
New Operational Approaches
I’m a software engineer, but I was hired to bridge the gap between our 
engineering teams and our application support staff. It was an experimental 
position. The idea was that I would sit down with feature engineers, learn about 
the intricacies of their applications and efforts and relay this information to 
application support so they could get ahead in shaping out the support they’d 
need to provide for new features being delivered to our customers.

The experiment went well, and its initial success led to the creation of a site 
reliability engineering (SRE) team, which I became a part of. The core objectives 
of the SRE team were to make sure our microservices were ready for production 
by adhering to readiness standards that were developed by the team. This 
helped us make sure that what we delivered to production was monitored for 
performance and anomalous behavior(s). This made application insights easily 
accessible, which in turn gave us the ability to get ahead of production support 
issues. We also helped provide tools that reduced the toil of repeat production 
support efforts. All of this has 
continued to coalesce into less 
time spent in production support 
and more time in developing and 
delivering valuable features to our 
customers.

At about this time, we started 
talking about overhauling our 
entire CI/CD process. I had 
worked with our existing 
CI/CD platform in the past, 
so I volunteered for the job 

Balancing Our CI/CD Approach to Move
Our Digital Transformation Forward

CASE STUDY

Contributed by Senior Software Engineer, Leading Provider of SaaS-based M&A 
Technology

I work for a leading Software as a Service (SaaS) provider for the mergers and 
acquisitions (M&A) industry, and we specialize in M&A technology. The M&A 
field is wrought with processes that have to be fulfilled to the finest detail in 
order to make sure deals are complete. Our company has modernized these 
processes by providing a SaaS platform that helps companies manage the end-
to-end due diligence process. This allows our customers to share and verify 
documents on the cloud to expedite the deal lifecycle and improve the quality 
of life for everyone involved in getting the deal done.

Industry
Finance

Geography
North America

Product
CloudBees CI

“Thanks to CloudBees CI, we have a 
stable, maintainable and reliable CI/
CD pipeline. Our deployments are 
faster and smoother and our feature 
engineering teams are all on the same 
page. Our developers enjoy a better 
quality of life and are free to define 
new processes.”

Senior Software Engineer
Leading Provider of SaaS-based
M&A Technology

“We could not have 
accomplished this with the 

open source version of Jenkins 
alone. CloudBees CI has given 

us the way forward.”

– Senior Software Engineer

https://www.cloudbees.com/


without any hesitation. It turned out to be bigger in scope and 
much more involved than I imagined. 

Balancing Scalability, and 
Maintainability
Our CI/CD process really needed an overhaul at that point. 
Initially, our feature engineering teams were doing all their builds 
on a single Jenkins server, but that wasn’t scalable, and it was 
quite fragile. The server was never up to date and dependencies 
were clashing because all the different plugins and build tools 
amassed on the build server over time.

To solve our scalability problem, we decided to give each team a 
separate Jenkins server based on the same base virtual machine 
(VM) image. We automated the process and spun up VMs that 
allowed them to isolate their operations. This introduced a 
maintainability problem where the servers we distributed started 
to drift apart. Everyone started adding plugins and using different 
tools and we couldn’t keep track of the changes they made to 
their CI/CD platforms. We now had a distributed maintainability 
problem on our hands. A single server wasn’t scalable, multiple 
servers weren’t maintainable and our plugin use was inconsistent. 
We needed a better balance.

Striking this balance between scalability and maintainability 
was key in driving our CI/CD into the modern DevOps world. 
We agreed on CloudBees CI as the tool that could fulfill this 
balance. CloudBees is the premier sponsor of the Jenkins project 
and they provided a service that allowed us to give every team 
their own server, on top of a centralized management plan. With 
CloudBees CI, we are now scalable and maintainable. Once 
the tool was in place, it was a matter of deciding on common 
processes and freedoms to give the teams to optimize our CI/CD 
approach. This would involve a mass migration from the existing 
approach, which had its own unique series of challenges.

Reshaping Our CI/CD Approach
We started by creating a common CI/CD framework that we 
could distribute to all of our engineering teams, along with 
a team server. We shaped this framework by defining the 
common steps of our software development lifecycle (SDLC) 
and identifying all the nuances of the technology stacks we were 
using, including Spring Boot, Node.js and React. Once completed, 
we distributed a copy of the CI/CD framework to every feature 
team. With this framework in the teams’ hands, they could then 
build on it to customize their CI and CD.

We got pushback immediately. Either the teams didn’t like how 
we chose to implement something or they had no interest in 
owning a copy of the framework and developing on it. But the 
biggest complication was our own continuous integration of 

this CI/CD framework. Now every time we had a new process 
in place, we’d have to work with every team to update their 
frameworks in order to make sure they got the latest changes. 
Fortunately, we realized this early on and it wasn’t too late to 
rethink our approach.

We decided instead of a CI/CD framework to bootstrap the 
teams, we’d go with a CI/CD common library that would act as 
an internal open source project and would be overseen by the 
DevOps team. This way we could implement and standardize 
new elements of our SDLC, feed our ongoing efforts of enforcing 
production readiness, while also giving the developers the ability 
to contribute other new features that other teams could benefit 
from. This was a much more welcomed approach. I was now 
convinced that we were on the right track, but we had a lot more 
work to do.

Providing CI/CD and DevOps 
as a Service
By the time I came on board, our company had already
purchased CloudBees CI as our CI/CD platform. We were
able to use CloudBees CI as a management layer that allowed
us to enforce standards and practices as needed while giving
teams the freedom to move around within their individual
environments.

With CloudBees CI, we had the capability to implement a CI/CD 
approach that was scalable, maintainable and flexible. It provided 
the tools we needed to enforce standards and practices – and 
roll out a core set of plugins – while giving the developers the 
correct level of freedoms they need to be successful.

“We were able to use CloudBees 
CI as a management layer that 
allowed us to enforce standards 
and practices as needed while 

giving teams the freedom to move 
around within their individual 

environments.”

– Senior Software Engineer

https://www.cloudbees.com/products/continuous-integration


With CloudBees CI, we had the flexibility we needed to rethink 
our approach and pivot to a workflow that better reflected the 
needs of our developers.

Right now, we have 20 Jenkins team controllers all running in an 
Azure Kubernetes cluster. We always have the right, up-to-date 
plugins installed and our dependencies and security patches are 
always up to date. Everyone is on the same page, but at the same 
time, there’s enough flexibility baked into our CI/CD approach to 
allow teams to innovate.

Our deploy times have roughly been cut in half, and our ability to 
deploy hotfixes and recover from incidents has gone down from 
a factor of (sometimes) hours to minutes.

We have created a core DevOps management team that acts 
as the fabric of our CI/CD platform, but any developer in the 
company can contribute to its improvement. CloudBees CI is 
the hub, and our coders are the spokes on a wheel moving us 
forward.

I now manage and lead DevOps and CI/CD. One of my 
responsibilities is affecting a shift in our mindset about DevOps. 
Instead of solely focusing on maintaining technology, we 
established our new mandate as being an internal service that 
treats our feature teams as customers. It is an approach that 
echoes my work as a member of the application support team, 
but now, the feature engineers sit down with me and not the 
other way around.

CloudBees CI runs on top of Kubernetes, which keeps our 
platform available and scales when needed. It allows us to spin 
up resources quickly in a repeatable fashion and maintains 
a desired state. It takes care of itself and manages our 
maintainability problems. This means that we can focus on larger 
projects and innovation and not have to focus on keeping our CI/
CD platform fed and cared for.

Now, we have been able to turn our attention to real business 
problems that we solve using a DevOps approach rather than 
being the gatekeepers and the maintainers of legacy platforms. 
We want to continue to improve the lives of developers and 
make engineering the best it can be.

The Perfect Balance
Thanks to CloudBees CI, we have a stable, maintainable and 
reliable CI/CD pipeline. Our deployments are faster and 
smoother and our feature engineering teams are all on the same 
page. Our developers enjoy a better quality of life and are free to 
define new processes.

Ultimately, the developers care that the features they’re 
developing are getting into production smoothly and reliably. 
Our CI/CD is the lifeblood making that happen. Our new CI/CD 
codebase is not only robust, but easily extensible. If we find a 
tool that isn’t part of our existing environment, we can fold it into 
our CI/CD workflow with minimal fuss. 

When it comes to DevOps, it’s all about improving the quality 
of life for developers through operations that are automated, 
well maintained and well understood. Our feature teams have 
the flexibility and the autonomy they need to develop world-
class features for our customers, all while being aligned with 
standardization that ensures these features are delivered reliably 
and production-ready. We could not have accomplished this with 
the open source version of Jenkins alone. CloudBees CI has given 
us the way forward.

“Our deploy times have roughly 
been cut in half, and our ability 
to deploy hotfixes and recover 
from incidents has gone down 
from a factor of (sometimes) 

hours to minutes.”

– Senior Software Engineer

CloudBees CI is built on top of Jenkins, an independent community project. Read more about Jenkins at: www.cloudbees.com/jenkins/about 

© 2022 CloudBees, Inc., CloudBees® and the Infinity logo® are registered trademarks of CloudBees, Inc. in the United States and may be 
registered in other countries. Other products or brand names may be trademarks or registered trademarks of CloudBees, Inc. or their 
respective holders.

0122v00

CloudBees, Inc. 
4 North Second Street | Suite 1270

San Jose, CA 95113
United States 

www.cloudbees.com 
info@cloudbees.com 

https://www.cloudbees.com/
https://www.cloudbees.com/jenkins/what-is-jenkins



