2 p2.xlarge

on demand 0.057 $0.9 $0.00001425 $14.25 $648.00 36.2M

AWS EC2 p2.xlarge

spot 0.057 $0.27 $0.000004275 $4.28 $194.40 10.86M

AWS EC2 inf1.large

on demand 0.0095 $0.368 $0.000000971 $0.97 $264.96 14.8M

AWS EC2 inf1.large

spot 0.0095 $0.1104 $0.000000291 $0.29 $79.49 4.44M

• C5 Large Instance - 2 vCPU 4GB RAM
• AWS Lambda
• 3GB RAM x 0.00001667 x 3600 = 0.18$ per hour

• AWS Fargate
• 4GB RAM x 0.0044 + 2 vCPU x 0.0404 = 0.098$ per hour

• AWS Batch
• C5 Large On Demand = 0.085$ per hour
• C5 Large Spot = 0.033$ per hour

Price comparison - CPU

• P2 Xlarge Instance - 1 NVIDIA K80 GPU, 4 vCPU
• Amazon SageMaker
• P2 Xlarge ML instance = 1.26$ per hour
• P2 Xlarge ML instance Spot = 0.37$ per hour

• AWS Batch
• P2 Xlarge On Demand = 0.90$ per hour
• P2 Xlarge Reserved = 0.42$ per hour
• P2 Xlarge Spot = 0.27$ per hour

Price comparison - GPU

Modular approach

GPU

Deep learning application

Modular approach

GPU

Data
gathering

Data
preprocessing

Model
training

Model
upload

Modular approach

GPU

Data
gathering

Data
preprocessing

Model
training

Model
upload

Multicore CPU

FaaS

FaaS

FaaS

FaaS
CPU

Platform-as-a-Service
On premise Iaas CaaS PaaS FaaS SaaS

Functions Functions Functions Functions Functions Functions
Application Application Application Application Application Application

Runtime Runtime Runtime Runtime Runtime Runtime
Container Container Container Container Container Container

Operating system Operating system Operating system Operating system Operating system Operating system
Vizualization Vizualization Vizualization Vizualization Vizualization Vizualization
Networking Networking Networking Networking Networking Networking

Storage Storage Storage Storage Storage Storage
Hardware Hardware Hardware Hardware Hardware Hardware

Rest API Event queue Orchestrator
Synchronous process

Short-term process

Simple intermediate logic

Doesn’t trace the whole
process

Cheap

Asynchronous process

Long-term process

Simple intermediate logic

Doesn’t trace the whole
process

Cheap

Asynchronous process

Long-term process

Complex intermediate
logic

Traces the process

Expensive

Microservice connectors

• Native support for FaaS and CaaS

• Central monitoring

• Central logging and tracing

• On-demand scaling

Cloud native orchestrators

• Graph-based description
• Processing nodes: FaaS or Clusters
• Task state and waiting for the node
• Invocation of processing node

• Logic for error handling
• Parallel execution
• Branching and loops
• Scheduler

Orchestrators for hybrid architecture

• Challenges

• Getting and transforming data from multiple sources

• Combination of multiple frameworks and libraries

• Scaling based on load

• Combination of heavy processing, long running processing and
parallel one

Data pipeline

• Modular approach

• Parallel data download and

parsing

• FaaS for parallel

processing

• Cluster for heavy

processing

Heavy CPU processing

Data download

LambdLambdLambdScalable
processing

Data pipeline

How do you know if this is for you
• You have peak loads and want to scale automatically

• You have custom logic (scheduler, error handling, etc) in business
logic

• You want to make customizable pipeline with multiple frameworks

Repositories to check
https://github.com/ryfeus/stepfunctions2processing

• Serverless configuration files which allows to deploy:

• AWS Step Functions

• AWS Lambda

• AWS Batch + AWS Fargate

https://github.com/ryfeus/stepfunctions2processing

• Challenges

• High cost of GPU instances

• Checking multiple sets of hyperparameters

• Handling semi-automatic logic

ML/DL training pipeline

• Automatic handling of hyper
parameters and metrics

• Automatic handling of model and
input data

• Automatic hyperparameters
optimization

• Handling error on each branch

• Distributed training

Preprocessor

SageMaker

Mapper

Handler

Amazon SageMaker

• Parallel training on multiple
sets of hyper parameters

• Central gathering of the
results

• Handling error on each
branch

• Capability for feedback loop

• Test after training

ML

Preprocessor

ML ML Batch

Mapper

Publisher

AWS Batch

S3

S3

parameters
data

model

• Integrating production
cloud environment with
on-premise
infrastructure

• Preparing data and
providing access

• Handle publishing
completed model

Preprocessor

External infrastructure

S3

S3Handler

Async task External
GPU

model
metrics

parameters
data

Repositories to check
https://github.com/ryfeus/stepfunctions2processing

• Serverless configuration files which allows to deploy:

• AWS Step Functions

• AWS Lambda

• AWS Batch, Amazon SageMaker

https://github.com/ryfeus/stepfunctions2processing

• Challenges

• Handling multiple frameworks

• Handling model versioning

• Scaling based on load

• Implementing custom logic for choosing the result

ML/DL inference pipeline

Route 53 ECR EC2

ASG

SpotECSALB

Usual AWS architecture for inference

Route 53 API Gateway

Lambda

Architecture using Lambda

SQS

Lambda

Architecture using Lambda

SQS

Lambda

Step function

Architecture using Lambda

• A/B testing to test performance
of multiple models - either in
parallel or separately

• Scalable inference which
allows to run batches in parallel

• Allows modular approach
(multiple frameworks)

Post processor

Preprocessor/feature extractor

Gather
data

Inference A Inference B

ML/DL inference pipeline

Import from S3:

•Keras - h5 files

•TensorFlow - pb/ckpt files

•PyTorch - path files

Models in package:

•TensorFlow - TFlite export

•PyTorch - ONNX export

How to import models

Inference cost - Inception V3
Framework RAM Cold

invocation
Warm

invocation
Cold inv
per 1$

Warm inv
per 1$

Tensorflow 3 GB 2.9s 0.6s 6.8K 32K

Tensorflow 1.5 GB 3.6s 1.1s 10.1K 35K

TFLite 3 GB 8.5s 0.4s 2.3K 47K

TFLite 1.5 GB 8.8s 0.7s 4.5K 54K

Lifehacks for serverless inference
• Store model in memory for warm invocations

• Use AWS EFS for storing the model

• Store part of the model with the libraries

• Download model in parallel from storage

• Separate layers on multiple lambdas and chain them

• Batch the workload

• Balance RAM/Timeout to optimize your costs

How do you know if this is for you
• You want to deploy your model for pet project

• You want to make s simple MVP for your startup/project

• You have simple model and this architecture will reduce cost

• You have peak loads and it is hard to manage clusters

How do you know if this is NOT for you
• You want to have real time response

• Your model requires a lot of data

• Your model requires a lot of processing power

• You want to handle large number of requests (>10M per month)

Repositories to check
https://github.com/ryfeus/lambda-packs https://github.com/ryfeus/gcf-packs

• Packages for AWS Lambda and Google Cloud Functions including:

• Tensorflow (including 2.0), PyTorch - Deep Learning

• Scikit Learn, LightGBM, H2O - Machine Learning

• Scikit Image, Scipy, OpenCV, Tesseract - Image processing

• Spacy - Natural Language Processing

https://github.com/ryfeus/lambda-packs
https://github.com/ryfeus/gcf-packs

• Cloud native orchestrators are convenient for constructing
scalable end-to-end deep learning pipelines

• There are multiple services at your disposal for constructing deep
learning workflow and it depends on your context

• You can deploy this kind of workflows pretty easily even for
research projects

Summary

Thank you!
Packages for AWS Lambda and Google Cloud Functions

https://github.com/ryfeus/lambda-packs

https://github.com/ryfeus/gcf-packs

Infrastructure configuration files for AWS Step Functions, AWS Batch,
AWS Fargate, Amazon Sagemaker

https://github.com/ryfeus/stepfunctions2processing

Link to my website: https://ryfeus.io

https://github.com/ryfeus/lambda-packs
https://github.com/ryfeus/gcf-packs
https://github.com/ryfeus/stepfunctions2processing
https://ryfeus.io

