
Jenkins Pipeline with
Plugins: Real-World Use
Cases for Jenkins Pipeline

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 22

Whitepaper

Contents

3	 Introduction
3	 Overview
3	 Audience
4	 Important Note About Style and

Code Samples
4	 Jenkins Setup

4 	 Publishing HTML Reports
4	 Introduction
5	 Setup
6	 Snippet Generator
7	 Publishing HTML
8	 Conclusion
8	 Links

8	 Notifications
8	 Introduction
9	 Setup and Configuration
10	 Original Pipeline
11	 Job Started Notification
13	 Job Successful Notification
14	 Job Failed Notification
15	 Code Cleanup
17	 Conclusion
17	 Links

18	 Continuous Delivery
18	 Introduction
19	 Preparing the App
19	 Preparing Jenkins
20	 Writing the Pipeline
21	 Running the Tests
23	 Security Scanning
24	 Deploying
24	 Conclusion

25	� Sauce OnDemand for
UI Testing

25	 Introduction
25	 Starting from Framework
27	 Adding Platforms
31	 Conclusion
32	 Epilogue: Jenkins Pipeline

vs. Freestyle
35	 Links

36	� Using xUnit to
Publish Results

36	 Introduction
37	 Initial Setup
38	 Switching from JUnit to xUnit
41	 Accept a Baseline
44	 Allow for Flakiness
47	 Conclusion
47	 Links

48	 Summary

Whitepaper

3Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3

Jenkins is one of the preeminent automation tools. Jenkins is
extensible by design, using plugins. Plugins are what give Jenkins
its great flexibility for automating a wide range of processes on
diverse platforms. Jenkins Pipeline builds on that flexibility and rich
plugin ecosystem while enabling Jenkins users to write their Jenkins
automation as code. This technical guide will show a number of
common use cases for plugins with Jenkins Pipeline.

Overview
These use cases include:

 » ��Publishing HTML reports
 » ��Sending notifications
 » ��Continuous delivery using Docker
 » ��Running UI tests in Sauce OnDemand
 » ��Test result interpretation and reporting

Audience
This paper assumes familiarity with the following areas:

 » ��Installing and configuring Jenkins plugins
 » �Configuring Jenkins jobs via the UI
 » ��Jenkins Pipeline basics
 » �Groovy language as it applies to Jenkins Pipeline
 » �Usage of Git

Introduction

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 44

Important Note About Style and Code Samples
All sections are presented in a tutorial style, but are not strictly tutorials.

All the code shown in this guide is real code, mostly Jenkins Pipeline (Groovy) code, but there are also a few uses of
JavaScript and Ruby. The code shown was run and it produced the output shown. Effort has been made to clearly show
the progressive changes and their results, but your result may look different even if you run the same code. The code
shown may not work in your Jenkins instance without modification.

In particular, copying the Jenkins Pipeline code shown directly into a Jenkins Pipeline job via the Jenkins UI will not
work. The pipelines shown expect to be run from a Jenkinsfile in the software configuration management (SCM) of the
project shown.

Given all that, the projects and code shown are all publicly available. You should feel free to fork a copy and play with
them. The Jenkins setup instructions below and at the beginning of each section should provide enough information for
you to follow along through each section on your own.

Jenkins Setup
These examples have been verified to work on a specific version of Jenkins and specific versions of various plugins. They
should generally continue to work on later versions of Jenkins and the same plugins.

Each section will list the plugins required and their minimum version.

Publishing HTML Reports
Most projects need more than just JUnit result reporting. Rather than writing a custom plugin for each type of
report, we can use the HTML Publisher plugin.

Introduction
For this first example, we will use a Ruby project called “hermann.” We will perform a build of this project using Jenkins
Pipeline. We will also have the code coverage results published with each build job. We could write a plugin to publish
this data, but the build already creates an HTML report file using SimpleCov when the unit tests run. We’ll use the HTML
Publisher plugin to add the HTML-formatted code coverage report to each build.

Component Description

Jenkins 2.19.4 (LTS)

Jenkins Pipeline plugin 2.4

Pipeline Groovy plugin 2.23

https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://github.com/reiseburo/hermann
https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin

Whitepaper

5Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 5

Required plugins

 » �HTML Publisher plugin (v1.11 or greater)

Setup
Here’s a simple pipeline for building the hermann project before we add the report publishing. Simple enough — it builds,
runs tests and archives the package:

 stage (‘Build’) {

 node {

 // Checkout

 checkout scm

 // install required bundles

 sh ‘bundle install’

 // build and run tests with coverage

 sh ‘bundle exec rake build spec’

 // Archive the built artifacts

 archive (includes: ‘pkg/*.gem’)

 }

 }

https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://github.com/reiseburo/hermann

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 66

Now we will add the step to publish the code coverage report. Running rake spec for this project creates an
index.html file in the coverage directory. The HTML Publisher Plugin is already installed, but how do we add the
HTML publishing step to the pipeline? The plugin page doesn’t say anything about it.

Snippet Generator
Documentation is hard to maintain and easy to miss, even more so in a system like Jenkins with hundreds of plugins that
each potentially have one or more Groovy fixtures to add to the pipeline. The Jenkins Pipeline Snippet Generator helps
users navigate this jungle by providing a way to generate a code snippet for any step using provided inputs.

The Snippet Generator offers a dynamically generated list of steps, based on the installed plugins. From that list we
select the publishHTML step. Then it shows a UI similar to the one used in job configuration. We can fill in the fields,
click “generate” and it will show us a snippet of Groovy generated from that input.

https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://jenkins.io/blog/2016/05/31/pipeline-snippetizer/

Whitepaper

7Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 7

Publishing HTML
We can use that snippet directly or as a basis for further customization. In this case, we’ll just reformat and copy it in at

the end of the pipeline.

 stage (‘Build’) {

 node {

 /* ...unchanged... */

 // Archive the built artifacts

 archive (includes: ‘pkg/*.gem’)

 // publish html

 publishHTML ([

 allowMissing: false,

 alwaysLinkToLastBuild: false,

 keepAll: true,

 reportDir: ‘coverage’,

 reportFiles: ‘index.html’,

 reportName: “RCov Report”

])

 }

​ }

Note, we have set keepAll to true so we can go back and look at reports on old jobs as new ones come in. When
we run this new pipeline, we are rewarded with an RCov Report link on the left side, which we can follow to show
the HTML code coverage report.

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 88

Conclusion
It took a little while to construct it, but that one command is all it takes to publish HTML reports as part of our
jobs. Admittedly, manually loading HTML is not as slick as what could be done with a custom plugin, but it is also
much easier and works with any static HTML.

Links
 » �HTML Publisher plugin

 » �Jenkins Pipeline Snippet Generator

Notifications
Rather than sitting and watching Jenkins for job status, most users would prefer Jenkins to send notifications
when events occur. There are Jenkins plugins for sending notifications via Slack, HipChat or even email, among
others.

Introduction
Getting notified when events occur is preferable to having to constantly monitor job status just in case something
occurs. We will continue from where we left off in the previous section with the hermann project. We added a
Jenkins Pipeline with an HTML publisher for code coverage. In this section we’ll make Jenkins notify us when
builds start and when they succeed or fail.

https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://jenkins.io/blog/2016/05/31/pipeline-snippetizer/
https://wiki.jenkins-ci.org/display/JENKINS/Slack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HipChat+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin

Whitepaper

9Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 9

Required plugins

 » �Slack plugin (v2.0.1 or greater)
 » ��HipChat plugin (v1.0.0 or greater)
 » ��Email-ext plugin (v2.47 or greater)

Setup and Configuration
For the rest of this section, we will use sample targets that we created specifically for this purpose. To make
this work on your system, you’d need to setup these notifications similar to what we did but using values that
match your own instances of these notifications. For example, we created Slack and HipChat organizations called
“bitwiseman,” each with one member for testing. For email notifications, we ran a Ruby SMTP server called
mailcatcher that is perfect for local testing such as this. You’d need to have your own instances of these three
types of notification channels.

We also installed the Slack, HipChat and Email-ext plugins and added server-wide configuration for each. Slack
and HipChat use API tokens - both products have integration points on their side that generate tokens, which we
copied into our Jenkins configuration. Mailcatcher SMTP runs locally, so we just pointed Jenkins at it.

Your configuration values will differ from ours, but here’s what our Jenkins configuration section for each of these
channels looked like:

Original Pipeline
Now we can start adding notification steps to our pipeline. The same as in the previous section, we’ll use the

https://wiki.jenkins-ci.org/display/JENKINS/Slack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HipChat+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin
https://mailcatcher.me/
https://wiki.jenkins-ci.org/display/JENKINS/Slack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HipChat+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1010

Jenkins Pipeline Snippet Generator to explore the step syntax for the notification plugins. Here’s the base
pipeline code before we start making changes:

 stage (‘Build’) {

 node {

 // Checkout

 checkout scm

 // install required bundles

 sh ‘bundle install’

 // build and run tests with coverage

 sh ‘bundle exec rake build spec’

 // Archive the built artifacts

 archive (includes: ‘pkg/*.gem’)

https://jenkins.io/blog/2016/05/31/pipeline-snippetizer/

Whitepaper

11Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 11

 // publish html

 publishHTML ([

 allowMissing: false,

 alwaysLinkToLastBuild: false,

 keepAll: true,

 reportDir: ‘coverage’,

 reportFiles: ‘index.html’,

 reportName: “RCov Report”

])

 }

 }

Job Started Notification
For the first change, we will add a “Job Started” notification. Using the Snippet Generator and then reformatting
make this straightforward:

 node {

 notifyStarted()

 /* ... existing build steps ... */

 }

 def notifyStarted() {

 // send to Slack

 slackSend (

 color: ‘#FFFF00’,

 message: “STARTED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 // send to HipChat

 hipchatSend (

 color: ‘YELLOW’,

 notify: true,

 message: “STARTED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 // send to email

 emailext (

 subject: “STARTED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’”,

 body: “””

 <p>STARTED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’:</p>

 <p>

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1212

 Check console output at

 "${env.JOB_NAME}

 [${env.BUILD_NUMBER}]"

 </p>”””,

 recipientProviders: [[$class: ‘DevelopersRecipientProvider’]])

 }

Since Jenkins Pipeline is a Groovy-based DSL, we use string interpolation and variables to add the exact details we
want in our notification messages.

When we run this, we’ll get the following notifications:

Job Successful Notification
The next logical choice is to receive notifications when a job succeeds. We will copy and paste based on the

http://docs.groovy-lang.org/latest/html/documentation/index.html#_string_interpolation

Whitepaper

13Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 13

notifyStarted method for now and do some refactoring later.

 node {

 notifyStarted()

 /* ... existing build steps ... */

 notifySuccessful()

 }

 def notifyStarted() { /* .. */ }

 def notifySuccessful() {

 slackSend (

 color: ‘#00FF00’,

 message: “SUCCESSFUL: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 hipchatSend (

 color: ‘GREEN’,

 notify: true,

 message: “SUCCESSFUL: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 emailext (

 subject: “SUCCESSFUL: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’”,

 body: “””

 <p>SUCCESSFUL: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’:</p>

 <p>

 Check console output at

 "${env.JOB_NAME}

 [${env.BUILD_NUMBER}]"

 </p>”””,

 recipientProviders: [[$class: ‘DevelopersRecipientProvider’]])

 }

Again, we get notifications, as expected. If this build is fast enough, some of them may even be on the screen at
the same time:

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1414

Job Failed Notification
Next we’ll add failure notification. Here is where we really start to see the power and expressiveness of Jenkins
Pipeline. A pipeline is a Groovy script, so as we would expect in any Groovy script, we can handle errors using
try-catch blocks.

 node {

 try {

 notifyStarted()

 /* ... existing build steps ... */

 notifySuccessful()

 } catch (e) {

 currentBuild.result = “FAILED”

 notifyFailed()

 throw e

 }

 }

 def notifyStarted() { /* .. */ }

 def notifySuccessful() { /* .. */ }

 def notifyFailed() {

 slackSend (

 color: ‘#FF0000’,

 message: “FAILED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

Whitepaper

15Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 15

 hipchatSend (

 color: ‘RED’,

 notify: true,

 message: “FAILED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 emailext (

 subject: “FAILED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’”,

 body: “””

 <p>FAILED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’:</p>

 <p>

 Check console output at

 "${env.JOB_NAME}

 [${env.BUILD_NUMBER}]"

 </p>”””,

 recipientProviders: [[$class: ‘DevelopersRecipientProvider’]])

 }

Code Cleanup
Lastly, now that we have it all working, we can do some refactoring. Let’s unify all the notifications in one method
and move the final success/failure notification into a finally block.

 stage (‘Build’) {

 node {

 try {

 notifyBuild(‘STARTED’)

 /* ... existing build steps ... */

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1616

 } catch (e) {

 // If there was an exception thrown, the build failed

 currentBuild.result = “FAILED”

 throw e

 } finally {

 // Success or failure, always send notifications

 notifyBuild(currentBuild.result)

 }

 }

 def notifyBuild(String buildStatus = ‘STARTED’) {

 // build status of null means successful

 buildStatus = buildStatus ?: ‘SUCCESSFUL’

 // Default values

 def colorName = ‘RED’

 def colorCode = ‘#FF0000’

 def subject =

 “${buildStatus}: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’”

 def summary = “${subject} (${env.BUILD_URL})”

 def details = “””

 <p>${buildStatus}: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’:</p>

 <p>

 Check console output at

 "${env.JOB_NAME}

 [${env.BUILD_NUMBER}]"

 </p>”””

 // Override default values based on build status

 if (buildStatus == ‘STARTED’) {

 color = ‘YELLOW’

 colorCode = ‘#FFFF00’

 } else if (buildStatus == ‘SUCCESSFUL’) {

 color = ‘GREEN’

 colorCode = ‘#00FF00’

 } else {

 color = ‘RED’

 colorCode = ‘#FF0000’

 }

 // Send notifications

 slackSend (color: colorCode, message: summary)

Whitepaper

17Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 17

 hipchatSend (color: color, notify: true, message: summary)

 emailext (

 subject: subject,

 body: details,

 recipientProviders: [[$class: ‘DevelopersRecipientProvider’]])

 }

 }

Conclusion
We now get notified twice per build, on three different channels. This is probably more than anyone needs,
especially for such a short build. However, for a longer or complex CD pipeline, we might want exactly this.
If needed, we could even improve the notifyBuild code to handle other status strings and call it as needed
throughout our pipeline.

Links

 » �Slack plugin
 » ��HipChat plugin
 » �Email-ext plugin
 » �Jenkins Pipeline Snippet Generator

https://wiki.jenkins-ci.org/display/JENKINS/Slack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HipChat+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin
https://jenkins.io/blog/2016/05/31/pipeline-snippetizer/

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1818

Continuous Delivery
Introduction
When the Ruby on Rails framework debuted, it changed the industry in two noteworthy ways: it created a trend
towards opinionated web application frameworks (Django, Play, Grails) and it strongly encouraged thousands of
developers to embrace test-driven development, along with many other modern best practices (source control,
dependency management, etc). Because Ruby, the language underneath Rails, is interpreted instead of compiled
there isn’t a build, per se, but rather tens - if not hundreds - of tests, linters and scans which are run to ensure the
application’s quality. With the rise in popularity of Rails, the popularity of application hosting services with easy-
to-use deployment tools like Heroku or Engine Yard has risen, too. This combination of good test coverage and
easily automated deployments makes Rails easy to continuously deliver with Jenkins. In this section we’ll cover
testing non-trivial Rails applications with Jenkins Pipeline and, as an added bonus, we will add security scanning
via Brakeman and the Brakeman plugin.

For this section, we’ll use Ruby Central’s cfp-app:

A Ruby on Rails application that lets you manage your conference’s call for proposal (CFP), program and schedule. It was
written by Ruby Central to run the CFPs for RailsConf and RubyConf.

This Rails app is not only a sizable application with lots of tests, but it’s actually the application the Jenkins project
used to collect talk proposals for the Community Tracks for Jenkins World 2016. For the most part, cfp-app is a
standard Rails application. It uses PostgreSQL for its database, RSpec for its tests and Ruby 2.3.x as its runtime.

Required plugins

 » �Brakeman plugin (v0.8 or greater)
 » �CloudBees Docker Pipeline plugin (v1.9 or greater)

http://rubyonrails.org/
https://www.djangoproject.com/
https://playframework.com/
https://grails.org/
http://heroku.com/
http://engineyard.com/
https://jenkins.io/doc/pipeline
https://jenkins.io/doc/pipeline
http://brakemanscanner.org/
https://wiki.jenkins-ci.org/display/JENKINS/Brakeman+Plugin
http://rubycentral.org/
https://github.com/rubycentral/cfp-app
https://www.cloudbees.com/devops-world
https://www.postgresql.org/
http://rspec.info/
http://ruby-lang.org/
https://wiki.jenkins-ci.org/display/JENKINS/Brakeman+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Pipeline+Plugin

Whitepaper

19Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 19

Preparing the App
For most Rails applications there are few, if any, changes needed to enable continuous delivery with Jenkins. In the
case of cfp-app, we’ll add two gems to get the most optimal integration into Jenkins:

 1. ci_reporter, for test report integration

 2. brakeman, for security scanning

Adding these is simple, we’ll just update the Gemfile and the Rakefile in the root of the repository to contain:

 Gemfile

 # .. snip ..

 group :test do

 # RSpec, etc

 gem ‘ci_reporter’

 gem ‘ci_reporter_rspec’

 gem “brakeman”, :require => false

 end

 Rakefile

 # .. snip ..

 require ‘ci/reporter/rake/rspec’

 # Make sure we setup ci_reporter before executing our RSpec examples

 task :spec => ‘ci:setup:rspec’

Preparing Jenkins
With the cfp-app project set up, next we’ll ensure that Jenkins itself is ready with the following plugins installed:

 » �Brakeman plugin

 » �CloudBees Docker Pipeline plugin

In addition to the plugins listed above, we also need at least one Jenkins agent with the Docker daemon installed
and running on it, with the agent labeled “docker” to let us assign Docker-based workloads to them.

https://github.com/rubycentral/cfp-app
https://github.com/ci-reporter/ci_reporter
https://github.com/presidentbeef/brakeman
https://wiki.jenkins-ci.org/display/JENKINS/Brakeman+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Pipeline+Plugin
https://jenkins.io/blog/2016/08/10/rails-cd-with-pipeline/#plugins
https://docker.io/

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2020

Writing the Pipeline
To make sense of the various things that the Jenkinsfile needs to do, we’ll start by simply defining the stages
of our pipeline. This will help us think, in broad terms, of what order of operations our pipeline should have.
For example:

 /* Assign our work to an agent labelled ‘docker’ */

 node(‘docker’) {

 stage ‘Prepare Container’

 stage ‘Install Gems’

 stage ‘Prepare Database’

 stage ‘Invoke Rake’

 stage ‘Security scan’

 stage ‘Deploy’

 }​

As mentioned previously, this Jenkinsfile will rely on the CloudBees Docker Pipeline plugin. The plugin provides
two very important features:

 1. Ability to execute steps inside of a running Docker container

 2. Ability to run a container in the background

Like most Rails applications, one can effectively test the application with two commands: bundle install
followed by bundle exec rake. We already have Docker images prepared with RVM and Ruby 2.3.0 installed,
which ensures a common and consistent starting point:

 node(‘docker’) {

 // .. ‘stage’ steps removed

 docker.image(‘rtyler/rvm:2.3.0’).inside { // <1>

 rvm ‘bundle install’ // <2>

 rvm ‘bundle exec rake’

 } // <3>

 }​

 Notes:

 1. �Run the named container. The inside method can take optional additional flags for the Docker run
command.

 2. �Execute our shell commands using our tiny sh step wrapper rvm. This ensures that the shell code is
executed in the correct RVM environment.

 3. When the closure completes, the container will be destroyed.

https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Pipeline+Plugin
http://rvm.io/

Whitepaper

21Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 21

Unfortunately, with this application, the bundle exec rake command will fail if PostgreSQL isn’t available when the
process starts. This is where the second important feature of the CloudBees Docker Pipeline plugin comes into
effect: the ability to run a container in the background.

 node(‘docker’) {

 // .. ‘stage’ steps removed

 /* Pull the latest `postgres̀ container and run it in the background */

 docker.image(‘postgres’).withRun { container -> // <1>

 echo “PostgreSQL running in container ${container.id}” // <2>

 } // <3>

 }​

 Notes:

 1. Run the container, effectively “docker run postgres”

 2. Any number of steps can go inside the closure

 3. When the closure completes, the container will be destroyed

Running the Tests
Combining these two snippets of Jenkins Pipeline code highlights where the power of the DSL shines. With
this done, the basics are in place to consistently run the tests for cfp-app in fresh Docker containers for each

execution of the pipeline.

 node(‘docker’) {

 docker.image(‘postgres’).withRun { container ->

 docker.image(‘rtyler/rvm:2.3.0’)

 .inside(“--link=${container.id}:postgres”) { // <1>

 stage (‘Install Gems’) {

 rvm “bundle install”

 }

 stage (‘Invoke Rake’){

 withEnv(

 [‘DATABASE_URL=postgres://postgres@postgres:5432/’]

) { // <2>

 rvm “bundle exec rake”

 junit ‘spec/reports/*.xml’ // <3>

 }

 }

 }

 }

 }

https://en.wikipedia.org/wiki/Domain-specific_language

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2222

 Notes:

 1. �By passing the “--link” argument, the Docker daemon will allow the RVM container to talk to the
PostgreSQL container under the host name postgres.

 2. �Use the withEnv step to set environment variables for everything that is in the closure. In this case, the
cfp-app DB scaffolding will look for the DATABASE_URL variable to override the DB host/user/dbname
defaults.

 3. � �Archive the test reports generated by ci_reporter so that Jenkins can display test reports and trend
analysis.

Whitepaper

23Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 23

Security Scanning
Using Brakeman, the security scanner for Ruby on Rails, is almost trivially easy inside of Jenkins Pipeline, thanks
to the Brakeman plugin which implements the publishBrakeman step. Building on our example above, we can
implement the “Security scan” stage:

 node(‘docker’) {

 /* --8<--8<-- snipsnip --8<--8<-- */

 stage(‘Security scan’) {

 rvm ‘brakeman -o brakeman-output.tabs’ +

 ‘ --no-progress --separate-models’ // <1>

 publishBrakeman ‘brakeman-output.tabs’ // <2>

 /* --8<--8<-- snipsnip --8<--8<-- */

 }

 }​

 Notes:

 1. �Run the Brakeman security scanner for Rails and store the output for later in
brakeman-output.tabs

 2. �Archive the reports generated by Brakeman so that Jenkins can display detailed reports with trend analysis

http://brakemanscanner.org/
https://wiki.jenkins-ci.org/display/JENKINS/Brakeman+Plugin

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2424

Deploying
Once the tests and security scanning are all working properly, we can start to set up the deployment stage.
Jenkins Pipeline provides the variable currentBuild, which we can use to determine whether our pipeline has been
successful thus far or not. This allows us to add the logic to only deploy when everything is passing:

 node(‘docker’) {

 /* --8<--8<-- snipsnip --8<--8<-- */

 stage(‘Deploy’) {

 if (currentBuild.result == ‘SUCCESS’) { // <1>

 sh ‘./deploy.sh’ // <2>

 }

 else {

 mail (

 subject: “Something is wrong with “ +

 “${env.JOB_NAME} ${env.BUILD_ID}”,

 to: ‘nobody@example.com’,

 body: ‘You should fix it’)

 }

 /* --8<--8<-- snipsnip --8<--8<-- */

 }

 }

 Notes:

 1. �currentBuild has the result property which would be ‘SUCCESS,’ ‘FAILED,’ ‘UNSTABLE,’ ‘ABORTED’

 2. �Only if currentBuild.result is successful should we bother invoking our deployment script (e.g. git push
heroku master)

Conclusion
Here is a thoroughly commented full Jenkinsfile, which we hope is a useful summation of the example outlined
above. The consistency provided by Docker and Jenkins Pipeline above shows how Pipeline can improve project
delivery time. There is still room for improvement however, which is left as an exercise for the reader. For example,
preparing new containers with all their dependencies built-in, instead of installing them at run-time, or utilizing the
parallel step for executing RSpec across multiple Jenkins agents simultaneously.

https://github.com/rtyler/cfp-app/blob/0e85db6d054deefd637de235766468631f551c7f/Jenkinsfile
https://github.com/rtyler/cfp-app/blob/0e85db6d054deefd637de235766468631f551c7f/Jenkinsfile#L36-L46

Whitepaper

25Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 25

The beautiful thing about defining your continuous delivery (and continuous security) pipeline in code is that you
can continue to iterate on it!

Sauce On-Demand for UI Testing
Introduction
Testing web applications across multiple browsers on different platforms can be challenging even for smaller
applications. With Jenkins and the Sauce OnDemand plugin, you can wrangle that complexity by defining your
Pipeline as Code. For this section we’ll use the Sauce OnDemand plugin and Nightwatch.js to run Selenium tests
on a sample project.

Required plugins

 » �JUnit plugin (v1.19 or greater)
 » ��Sauce OnDemand plugin (v1.159 or greater)

Starting from Framework
We will start off by following Sauce Labs’ instructions on “Setting up Sauce Labs with Jenkins.” We’ll install the
JUnit and Sauce OnDemand plugins, create an account with Sauce Labs and add our Sauce Labs credentials to
Jenkins.

Next, let’s use one of the sample projects in “saucelabs-sample-test-frameworks” on GitHub, which demonstrates
how to integrate Sauce Labs with various test frameworks. For this section, we’ll use a JavaScript-based

https://wiki.jenkins-ci.org/display/JENKINS/Sauce+OnDemand+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Sauce+OnDemand+Plugin
http://nightwatchjs.org/
https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Sauce+OnDemand+Plugin
https://wiki.saucelabs.com/display/DOCS/Setting+Up+Sauce+Labs+with+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Sauce+OnDemand+Plugin
https://wiki.saucelabs.com/display/DOCS/Installing+and+Configuring+the+Sauce+OnDemand+Plugin+for+Jenkins
https://wiki.saucelabs.com/display/DOCS/Installing+and+Configuring+the+Sauce+OnDemand+Plugin+for+Jenkins
https://github.com/saucelabs-sample-test-frameworks

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2626

framework called Nightwatch.js.

We will fork saucelabs-sample-test-frameworks/JS-Nightwatch.js and start by adding a Jenkinsfile. Between the
sample and the Sauce Labs instructions, we’ll be able to write a pipeline that runs five tests on one browser via
Sauce Connect:

 node {

 stage(‘Build’) {

 checkout scm

 sh ‘npm install’ // <1>

 }

 stage(‘Test’) {

 sauce(‘f0a6b8ad-ce30-4cba-bf9a-95afbc470a8a’) { // <2>

 sauceconnect(options: ‘’,

 useGeneratedTunnelIdentifier: false,

 verboseLogging: false) { // <3>

 sh ‘./node_modules/.bin/nightwatch’ +

 ‘-e chrome --test tests/guineaPig.js || true’ // <4>

 junit ‘reports/**’ // <5>

 step([$class: ‘SauceOnDemandTestPublisher’]) // <6>

 }

 }

 }

 }

 Notes:

 1. Install dependencies

 2. Use previously added Sauce credentials. This ID string will be different on your Jenkins instance

 3. Start up the Sauce Connect tunnel to Sauce Labs

 4. Run Nightwatch.js

 5. Use JUnit to track results and show a trend graph

 6. Link result details from Sauce Labs

If we run this job a few times, the JUnit report will show a trend graph. Also, the sample app generates the

https://github.com/saucelabs-sample-test-frameworks/JS-Nightwatch.js
https://wiki.saucelabs.com/display/DOCS/Sauce+Connect+Proxy

Whitepaper

27Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 27

appropriate SauceOnDemandSessionID for each test, enabling the Jenkins Sauce OnDemand plugin’s result
publisher to link results to details Sauce Labs captured during the run.

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2828

Adding Platforms
Next, we’ll add a few more platforms to the matrix. This will require changing both the test framework
configuration and the pipeline. We will need to add new named combinations of platform, browser and browser
version (called “environments”) to the Nightwatch.js configuration file, and modify the pipeline to run tests in
those new environments.

This is another perfect example of the power of Pipeline as Code. If we were working with a separately configured
pipeline, we would have to make the change to the test framework, then change the pipeline manually. With
our pipeline checked in as code, we can change both in one commit, preventing errors resulting from pipeline
configurations getting out of sync with the rest of the project.

I added three new environments to nightwatch.json:

 “test_settings” : {

 “default”: { /*----8<----8<----8<----*/ },

 “chrome”: { /*----8<----8<----8<----*/ },

 “firefox”: {

 “desiredCapabilities”: {

 “platform”: “linux”,

 “browserName”: “firefox”,

 “version”: “latest”

 }

 },

 “ie”: {

 “desiredCapabilities”: {

 “platform”: “Windows 10”,

 “browserName”: “internet explorer”,

 “version”: “latest”

 }

 },

 “edge”: {

 “desiredCapabilities”: {

Whitepaper

29Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 29

 “platform”: “Windows 10”,

 “browserName”: “MicrosoftEdge”,

 “version”: “latest”

 }

 }

 }

And we’ll modify the Jenkinsfile to call them:

 //----8<----8<----8<----8<----8<----8<----

 sauceconnect(options: ‘’,

 useGeneratedTunnelIdentifier: false,

 verboseLogging: false) {

 def configs = [// <1>

 ‘chrome’,

 ‘firefox’,

 ‘ie’,

 ‘edge’

].join(‘,’)

 // Run selenium tests using Nightwatch.js

 sh “./node_modules/.bin/nightwatch” +

 “ -e ${configs} --test tests/guineaPig.js || true” // <2>

 } //----8<----8<----8<----8<----8<----8<----​​​

 Notes:

 1. Using an array to improve readability and make it easy to add more platforms later

 2. Changed from single-quoted string to double-quoted to support variable substitution

NOTE: Test frameworks have bugs too. Nightwatch.js (v0.9.8) generates incomplete JUnit files, reporting results
without enough information in them to distinguish between platforms. A fix has been implemented for this and
submitted a PR to Nightwatch.js. This section shows output with that fix applied locally.

https://github.com/nightwatchjs/nightwatch/pull/1160

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3030

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3131

As expected, Jenkins picked up the new pipeline and ran Nightwatch.js on four platforms. Sauce Labs recorded
the results and correctly linked them into this build. Nightwatch.js was already configured to use multiple worker
threads to run tests against those platforms in parallel, and our Sauce Labs account supported running them all at
the same time, letting us cover four configurations in less than twice the time; the added time was mostly due to
individual new environments taking longer to complete.

Conclusion
Considering the complexity of the system, it is rather easy to integrate Jenkins with Sauce OnDemand to start
testing on multiple browsers. The plugin worked flawlessly with Jenkins Pipeline. Below, we’ll go ahead and run
some additional tests to show that failure reporting also behaves as expected.

 //----8<----8<----8<----8<----8<----8<----

Whitepaper

32Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 32

 sh “./node_modules/.bin/nightwatch -e ${configs} || true” // <1>

 //----8<----8<----8<----8<----8<----8<----

 Notes:

 1. Removed – test filter to run all tests

Epilogue: Jenkins Pipeline vs. Freestyle
Just for comparison, here’s the final state of this job in Freestyle UI versus fully-commented Jenkins Pipeline code.
NOTE: This includes the AnsiColor Plugin to support Nightwatch.js’ default ANSI color output.

Freestyle

https://wiki.jenkins-ci.org/display/JENKINS/AnsiColor+Plugin

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3333

Whitepaper

34Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 34

Jenkins Pipeline

 node {

 stage(‘Build’) {

 checkout scm

 // Install dependencies

 sh ‘npm install’

 }

 stage(‘Test’) {

 // Add sauce credentials

 sauce(‘f0a6b8ad-ce30-4cba-bf9a-95afbc470a8a’) {

 // Start sauce connect

 sauceconnect(options: ‘’,

 useGeneratedTunnelIdentifier: false,

 verboseLogging: false) {

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3535

 // List of browser configs we’ll be testing against.

 def configs = [

 ‘chrome’,

 ‘firefox’,

 ‘ie’,

 ‘edge’

].join(‘,’)

 // Nightwatch.js supports color output

 // wrap this step for ansi color

 wrap(

 [$class: ‘AnsiColorBuildWrapper’, ‘colorMapName’: ‘XTerm’]) {

 // Run selenium tests using Nightwatch.js

 // Ignore error codes. The junit publisher will

 // cover setting build status.

 sh “./node_modules/.bin/nightwatch -e ${configs} || true”

 }

 junit ‘reports/**’

 step([$class: ‘SauceOnDemandTestPublisher’])

 }

 }

 }

 }

Not only is the Pipeline as Code more compact, it also allows for comments that further clarify what is being
done. As noted earlier, changes to this pipeline code are committed the same as changes to the rest of the project,
keeping everything synchronized, reviewable and testable at any commit. In fact, you can view the full set of
commits for this blog post in the blog/sauce-pipeline branch of the bitwiseman/JS-Nightwatch.js repository.

Links
 » ��saucelabs-sample-test-frameworks/JS-Nightwatch.js
 » ��bitwiseman/JS-Nightwatch.js
 » ��Sauce Connect

https://github.com/bitwiseman/JS-Nightwatch.js/tree/blog/sauce-pipeline
https://github.com/bitwiseman/JS-Nightwatch.js
https://github.com/saucelabs-sample-test-frameworks/JS-Nightwatch.js
https://github.com/bitwiseman/JS-Nightwatch.js
https://wiki.saucelabs.com/display/DOCS/Sauce+Connect+Proxy

Whitepaper

36Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 36

Using xUnit to Publish Results
The JUnit plugin is the go-to test result reporter for many Jenkins projects, but it is not the only one available. The
xUnit plugin is a viable alternative that supports JUnit and many other test result file formats.

Required plugins

 » xUnit plugin (v1.102 or greater)

Introduction
No matter the project, you need to gather and report test results. JUnit is one of the most widely supported
formats for recording test results. For scenarios where your tests are stable and your framework can produce
JUnit output, the JUnit plugin is ideal for reporting results in Jenkins. It will consume results from a specified file
or path, create a report and if it finds test failures, it will set the the job state to “unstable” or “failed.”

https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3737

There are also plenty of scenarios where the JUnit plugin is not enough. If your project has some failing tests that
will take some time to fix, or if there are some flaky tests, the JUnit plugin’s simplistic view of test failures may be
difficult to work with.

No problem, the Jenkins plugin model lets us replace the JUnit plugin functionality with similar functionality from
another plugin. Jenkins Pipeline lets us do this in safe, stepwise fashion where we can test and debug each of our
changes.

In this section, we’ll cover how to replace the JUnit plugin with the xUnit plugin in Jenkins Pipeline code to
address a few common test reporting scenarios.

Initial Setup
We’ll use the JS-Nightwatch.js sample project from the previous section to demonstrate a couple of common
scenarios that xUnit handles better. We will need to have the latest JUnit plugin and xUnit plugin installed on our
Jenkins server. We can keep changes in the same fork of the JS-Nightwatch.js sample project on GitHub as the
previous section, but use the blog/xunit branch.

Here is what the Jenkinsfile looked like at the end of the previous section and what the report page looks like after
a few runs:

 node {

 stage(‘Build’) {

 checkout scm

 // Install dependencies

 sh ‘npm install’

 }

 stage(‘Test’) {

 // Add sauce credentials

 sauce(‘f0a6b8ad-ce30-4cba-bf9a-95afbc470a8a’) {

 // Start sauce connect

 sauceconnect(options: ‘’,

 useGeneratedTunnelIdentifier: false,

 verboseLogging: false) {

 // List of browser configs we’ll be testing against.

 def configs = [

 ‘chrome’,

 ‘firefox’,

 ‘ie’,

 ‘edge’

].join(‘,’)

https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin
https://github.com/bitwiseman/JS-Nightwatch.js/tree/blog/xunit

Whitepaper

38Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 38

 // Nightwatch.js supports color output

 // wrap this step for ansi color

 wrap(

 [$class: ‘AnsiColorBuildWrapper’, ‘colorMapName’: ‘XTerm’]) {

 // Run selenium tests using Nightwatch.js

 // Ignore error codes. The junit publisher will

 // cover setting build status.

 sh “./node_modules/.bin/nightwatch -e ${configs} || true”

 }

 junit ‘reports/**’

 step([$class: ‘SauceOnDemandTestPublisher’])

 }

 }

 }

 }

Switching from JUnit to xUnit
We’ll start by replacing JUnit with xUnit in our pipeline. We will use the Snippet Generator to create the step with
the right parameters. The main downside of using the xUnit plugin is that while it is Jenkins Pipeline compatible, it
still uses the more verbose step() syntax – and it has some very rough edges around that, too.

 // Original JUnit step

 junit ‘reports/**’

 // Equivalent xUnit step - generated (reformatted)

 step([$class: ‘XUnitBuilder’,

 testTimeMargin: ‘3000’, thresholdMode: 1,

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3939

 thresholds: [

 [$class: ‘FailedThreshold’,

 failureNewThreshold: ‘’, failureThreshold: ‘’,

 unstableNewThreshold: ‘’, unstableThreshold: ‘1’],

 [$class: ‘SkippedThreshold’,

 failureNewThreshold: ‘’, failureThreshold: ‘’,

 unstableNewThreshold: ‘’, unstableThreshold: ‘’]],

 tools: [

 [$class: ‘JUnitType’, deleteOutputFiles: false,

 failIfNotNew: false, pattern: ‘reports/**’,

 skipNoTestFiles: false, stopProcessingIfError: true]]

])

 // Equivalent xUnit step - cleaned

 step([$class: ‘XUnitBuilder’,

 thresholds: [[$class: ‘FailedThreshold’, unstableThreshold: ‘1’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])

If we replace the junit step in our Jenkinsfile with that last example above, it produces a report and job result
identical to the JUnit plugin but using the xUnit plugin. Easy!

 node {

 stage(‘Build’) { /* ... */ }

 stage(‘Test’) {

 // Add sauce credentials

 sauce(‘f0a6b8ad-ce30-4cba-bf9a-95afbc470a8a’) {

 // Start sauce connect

 sauceconnect(/* ... */) {

 // ... snip ...

 // junit ‘reports/**’

 step([$class: ‘XUnitBuilder’,

 thresholds: [

 [$class: ‘FailedThreshold’, unstableThreshold: ‘1’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])

 // ... snip ...

 }

 }

 }

 }

Whitepaper

40Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 40

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 4141

Accept a Baseline
Most projects don’t start off with automated tests that will pass or even will run. They start with developers
hacking and prototyping, and eventually they start to write tests. As new tests are written, having tests checked-
in, running and failing can provide valuable information. With the xUnit plugin, we can accept a baseline of failed
cases and drive that number down over time. Now that we’ve switched to the xUnit Plugin we can modify our
pipeline to fail jobs only if the number of failures is greater than an expected baseline – in this case, four failures.
When we run the job with the following change, the reported numbers will remain the same, but the job will be
marked as passing.

 Jenkinsfile

 // The rest of the Jenkinsfile is unchanged.

 // Only the xUnit step() call is modified.

 step([$class: ‘XUnitBuilder’,

 thresholds: [[$class: ‘FailedThreshold’, failureThreshold: ‘4’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])​

Whitepaper

42Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 42

Next, we can also check that the plugin reports the job as failed if more failures occur. Since this is sample code,
we’ll do this by adding another failing test and checking that the job is marked as failed on the next run.

 tests/guineaPig.js

 // ... snip ...

 ‘Guinea Pig Assert Title 0 - D’: function(client) { /* ... */ },

 ‘Guinea Pig Assert Title 0 - E’: function(client) {

 client

 .url(‘https://saucelabs.com/test/guinea-pig’)

 .waitForElementVisible(‘body’, 1000)

 //.assert.title(‘I am a page title - Sauce Labs’);

 .assert.title(‘I am a page title - Sauce Labs - Cause a Failure’);

 },

 afterEach: function(client, done) { /* ... */ }

 // ... snip ...

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 4343

In a real project, we’d make fixes over a number of commits, progressively bringing the number of failures down
and adjusting our baseline to match. Since this is a sample, we’ll just make all tests pass, and set the job failure
threshold for failed and skipped cases to zero.

 Jenkinsfile

 // The rest of the Jenkinsfile is unchanged.

 // Only the xUnit step() call is modified.

 step([$class: ‘XUnitBuilder’,

 thresholds: [

 [$class: ‘SkippedThreshold’, failureThreshold: ‘0’],

 [$class: ‘FailedThreshold’, failureThreshold: ‘0’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])​

 tests/guineaPig.js

 // ... snip ...

 ‘Guinea Pig Assert Title 0 - D’: function(client) { /* ... */ },

 ‘Guinea Pig Assert Title 0 - E’: function(client) {

 client

 .url(‘https://saucelabs.com/test/guinea-pig’)

 .waitForElementVisible(‘body’, 1000)

 .assert.title(‘I am a page title - Sauce Labs’);

 },

 afterEach: function(client, done) { /* ... */ }

 // ... snip ...

 tests/guineaPig_1.js

 // ... snip ...

 ‘Guinea Pig Assert Title 1 - A’: function(client) {

 client

 .url(‘https://saucelabs.com/test/guinea-pig’)

 .waitForElementVisible(‘body’, 1000)

 .assert.title(‘I am a page title - Sauce Labs’);

 },

 // ... snip ...

Whitepaper

44Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 44

Allow for Flakiness
We have all known the frustration of having one flaky test that fails once every ten jobs. You want to keep it
active so you can work on isolating the source of the problem, but you also don’t want to destabilize your CI
pipeline or reject commits that are actually okay. You could move the test to a separate job that runs the flaky
tests, but that just leads to a job that is always in a failing state and a pile of flaky tests that no one looks at.

With the xUnit plugin, we can keep the flaky test in our main test suite, but still allow the job to pass. Let’s add a
sample flaky test. After a few runs, we can see that the test fails intermittently and causes the job to fail, too.

 tests/guineaPigFlaky.js

 // New test file: tests/guineaPigFlaky.js

 var https = require(‘https’);

 var SauceLabs = require(“saucelabs”);

 module.exports = {

 ‘@tags’: [‘guineaPig’],

 ‘Guinea Pig Flaky Assert Title 0’: function(client) {

 var expectedTitle = ‘I am a page title - Sauce Labs’;

 // Fail every fifth minute

 if (Math.floor(Date.now() / (1000 * 60)) % 5 === 0) {

 expectedTitle += “ - Cause failure”;

 }

Whitepaper

45Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 45

 client

 .url(‘https://saucelabs.com/test/guinea-pig’)

 .waitForElementVisible(‘body’, 1000)

 .assert.title(expectedTitle);

 }

 afterEach: function(client, done) {

 client.customSauceEnd();

 setTimeout(function() {

 done();

 }, 1000);

 }

 };

Whitepaper

46Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 46

You can almost hear your teammates screaming in frustration, just looking at this report. To allow specific tests to
be unstable but not others, we will add a guard “suite completed” test to the suites that should be stable, and keep
the flaky test on its own. Then we’ll tell xUnit to allow a number of failed tests, but no skipped ones. If any test
fails other than the ones we allow to be flaky, it will result in one or more skipped tests and will fail the build.

 Jenkinsfile

 // The rest of the Jenkinsfile is unchanged.

 // Only the xUnit step() call is modified.

 step([$class: ‘XUnitBuilder’,

 thresholds: [

 [$class: ‘SkippedThreshold’, failureThreshold: ‘0’],

 // Allow for a significant number of failures

 // Keeping this threshold so that large failures are guaranteed

 // to still fail the build

 [$class: ‘FailedThreshold’, failureThreshold: ‘10’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])

 tests/guineaPig.js

 // ... snip ...

 ‘Guinea Pig Assert Title 0 - E’: function(client) { /* ... */ },

 ‘Guinea Pig Assert Title 0 - Suite Completed’: function(client) {

 // No assertion needed

 },

 afterEach: function(client, done) { /* ... */ }

 // ... snip ...

 tests/guineaPig_1.js

 // ... snip ...

 ‘Guinea Pig Assert Title 1 - E’: function(client) { /* ... */ },

 ‘Guinea Pig Assert Title 1 - Suite Completed’: function(client) {

 // No assertion needed

 },

 afterEach: function(client, done) { /* ... */ }

 // ... snip ...

After a few more runs, as you can see in build number 18, the flaky test is still being flaky, but it is no longer
failing the build. Meanwhile, if another test fails, it will cause the “suite completed” test to be skipped, failing the
job. If this were a real project, the test owner could then instrument and eventually fix the test. When they were
confident they had stabilized the test, they could add a suite_completed test after it to enforce passing
without having to make changes to other tests or framework.

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 4747

Conclusion
This section has shown how to migrate from the JUnit plugin to the xUnit plugin on an existing project in Jenkins
Pipeline. It also covered how to use the features of the xUnit plugin to get more meaningful and effective Jenkins
reporting. Not covered was how many other formats xUnit supports – from CCPUnit to MSTest. You can also
write your own XSL for result formats not on the known/supported list.

Links

 » xUnit plugin
 » bitwiseman/JS-Nightwatch.js
 » Saucelabs-sample-test-frameworks

https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin
https://github.com/bitwiseman/JS-Nightwatch.js
https://github.com/saucelabs-sample-test-frameworks

Title of Whitepaper

CloudBees, Inc.
4 North Second Street | Suite 1270

San Jose, CA 95113
United States

www.cloudbees.com
info@cloudbees.com

CloudBees CI is built on top of Jenkins, an independent community project. Read more about Jenkins at: www.cloudbees.com/jenkins/about

©2022 CloudBees, Inc. CloudBees is a registered trademark and CloudBees CI, CloudBees CD, CloudBees Cloud Native CI/CD, CloudBees
Engineering Efficiency, CloudBees Feature Management, CloudBees Build Acceleration and CloudBees CodeShip are trademarks of CloudBees.
Other products or brand names may be trademarks or registered trademarks of their respective holders.

0122v00

Learn more!
www.cloudbees.com/get-started

Whitepaper

Summary
In this guide, we’ve shown a number of use cases for Jenkins plugins and Jenkins Pipeline.

Starting with an outline of stages, we have:

 » �Constructed a pipeline from scratch, iterating on it to build a continuous delivery pipeline using Docker
containers that interact with each other

 » �Added an HTML report to an existing pipeline
 » �Made Jenkins notify us when builds start, succeed or fail
 » �Implemented cloud-based and parallelized browser testing
 » �Improved result processing with tolerance for flaky tests

We hope you have found it informative and helpful.

For additional resources, please visit: www.cloudbees.com/devops/continuous-delivery/pipeline

https://www.cloudbees.com/devops/continuous-delivery/pipeline

