
Using Open Source Safely

Verifiable Builds in Tekton

Dan Lorenc

Software Engineer - Google

© 2020 All Rights Reserved. 2

• Risks of using open source software
– What you can do to protect yourself today

• Verifiable Builds
– Tekton Demo

• How to get involved

Using Open Source Safely - Intro

The Problem With Open Source
Software

Part 1

© 2020 All Rights Reserved. 4

Quiz Time!

Would you plug these in?

© 2020 All Rights Reserved. 5

Quiz Time!

© 2020 All Rights Reserved. 6

Quiz Time: What did we learn?

Quiz: What's the difference between these?

Demo: Supply Chain Attacks!

© 2020 All Rights Reserved. 8

• Code review only shows dependency metadata
– code is not vendored by default

• Module proxy stores code
– Attacks can be published and deleted from git history, making them harder to find

• Number of dependencies is growing rapidly
– Hard to take the time to review each line

Go Modules!

© 2020 All Rights Reserved. 9

Kubernetes Dependency Graph

© 2020 All Rights Reserved. 10

• Lock down your own repos.
– Enable and require 2FA.

– Disable force pushes.

– Require code review.

• Reduce your dependencies.
– Every dependency is an attack point. Evaluate if you really need them all.

• Audit your dependencies.
– Track updates, but review them like first-party code!

• Observability in your CI/CD pipeline.
– Make sure your CI/CD system logs **everything ** it does.

Protect Yourself!

Verifiable Builds
Part 2

© 2020 All Rights Reserved. 12

A Verifiable Build is a build that creates a
provenance that can be verified

Verifiable Builds - Definitions

© 2020 All Rights Reserved. 13

Provenance: the set of
steps used to produce the
artifact

Verifiable Builds - Provenance

© 2020 All Rights Reserved. 14

• Several different techniques:
– Cryptographic build signing
– Reproducible builds

• Reproducible builds require bit-for-bit reproducibility and determinism
• Cryptographically-signed envelope containing:

– Inputs (source code, tools, etc.)

– Outputs (binary artifacts produced)

– Steps (what ran with what parameters)

Verification

Demo: Unverified Builds

Demo: Verifiable Builds

© 2020 All Rights Reserved. 17

• In-Toto and other provenance formats!
• Different signature strategies (KMS integrations, minisign, etc.)
• Sharing of metadata!

– Transparency logs, graph databases, Notary v2, etc.

What's Next?

Call to Action!
Part 3

© 2020 All Rights Reserved. 19

Secure the Software Ecosystem Together!

• Verified builds make it possible to verify how artifacts have been produced
• We can formalize this system, to scale it to the rising number of open source

dependencies in use
• Use and demand verifiable builds for your software!

– Pick dependencies that build responsibly and verifiably
• As more OSS uses this, we can build a secure dependency graph together

– Common formats, metadata locations, provenance verification
• Hop on board in the CDF, in Tekton Chains or in the new OSSF!

© 2020 All Rights Reserved. 20

Thanks!

• dlorenc@google.com
• twitter.com/lorenc_dan
• github.com/tektoncd/chains
•

mailto:dlorenc@google.com

© 2020 All Rights Reserved. 21

We did code review... But forgot for open
source...

