
Jenkins Pipeline with
Plugins: Real-World Use
Cases for Jenkins Pipeline

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 22

Whitepaper

Contents

3	 Introduction
3 Overview
3 Audience
4 Important Note About Style and

Code Samples
4 Jenkins Setup

4 Publishing HTML Reports
4	 Introduction
5 Setup
6 Snippet Generator
7 Publishing HTML
8 Conclusion
8 Links

8	 Notifications
8	 Introduction
9	 Setup	and	Configuration
10 Original Pipeline
11	 Job	Started	Notification
13	 Job	Successful	Notification
14	 Job	Failed	Notification
15 Code Cleanup
17 Conclusion
17 Links

18 Continuous	Delivery
18	 Introduction
19 Preparing the App
19 Preparing Jenkins
20	 Writing	the	Pipeline
21 Running the Tests
23 Security Scanning
24 Deploying
24 Conclusion

25 Sauce	OnDemand	for	
UI	Testing

25	 Introduction
25	 Starting	from	Framework
27	 Adding	Platforms
31 Conclusion
32 Epilogue: Jenkins Pipeline

vs. Freestyle
35 Links

36 Using xUnit to
Publish Results

36	 Introduction
37	 Initial	Setup
38 Switching from JUnit to xUnit
41 Accept a Baseline
44 Allow for Flakiness
47 Conclusion
47 Links

48 Summary

Whitepaper

3Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3

Jenkins	is	one	of	the	preeminent	automation	tools.	Jenkins	is	
extensible by design, using plugins. Plugins are what give Jenkins
its	great	flexibility	for	automating	a	wide	range	of	processes	on	
diverse	platforms.	Jenkins	Pipeline	builds	on	that	flexibility	and	rich	
plugin ecosystem while enabling Jenkins users to write their Jenkins
automation	as	code.	This	technical	guide	will	show	a	number	of	
common use cases for plugins with Jenkins Pipeline.

Overview
These use cases include:

 » Publishing HTML reports
 » Sending	notifications
 » Continuous	delivery	using	Docker
 » Running UI tests in Sauce OnDemand
 » Test	result	interpretation	and	reporting	

Audience
This paper assumes familiarity with the following areas:

 » Installing	and	configuring	Jenkins	plugins
 » Configuring	Jenkins	jobs	via	the	UI
 » Jenkins Pipeline basics
 » Groovy language as it applies to Jenkins Pipeline
 » Usage of Git

Introduction

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 44

Important	Note	About	Style	and	Code	Samples
All	sections	are	presented	in	a	tutorial	style,	but	are	not	strictly	tutorials.	

All the code shown in this guide is real code, mostly Jenkins Pipeline (Groovy) code, but there are also a few uses of
JavaScript	and	Ruby.	The	code	shown	was	run	and	it	produced	the	output	shown.	Effort	has	been	made	to	clearly	show	
the	progressive	changes	and	their	results,	but	your	result	may	look	different	even	if	you	run	the	same	code.	The	code	
shown	may	not	work	in	your	Jenkins	instance	without	modification.			

In	particular,	copying	the	Jenkins	Pipeline	code	shown	directly	into	a	Jenkins	Pipeline	job	via	the	Jenkins	UI	will	not	
work.	The	pipelines	shown	expect	to	be	run	from	a	Jenkinsfile	in	the	software	configuration	management	(SCM)	of	the	
project	shown.		

Given	all	that,	the	projects	and	code	shown	are	all	publicly	available.	You	should	feel	free	to	fork	a	copy	and	play	with	
them.	The	Jenkins	setup	instructions	below	and	at	the	beginning	of	each	section	should	provide	enough	information	for	
you	to	follow	along	through	each	section	on	your	own.	

Jenkins Setup
These	examples	have	been	verified	to	work	on	a	specific	version	of	Jenkins	and	specific	versions	of	various	plugins.	They	
should	generally	continue	to	work	on	later	versions	of	Jenkins	and	the	same	plugins.	

Each	section	will	list	the	plugins	required	and	their	minimum	version.

Publishing HTML Reports
Most	projects	need	more	than	just	JUnit	result	reporting.	Rather	than	writing	a	custom	plugin	for	each	type	of	
report, we can use the HTML Publisher plugin.

Introduction
For	this	first	example,	we	will	use	a	Ruby	project	called	“hermann.”	We	will	perform	a	build	of	this	project	using	Jenkins	
Pipeline.	We	will	also	have	the	code	coverage	results	published	with	each	build	job.	We	could	write	a	plugin	to	publish	
this	data,	but	the	build	already	creates	an	HTML	report	file	using	SimpleCov	when	the	unit	tests	run.	We’ll	use	the	HTML
Publisher plugin	to	add	the	HTML-formatted	code	coverage	report	to	each	build.	

Component		 Description

Jenkins 2.19.4 (LTS)

Jenkins Pipeline plugin 2.4

Pipeline	Groovy	plugin 2.23

https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://github.com/reiseburo/hermann
https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin

Whitepaper

5Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 5

Required plugins

 » HTML Publisher plugin (v1.11 or greater)

Setup
Here’s	a	simple	pipeline	for	building	the	hermann	project	before	we	add	the	report	publishing.	Simple	enough	—	it	builds,	
runs tests and archives the package:

 stage (‘Build’) {

 node {

 // Checkout

 checkout scm

 // install required bundles

 sh ‘bundle install’

 // build and run tests with coverage

 sh ‘bundle exec rake build spec’

 // Archive the built artifacts

 archive (includes: ‘pkg/*.gem’)

 }

 }

https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://github.com/reiseburo/hermann

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 66

Now we will add the step to publish the code coverage report. Running rake spec	for	this	project	creates	an	
index.html	file	in	the	coverage directory. The HTML Publisher Plugin is already installed, but how do we add the
HTML	publishing	step	to	the	pipeline?	The	plugin	page	doesn’t	say	anything	about	it.

Snippet	Generator
Documentation	is	hard	to	maintain	and	easy	to	miss,	even	more	so	in	a	system	like	Jenkins	with	hundreds	of	plugins	that	
each	potentially	have	one	or	more	Groovy	fixtures	to	add	to	the	pipeline.	The	Jenkins Pipeline Snippet Generator helps
users	navigate	this	jungle	by	providing	a	way	to	generate	a	code	snippet	for	any	step	using	provided	inputs.

The	Snippet	Generator	offers	a	dynamically	generated	list	of	steps,	based	on	the	installed	plugins.	From	that	list	we	
select the publishHTML	step.	Then	it	shows	a	UI	similar	to	the	one	used	in	job	configuration.	We	can	fill	in	the	fields,	
click	“generate”	and	it	will	show	us	a	snippet	of	Groovy	generated	from	that	input.

https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://jenkins.io/blog/2016/05/31/pipeline-snippetizer/

Whitepaper

7Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 7

Publishing HTML
We	can	use	that	snippet	directly	or	as	a	basis	for	further	customization.	In	this	case,	we’ll	just	reformat	and	copy	it	in	at	

the end of the pipeline.

 stage (‘Build’) {

 node {

 /* ...unchanged... */

 // Archive the built artifacts

 archive (includes: ‘pkg/*.gem’)

 // publish html

 publishHTML ([

 allowMissing: false,

 alwaysLinkToLastBuild: false,

 keepAll: true,

 reportDir: ‘coverage’,

 reportFiles: ‘index.html’,

 reportName: “RCov Report”

])

 }

 }

Note, we have set keepAll	to	true	so	we	can	go	back	and	look	at	reports	on	old	jobs	as	new	ones	come	in.	When	
we run this new pipeline, we are rewarded with an RCov Report link	on	the	left	side,	which	we	can	follow	to	show	
the HTML code coverage report.

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 88

Conclusion
It	took	a	little	while	to	construct	it,	but	that	one	command	is	all	it	takes	to	publish	HTML	reports	as	part	of	our	
jobs.	Admittedly,	manually	loading	HTML	is	not	as	slick	as	what	could	be	done	with	a	custom	plugin,	but	it	is	also	
much	easier	and	works	with	any	static	HTML.	

Links
 » HTML Publisher plugin

 » Jenkins Pipeline Snippet Generator

Notifications
Rather	than	sitting	and	watching	Jenkins	for	job	status,	most	users	would	prefer	Jenkins	to	send	notifications	
when	events	occur.	There	are	Jenkins	plugins	for	sending	notifications	via	Slack, HipChat or even email, among
others.

Introduction
Getting	notified	when	events	occur	is	preferable	to	having	to	constantly	monitor	job	status	just	in	case	something	
occurs.	We	will	continue	from	where	we	left	off	in	the	previous	section	with	the	hermann	project.	We	added	a	
Jenkins	Pipeline	with	an	HTML	publisher	for	code	coverage.	In	this	section	we’ll	make	Jenkins	notify	us	when	
builds start and when they succeed or fail.

https://wiki.jenkins-ci.org/display/JENKINS/HTML+Publisher+Plugin
https://jenkins.io/blog/2016/05/31/pipeline-snippetizer/
https://wiki.jenkins-ci.org/display/JENKINS/Slack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HipChat+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin

Whitepaper

9Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 9

Required plugins

 » Slack plugin (v2.0.1 or greater)
 » HipChat plugin (v1.0.0 or greater)
 » Email-ext plugin (v2.47 or greater)

Setup	and	Configuration
For	the	rest	of	this	section,	we	will	use	sample	targets	that	we	created	specifically	for	this	purpose.	To	make	
this	work	on	your	system,	you’d	need	to	setup	these	notifications	similar	to	what	we	did	but	using	values	that	
match	your	own	instances	of	these	notifications.	For	example,	we	created	Slack	and	HipChat	organizations	called	
“bitwiseman,”	each	with	one	member	for	testing.	For	email	notifications,	we	ran	a	Ruby	SMTP	server	called	
mailcatcher	that	is	perfect	for	local	testing	such	as	this.	You’d	need	to	have	your	own	instances	of	these	three	
types	of	notification	channels.

We also installed the Slack, HipChat and Email-ext	plugins	and	added	server-wide	configuration	for	each.	Slack	
and	HipChat	use	API	tokens	-	both	products	have	integration	points	on	their	side	that	generate	tokens,	which	we	
copied	into	our	Jenkins	configuration.	Mailcatcher	SMTP	runs	locally,	so	we	just	pointed	Jenkins	at	it.			

Your	configuration	values	will	differ	from	ours,	but	here’s	what	our	Jenkins	configuration	section	for	each	of	these	
channels looked like:

Original	Pipeline
Now	we	can	start	adding	notification	steps	to	our	pipeline.	The	same	as	in	the	previous	section,	we’ll	use	the	

https://wiki.jenkins-ci.org/display/JENKINS/Slack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HipChat+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin
https://mailcatcher.me/
https://wiki.jenkins-ci.org/display/JENKINS/Slack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HipChat+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1010

Jenkins Pipeline Snippet Generator to	explore	the	step	syntax	for	the	notification	plugins.	Here’s	the	base	
pipeline code before we start making changes:

 stage (‘Build’) {

 node {

 // Checkout

 checkout scm

 // install required bundles

 sh ‘bundle install’

 // build and run tests with coverage

 sh ‘bundle exec rake build spec’

 // Archive the built artifacts

 archive (includes: ‘pkg/*.gem’)

https://jenkins.io/blog/2016/05/31/pipeline-snippetizer/

Whitepaper

11Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 11

 // publish html

 publishHTML ([

 allowMissing: false,

 alwaysLinkToLastBuild: false,

 keepAll: true,

 reportDir: ‘coverage’,

 reportFiles: ‘index.html’,

 reportName: “RCov Report”

])

 }

 }

Job	Started	Notification
For	the	first	change,	we	will	add	a	“Job	Started”	notification.	Using	the	Snippet	Generator	and	then	reformatting	
make	this	straightforward:

 node {

 notifyStarted()

 /* ... existing build steps ... */

 }

 def notifyStarted() {

 // send to Slack

 slackSend (

 color: ‘#FFFF00’,

 message: “STARTED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 // send to HipChat

 hipchatSend (

 color: ‘YELLOW’,

 notify: true,

 message: “STARTED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 // send to email

 emailext (

 subject: “STARTED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’”,

 body: “””

 <p>STARTED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’:</p>

 <p>

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1212

 Check console output at

 "${env.JOB_NAME}

 [${env.BUILD_NUMBER}]"

 </p>”””,

 recipientProviders: [[$class: ‘DevelopersRecipientProvider’]])

 }

Since Jenkins Pipeline is a Groovy-based DSL, we use string	interpolation and variables to add the exact details we
want	in	our	notification	messages.	

When	we	run	this,	we’ll	get	the	following	notifications:

Job	Successful	Notification
The	next	logical	choice	is	to	receive	notifications	when	a	job	succeeds.	We	will	copy	and	paste	based	on	the	

http://docs.groovy-lang.org/latest/html/documentation/index.html#_string_interpolation

Whitepaper

13Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 13

notifyStarted method for now and do some refactoring later.

 node {

 notifyStarted()

 /* ... existing build steps ... */

 notifySuccessful()

 }

 def notifyStarted() { /* .. */ }

 def notifySuccessful() {

 slackSend (

 color: ‘#00FF00’,

 message: “SUCCESSFUL: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 hipchatSend (

 color: ‘GREEN’,

 notify: true,

 message: “SUCCESSFUL: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 emailext (

 subject: “SUCCESSFUL: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’”,

 body: “””

 <p>SUCCESSFUL: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’:</p>

 <p>

 Check console output at

 "${env.JOB_NAME}

 [${env.BUILD_NUMBER}]"

 </p>”””,

 recipientProviders: [[$class: ‘DevelopersRecipientProvider’]])

 }

Again,	we	get	notifications,	as	expected.	If	this	build	is	fast	enough,	some	of	them	may	even	be	on	the	screen	at	
the	same	time:

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1414

Job	Failed	Notification
Next	we’ll	add	failure	notification.	Here	is	where	we	really	start	to	see	the	power	and	expressiveness	of	Jenkins	
Pipeline. A pipeline is a Groovy script, so as we would expect in any Groovy script, we can handle errors using
try-catch blocks.

 node {

 try {

 notifyStarted()

 /* ... existing build steps ... */

 notifySuccessful()

 } catch (e) {

 currentBuild.result = “FAILED”

 notifyFailed()

 throw e

 }

 }

 def notifyStarted() { /* .. */ }

 def notifySuccessful() { /* .. */ }

 def notifyFailed() {

 slackSend (

 color: ‘#FF0000’,

 message: “FAILED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

Whitepaper

15Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 15

 hipchatSend (

 color: ‘RED’,

 notify: true,

 message: “FAILED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’” +

 “ (${env.BUILD_URL})”)

 emailext (

 subject: “FAILED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’”,

 body: “””

 <p>FAILED: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’:</p>

 <p>

 Check console output at

 "${env.JOB_NAME}

 [${env.BUILD_NUMBER}]"

 </p>”””,

 recipientProviders: [[$class: ‘DevelopersRecipientProvider’]])

 }

Code	Cleanup
Lastly,	now	that	we	have	it	all	working,	we	can	do	some	refactoring.	Let’s	unify	all	the	notifications	in	one	method	
and	move	the	final	success/failure	notification	into	a	finally block.

 stage (‘Build’) {

 node {

 try {

 notifyBuild(‘STARTED’)

 /* ... existing build steps ... */

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1616

 } catch (e) {

 // If there was an exception thrown, the build failed

 currentBuild.result = “FAILED”

 throw e

 } finally {

 // Success or failure, always send notifications

 notifyBuild(currentBuild.result)

 }

 }

 def notifyBuild(String buildStatus = ‘STARTED’) {

 // build status of null means successful

 buildStatus = buildStatus ?: ‘SUCCESSFUL’

 // Default values

 def colorName = ‘RED’

 def colorCode = ‘#FF0000’

 def subject =

 “${buildStatus}: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’”

 def summary = “${subject} (${env.BUILD_URL})”

 def details = “””

 <p>${buildStatus}: Job ‘${env.JOB_NAME} [${env.BUILD_NUMBER}]’:</p>

 <p>

 Check console output at

 "${env.JOB_NAME}

 [${env.BUILD_NUMBER}]"

 </p>”””

 // Override default values based on build status

 if (buildStatus == ‘STARTED’) {

 color = ‘YELLOW’

 colorCode = ‘#FFFF00’

 } else if (buildStatus == ‘SUCCESSFUL’) {

 color = ‘GREEN’

 colorCode = ‘#00FF00’

 } else {

 color = ‘RED’

 colorCode = ‘#FF0000’

 }

 // Send notifications

 slackSend (color: colorCode, message: summary)

Whitepaper

17Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 17

 hipchatSend (color: color, notify: true, message: summary)

 emailext (

 subject: subject,

 body: details,

 recipientProviders: [[$class: ‘DevelopersRecipientProvider’]])

 }

 }

Conclusion
We	now	get	notified	twice	per	build,	on	three	different	channels.	This	is	probably	more	than	anyone	needs,	
especially for such a short build. However, for a longer or complex CD pipeline, we might want exactly this.
If needed, we could even improve the notifyBuild code to handle other status strings and call it as needed
throughout our pipeline.

Links

 » Slack plugin
 » HipChat plugin
 » Email-ext plugin
 » Jenkins Pipeline Snippet Generator

https://wiki.jenkins-ci.org/display/JENKINS/Slack+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/HipChat+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin
https://jenkins.io/blog/2016/05/31/pipeline-snippetizer/

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 1818

Continuous	Delivery
Introduction
When the Ruby on Rails framework debuted, it changed the industry in two noteworthy ways: it created a trend
towards	opinionated	web	application	frameworks	(Django, Play, Grails) and it strongly encouraged thousands of
developers	to	embrace	test-driven	development,	along	with	many	other	modern	best	practices	(source	control,	
dependency management, etc). Because Ruby, the language underneath Rails, is interpreted instead of compiled
there	isn’t	a	build,	per	se,	but	rather	tens	-	if	not	hundreds	-	of	tests,	linters	and	scans	which	are	run	to	ensure	the	
application’s	quality.	With	the	rise	in	popularity	of	Rails,	the	popularity	of	application	hosting	services	with	easy-
to-use deployment tools like Heroku or Engine	Yard	has	risen,	too.	This	combination	of	good	test	coverage	and	
easily	automated	deployments	makes	Rails	easy	to	continuously	deliver	with	Jenkins.	In	this	section	we’ll	cover	
testing	non-trivial	Rails	applications	with	Jenkins Pipeline and, as an added bonus, we will add security scanning
via Brakeman and the Brakeman plugin.

For	this	section,	we’ll	use	Ruby Central’s	cfp-app:

A Ruby on Rails application that lets you manage your conference’s call for proposal (CFP), program and schedule. It was
written by Ruby Central to run the CFPs for RailsConf and RubyConf.

This	Rails	app	is	not	only	a	sizable	application	with	lots	of	tests,	but	it’s	actually	the	application	the	Jenkins	project	
used to collect talk proposals for the Community Tracks for Jenkins World 2016. For the most part, cfp-app is a
standard	Rails	application.	It	uses	PostgreSQL for its database, RSpec for its tests and Ruby 2.3.x	as	its	runtime.

Required plugins

 » Brakeman plugin (v0.8 or greater)
 » CloudBees Docker Pipeline plugin (v1.9 or greater)

http://rubyonrails.org/
https://www.djangoproject.com/
https://playframework.com/
https://grails.org/
http://heroku.com/
http://engineyard.com/
https://jenkins.io/doc/pipeline
https://jenkins.io/doc/pipeline
http://brakemanscanner.org/
https://wiki.jenkins-ci.org/display/JENKINS/Brakeman+Plugin
http://rubycentral.org/
https://github.com/rubycentral/cfp-app
https://www.cloudbees.com/devops-world
https://www.postgresql.org/
http://rspec.info/
http://ruby-lang.org/
https://wiki.jenkins-ci.org/display/JENKINS/Brakeman+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Pipeline+Plugin

Whitepaper

19Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 19

Preparing	the	App
For most	Rails	applications	there	are	few,	if	any,	changes	needed	to	enable	continuous	delivery	with	Jenkins.	In	the	
case of cfp-app,	we’ll	add	two	gems	to	get	the	most	optimal	integration	into	Jenkins:

 1. ci_reporter,	for	test	report	integration

 2. brakeman, for security scanning

Adding	these	is	simple,	we’ll	just	update	the	Gemfile and the Rakefile in the root of the repository to contain:

 Gemfile

 # .. snip ..

 group :test do

 # RSpec, etc

 gem ‘ci_reporter’

 gem ‘ci_reporter_rspec’

 gem “brakeman”, :require => false

 end

 Rakefile

 # .. snip ..

 require ‘ci/reporter/rake/rspec’

 # Make sure we setup ci_reporter before executing our RSpec examples

 task :spec => ‘ci:setup:rspec’

Preparing	Jenkins
With	the	cfp-app	project	set	up,	next	we’ll	ensure	that	Jenkins	itself	is	ready	with	the	following	plugins	installed:

 » Brakeman plugin

 » CloudBees Docker Pipeline plugin

In	addition	to	the	plugins listed above, we also need at least one Jenkins agent with the Docker daemon installed
and	running	on	it,	with	the	agent	labeled	“docker”	to	let	us	assign	Docker-based	workloads	to	them.

https://github.com/rubycentral/cfp-app
https://github.com/ci-reporter/ci_reporter
https://github.com/presidentbeef/brakeman
https://wiki.jenkins-ci.org/display/JENKINS/Brakeman+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Pipeline+Plugin
https://jenkins.io/blog/2016/08/10/rails-cd-with-pipeline/#plugins
https://docker.io/

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2020

Writing	the	Pipeline
To make sense of the various things that the Jenkinsfile	needs	to	do,	we’ll	start	by	simply	defining	the	stages	
of	our	pipeline.	This	will	help	us	think,	in	broad	terms,	of	what	order	of	operations	our	pipeline	should	have.	
For example:

 /* Assign our work to an agent labelled ‘docker’ */

 node(‘docker’) {

 stage ‘Prepare Container’

 stage ‘Install Gems’

 stage ‘Prepare Database’

 stage ‘Invoke Rake’

 stage ‘Security scan’

 stage ‘Deploy’

 }

As	mentioned	previously,	this	Jenkinsfile will rely on the CloudBees Docker Pipeline plugin. The plugin provides
two very important features:

 1. Ability to execute steps inside of a running Docker container

 2. Ability to run a container in the background

Like	most	Rails	applications,	one	can	effectively	test	the	application	with	two	commands:	bundle install
followed by bundle exec rake. We already have Docker images prepared with RVM and Ruby 2.3.0 installed,
which	ensures	a	common	and	consistent	starting	point:

 node(‘docker’) {

 // .. ‘stage’ steps removed

 docker.image(‘rtyler/rvm:2.3.0’).inside { // <1>

 rvm ‘bundle install’ // <2>

 rvm ‘bundle exec rake’

 } // <3>

 }

 Notes:

 1.			Run	the	named	container.	The	inside	method	can	take	optional	additional	flags	for	the	Docker	run	
command.

 2.			Execute	our	shell	commands	using	our	tiny	sh	step	wrapper	rvm.	This	ensures	that	the	shell	code	is	
executed in the correct RVM environment.

 3. When the closure completes, the container will be destroyed.

https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Pipeline+Plugin
http://rvm.io/

Whitepaper

21Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 21

Unfortunately,	with	this	application,	the bundle exec rake	command	will	fail	if	PostgreSQL	isn’t	available	when	the	
process starts. This is where the second important feature of the CloudBees Docker Pipeline plugin comes into
effect:	the	ability	to	run	a	container	in	the	background.

 node(‘docker’) {

 // .. ‘stage’ steps removed

 /* Pull the latest `postgres̀ container and run it in the background */

 docker.image(‘postgres’).withRun { container -> // <1>

 echo “PostgreSQL running in container ${container.id}” // <2>

 } // <3>

 }

 Notes:

 1.		Run	the	container,	effectively	“docker	run	postgres”

 2. Any number of steps can go inside the closure

 3. When the closure completes, the container will be destroyed

Running the Tests
Combining these two snippets of Jenkins Pipeline code highlights where the power of the DSL shines. With
this done, the basics are in place to consistently run the tests for cfp-app in fresh Docker containers for each

execution	of	the	pipeline.

 node(‘docker’) {

 docker.image(‘postgres’).withRun { container ->

 docker.image(‘rtyler/rvm:2.3.0’)

 .inside(“--link=${container.id}:postgres”) { // <1>

 stage (‘Install Gems’) {

 rvm “bundle install”

 }

 stage (‘Invoke Rake’){

 withEnv(

 [‘DATABASE_URL=postgres://postgres@postgres:5432/’]

) { // <2>

 rvm “bundle exec rake”

 junit ‘spec/reports/*.xml’ // <3>

 }

 }

 }

 }

 }

https://en.wikipedia.org/wiki/Domain-specific_language

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2222

 Notes:

 1.			By	passing	the	“--link”	argument,	the	Docker	daemon	will	allow	the	RVM	container	to	talk	to	the	
PostgreSQL container under the host name postgres.

 2. Use the withEnv step to set environment variables for everything that is in the closure. In this case, the
cfp-app	DB	scaffolding	will	look	for	the	DATABASE_URL	variable	to	override	the	DB	host/user/dbname	
defaults.

 3. Archive the test reports generated by ci_reporter so that Jenkins can display test reports and trend
analysis.

Whitepaper

23Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 23

Security	Scanning
Using Brakeman, the security scanner for Ruby on Rails, is almost trivially easy inside of Jenkins Pipeline, thanks
to the Brakeman plugin which implements the publishBrakeman step. Building on our example above, we can
implement	the	“Security	scan”	stage:

 node(‘docker’) {

 /* --8<--8<-- snipsnip --8<--8<-- */

 stage(‘Security scan’) {

 rvm ‘brakeman -o brakeman-output.tabs’ +

 ‘ --no-progress --separate-models’ // <1>

 publishBrakeman ‘brakeman-output.tabs’ // <2>

 /* --8<--8<-- snipsnip --8<--8<-- */

 }

 }

 Notes:

 1. Run the Brakeman security scanner for Rails and store the output for later in
brakeman-output.tabs

 2. Archive the reports generated by Brakeman so that Jenkins can display detailed reports with trend analysis

http://brakemanscanner.org/
https://wiki.jenkins-ci.org/display/JENKINS/Brakeman+Plugin

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2424

Deploying
Once the tests and security scanning are all working properly, we can start to set up the deployment stage.
Jenkins Pipeline provides the variable currentBuild, which we can use to determine whether our pipeline has been
successful thus far or not. This allows us to add the logic to only deploy when everything is passing:

 node(‘docker’) {

 /* --8<--8<-- snipsnip --8<--8<-- */

 stage(‘Deploy’) {

 if (currentBuild.result == ‘SUCCESS’) { // <1>

 sh ‘./deploy.sh’ // <2>

 }

 else {

 mail (

 subject: “Something is wrong with “ +

 “${env.JOB_NAME} ${env.BUILD_ID}”,

 to: ‘nobody@example.com’,

 body: ‘You should fix it’)

 }

 /* --8<--8<-- snipsnip --8<--8<-- */

 }

 }

 Notes:

 1.			currentBuild	has	the	result	property	which	would	be	‘SUCCESS,’	‘FAILED,’	‘UNSTABLE,’	‘ABORTED’

 2. Only if currentBuild.result is successful should we bother invoking our deployment script (e.g. git push
heroku master)

Conclusion
Here is a thoroughly commented full Jenkinsfile,	which	we	hope	is	a	useful	summation	of	the	example	outlined	
above.	The	consistency	provided	by	Docker	and	Jenkins	Pipeline	above	shows	how	Pipeline	can	improve	project	
delivery	time.	There	is	still	room	for	improvement	however,	which	is	left	as	an	exercise	for	the	reader.	For	example,	
preparing new containers with all their dependencies built-in,	instead	of	installing	them	at	run-time,	or	utilizing	the	
parallel	step	for	executing	RSpec	across	multiple	Jenkins	agents	simultaneously.

https://github.com/rtyler/cfp-app/blob/0e85db6d054deefd637de235766468631f551c7f/Jenkinsfile
https://github.com/rtyler/cfp-app/blob/0e85db6d054deefd637de235766468631f551c7f/Jenkinsfile#L36-L46

Whitepaper

25Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 25

The	beautiful	thing	about	defining	your	continuous	delivery	(and	continuous	security)	pipeline	in	code	is	that	you	
can	continue	to	iterate	on	it!

Sauce	On-Demand	for	UI	Testing
Introduction
Testing	web	applications	across	multiple	browsers	on	different	platforms	can	be	challenging	even	for	smaller	
applications.	With	Jenkins	and	the	Sauce OnDemand plugin,	you	can	wrangle	that	complexity	by	defining	your	
Pipeline	as	Code.	For	this	section	we’ll	use	the	Sauce OnDemand plugin and Nightwatch.js to run Selenium tests
on	a	sample	project.

Required plugins

 » JUnit plugin (v1.19 or greater)
 » Sauce OnDemand plugin (v1.159 or greater)

Starting	from	Framework
We	will	start	off	by	following	Sauce	Labs’	instructions	on	“Setting	up	Sauce	Labs	with	Jenkins.”	We’ll	install	the	
JUnit and Sauce OnDemand plugins, create an account with Sauce Labs and add	our	Sauce	Labs	credentials	to	
Jenkins.

Next,	let’s	use	one	of	the	sample	projects	in	“saucelabs-sample-test-frameworks” on GitHub, which demonstrates
how	to	integrate	Sauce	Labs	with	various	test	frameworks.	For	this	section,	we’ll	use	a	JavaScript-based	

https://wiki.jenkins-ci.org/display/JENKINS/Sauce+OnDemand+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Sauce+OnDemand+Plugin
http://nightwatchjs.org/
https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Sauce+OnDemand+Plugin
https://wiki.saucelabs.com/display/DOCS/Setting+Up+Sauce+Labs+with+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Sauce+OnDemand+Plugin
https://wiki.saucelabs.com/display/DOCS/Installing+and+Configuring+the+Sauce+OnDemand+Plugin+for+Jenkins
https://wiki.saucelabs.com/display/DOCS/Installing+and+Configuring+the+Sauce+OnDemand+Plugin+for+Jenkins
https://github.com/saucelabs-sample-test-frameworks

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2626

framework	called	Nightwatch.js.	

We will fork saucelabs-sample-test-frameworks/JS-Nightwatch.js	and	start	by	adding	a	Jenkinsfile.	Between	the	
sample	and	the	Sauce	Labs	instructions,	we’ll	be	able	to	write	a	pipeline	that	runs	five	tests	on	one	browser	via	
Sauce Connect:

 node {

 stage(‘Build’) {

 checkout scm

 sh ‘npm install’ // <1>

 }

 stage(‘Test’) {

 sauce(‘f0a6b8ad-ce30-4cba-bf9a-95afbc470a8a’) { // <2>

 sauceconnect(options: ‘’,

 useGeneratedTunnelIdentifier: false,

 verboseLogging: false) { // <3>

 sh ‘./node_modules/.bin/nightwatch’ +

 ‘-e chrome --test tests/guineaPig.js || true’ // <4>

 junit ‘reports/**’ // <5>

 step([$class: ‘SauceOnDemandTestPublisher’]) // <6>

 }

 }

 }

 }

 Notes:

 1. Install dependencies

 2.		Use	previously	added	Sauce	credentials.	This	ID	string	will	be	different	on	your	Jenkins	instance

 3. Start up the Sauce Connect tunnel to Sauce Labs

 4.		Run	Nightwatch.js

 5. Use JUnit to track results and show a trend graph

 6. Link result details from Sauce Labs

If	we	run	this	job	a	few	times,	the	JUnit	report	will	show	a	trend	graph.	Also,	the	sample	app	generates	the	

https://github.com/saucelabs-sample-test-frameworks/JS-Nightwatch.js
https://wiki.saucelabs.com/display/DOCS/Sauce+Connect+Proxy

Whitepaper

27Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 27

appropriate SauceOnDemandSessionID	for	each	test,	enabling	the	Jenkins	Sauce	OnDemand	plugin’s	result	
publisher to link results to details Sauce Labs captured during the run.

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 2828

Adding	Platforms
Next,	we’ll	add	a	few	more	platforms	to	the	matrix.	This	will	require	changing	both	the	test	framework	
configuration	and	the	pipeline.	We	will	need	to	add	new	named	combinations	of	platform,	browser	and	browser	
version	(called	“environments”)	to	the	Nightwatch.js	configuration	file,	and	modify	the	pipeline	to	run	tests	in	
those new environments.

This	is	another	perfect	example	of	the	power	of	Pipeline	as	Code.	If	we	were	working	with	a	separately	configured	
pipeline, we would have to make the change to the test framework, then change the pipeline manually. With
our	pipeline	checked	in	as	code,	we	can	change	both	in	one	commit,	preventing	errors	resulting	from	pipeline	
configurations	getting	out	of	sync	with	the	rest	of	the	project.

I added three new environments to nightwatch.json:

 “test_settings” : {

 “default”: { /*----8<----8<----8<----*/ },

 “chrome”: { /*----8<----8<----8<----*/ },

 “firefox”: {

 “desiredCapabilities”: {

 “platform”: “linux”,

 “browserName”: “firefox”,

 “version”: “latest”

 }

 },

 “ie”: {

 “desiredCapabilities”: {

 “platform”: “Windows 10”,

 “browserName”: “internet explorer”,

 “version”: “latest”

 }

 },

 “edge”: {

 “desiredCapabilities”: {

Whitepaper

29Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 29

 “platform”: “Windows 10”,

 “browserName”: “MicrosoftEdge”,

 “version”: “latest”

 }

 }

 }

And	we’ll	modify	the	Jenkinsfile	to	call	them:

 //----8<----8<----8<----8<----8<----8<----

 sauceconnect(options: ‘’,

 useGeneratedTunnelIdentifier: false,

 verboseLogging: false) {

 def configs = [// <1>

 ‘chrome’,

 ‘firefox’,

 ‘ie’,

 ‘edge’

].join(‘,’)

 // Run selenium tests using Nightwatch.js

 sh “./node_modules/.bin/nightwatch” +

 “ -e ${configs} --test tests/guineaPig.js || true” // <2>

 } //----8<----8<----8<----8<----8<----8<----

 Notes:

 1.		Using	an	array	to	improve	readability	and	make	it	easy	to	add	more	platforms	later

 2.		Changed	from	single-quoted	string	to	double-quoted	to	support	variable	substitution

NOTE:	Test	frameworks	have	bugs	too.	Nightwatch.js	(v0.9.8)	generates	incomplete	JUnit	files,	reporting	results	
without	enough	information	in	them	to	distinguish	between	platforms.	A	fix	has	been	implemented	for	this	and	
submitted	a	PR	to	Nightwatch.js.	This	section	shows	output	with	that	fix	applied	locally.

https://github.com/nightwatchjs/nightwatch/pull/1160

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3030

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3131

As	expected,	Jenkins	picked	up	the	new	pipeline	and	ran	Nightwatch.js	on	four	platforms.	Sauce	Labs	recorded	
the	results	and	correctly	linked	them	into	this	build.	Nightwatch.js	was	already	configured	to	use	multiple	worker	
threads	to	run	tests	against	those	platforms	in	parallel,	and	our	Sauce	Labs	account	supported	running	them	all	at	
the	same	time,	letting	us	cover	four	configurations	in	less	than	twice	the	time;	the	added	time	was	mostly	due	to	
individual new environments taking longer to complete.

Conclusion
Considering the complexity of the system, it is rather easy to integrate Jenkins with Sauce OnDemand to start
testing	on	multiple	browsers.	The	plugin	worked	flawlessly	with	Jenkins	Pipeline.	Below,	we’ll	go	ahead	and	run	
some	additional	tests	to	show	that	failure	reporting	also	behaves	as	expected.

 //----8<----8<----8<----8<----8<----8<----

Whitepaper

32Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 32

 sh “./node_modules/.bin/nightwatch -e ${configs} || true” // <1>

 //----8<----8<----8<----8<----8<----8<----

 Notes:

 1.		Removed	–	test	filter	to	run	all	tests	

Epilogue:	Jenkins	Pipeline	vs.	Freestyle
Just	for	comparison,	here’s	the	final	state	of	this	job	in	Freestyle	UI	versus	fully-commented	Jenkins	Pipeline	code.	
NOTE: This includes the AnsiColor Plugin	to	support	Nightwatch.js’	default	ANSI	color	output.

Freestyle

https://wiki.jenkins-ci.org/display/JENKINS/AnsiColor+Plugin

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3333

Whitepaper

34Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 34

Jenkins Pipeline

 node {

 stage(‘Build’) {

 checkout scm

 // Install dependencies

 sh ‘npm install’

 }

 stage(‘Test’) {

 // Add sauce credentials

 sauce(‘f0a6b8ad-ce30-4cba-bf9a-95afbc470a8a’) {

 // Start sauce connect

 sauceconnect(options: ‘’,

 useGeneratedTunnelIdentifier: false,

 verboseLogging: false) {

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3535

 // List of browser configs we’ll be testing against.

 def configs = [

 ‘chrome’,

 ‘firefox’,

 ‘ie’,

 ‘edge’

].join(‘,’)

 // Nightwatch.js supports color output

 // wrap this step for ansi color

 wrap(

 [$class: ‘AnsiColorBuildWrapper’, ‘colorMapName’: ‘XTerm’]) {

 // Run selenium tests using Nightwatch.js

 // Ignore error codes. The junit publisher will

 // cover setting build status.

 sh “./node_modules/.bin/nightwatch -e ${configs} || true”

 }

 junit ‘reports/**’

 step([$class: ‘SauceOnDemandTestPublisher’])

 }

 }

 }

 }

Not only is the Pipeline as Code more compact, it also allows for comments that further clarify what is being
done.	As	noted	earlier,	changes	to	this	pipeline	code	are	committed	the	same	as	changes	to	the	rest	of	the	project,	
keeping everything synchronized, reviewable and testable at any commit. In fact, you can view the full set of
commits for this blog post in the blog/sauce-pipeline branch of the bitwiseman/JS-Nightwatch.js repository.

Links
 » saucelabs-sample-test-frameworks/JS-Nightwatch.js	
 » bitwiseman/JS-Nightwatch.js
 » Sauce Connect

https://github.com/bitwiseman/JS-Nightwatch.js/tree/blog/sauce-pipeline
https://github.com/bitwiseman/JS-Nightwatch.js
https://github.com/saucelabs-sample-test-frameworks/JS-Nightwatch.js
https://github.com/bitwiseman/JS-Nightwatch.js
https://wiki.saucelabs.com/display/DOCS/Sauce+Connect+Proxy

Whitepaper

36Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 36

Using xUnit to Publish Results
The JUnit plugin	is	the	go-to	test	result	reporter	for	many	Jenkins	projects,	but	it	is	not	the	only	one	available.	The	
xUnit plugin	is	a	viable	alternative	that	supports	JUnit	and	many	other	test	result	file	formats.

Required plugins

 » xUnit plugin (v1.102 or greater)

Introduction
No	matter	the	project,	you	need	to	gather	and	report	test	results.	JUnit	is	one	of	the	most	widely	supported	
formats for recording test results. For scenarios where your tests are stable and your framework can produce
JUnit	output,	the	JUnit	plugin	is	ideal	for	reporting	results	in	Jenkins.	It	will	consume	results	from	a	specified	file	
or	path,	create	a	report	and	if	it	finds	test	failures,	it	will	set	the	the	job	state	to	“unstable”	or	“failed.”

https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3737

There	are	also	plenty	of	scenarios	where	the	JUnit	plugin	is	not	enough.	If	your	project	has	some	failing	tests	that	
will	take	some	time	to	fix,	or	if	there	are	some	flaky	tests,	the	JUnit	plugin’s	simplistic	view	of	test	failures	may	be	
difficult	to	work	with.

No	problem,	the	Jenkins	plugin	model	lets	us	replace	the	JUnit	plugin	functionality	with	similar	functionality	from	
another plugin. Jenkins Pipeline lets us do this in safe, stepwise fashion where we can test and debug each of our
changes.

In	this	section,	we’ll	cover	how	to	replace	the	JUnit	plugin	with	the	xUnit	plugin	in	Jenkins	Pipeline	code	to	
address	a	few	common	test	reporting	scenarios.

Initial	Setup
We’ll	use	the	JS-Nightwatch.js	sample	project	from	the	previous	section	to	demonstrate	a	couple	of	common	
scenarios	that	xUnit	handles	better.	We	will	need	to	have	the	latest	JUnit plugin and xUnit plugin installed on our
Jenkins	server.	We	can	keep	changes	in	the	same	fork	of	the	JS-Nightwatch.js	sample	project	on	GitHub	as	the	
previous	section,	but	use	the	blog/xunit branch.

Here	is	what	the	Jenkinsfile	looked	like	at	the	end	of	the	previous	section	and	what	the	report	page	looks	like	after	
a few runs:

 node {

 stage(‘Build’) {

 checkout scm

 // Install dependencies

 sh ‘npm install’

 }

 stage(‘Test’) {

 // Add sauce credentials

 sauce(‘f0a6b8ad-ce30-4cba-bf9a-95afbc470a8a’) {

 // Start sauce connect

 sauceconnect(options: ‘’,

 useGeneratedTunnelIdentifier: false,

 verboseLogging: false) {

 // List of browser configs we’ll be testing against.

 def configs = [

 ‘chrome’,

 ‘firefox’,

 ‘ie’,

 ‘edge’

].join(‘,’)

https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin
https://github.com/bitwiseman/JS-Nightwatch.js/tree/blog/xunit

Whitepaper

38Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 38

 // Nightwatch.js supports color output

 // wrap this step for ansi color

 wrap(

 [$class: ‘AnsiColorBuildWrapper’, ‘colorMapName’: ‘XTerm’]) {

 // Run selenium tests using Nightwatch.js

 // Ignore error codes. The junit publisher will

 // cover setting build status.

 sh “./node_modules/.bin/nightwatch -e ${configs} || true”

 }

 junit ‘reports/**’

 step([$class: ‘SauceOnDemandTestPublisher’])

 }

 }

 }

 }

Switching	from	JUnit	to	xUnit
We’ll	start	by	replacing	JUnit	with	xUnit	in	our	pipeline.	We	will	use	the	Snippet	Generator	to	create	the	step	with	
the	right	parameters.	The	main	downside	of	using	the	xUnit	plugin	is	that	while	it	is	Jenkins	Pipeline	compatible,	it	
still	uses	the	more	verbose	step()	syntax	–	and	it	has	some	very	rough	edges	around	that,	too.

 // Original JUnit step

 junit ‘reports/**’

 // Equivalent xUnit step - generated (reformatted)

 step([$class: ‘XUnitBuilder’,

 testTimeMargin: ‘3000’, thresholdMode: 1,

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 3939

 thresholds: [

 [$class: ‘FailedThreshold’,

 failureNewThreshold: ‘’, failureThreshold: ‘’,

 unstableNewThreshold: ‘’, unstableThreshold: ‘1’],

 [$class: ‘SkippedThreshold’,

 failureNewThreshold: ‘’, failureThreshold: ‘’,

 unstableNewThreshold: ‘’, unstableThreshold: ‘’]],

 tools: [

 [$class: ‘JUnitType’, deleteOutputFiles: false,

 failIfNotNew: false, pattern: ‘reports/**’,

 skipNoTestFiles: false, stopProcessingIfError: true]]

])

 // Equivalent xUnit step - cleaned

 step([$class: ‘XUnitBuilder’,

 thresholds: [[$class: ‘FailedThreshold’, unstableThreshold: ‘1’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])

If we replace the junit	step	in	our	Jenkinsfile	with	that	last	example	above,	it	produces	a	report	and	job	result	
identical	to	the	JUnit	plugin	but	using	the	xUnit	plugin.		Easy!

 node {

 stage(‘Build’) { /* ... */ }

 stage(‘Test’) {

 // Add sauce credentials

 sauce(‘f0a6b8ad-ce30-4cba-bf9a-95afbc470a8a’) {

 // Start sauce connect

 sauceconnect(/* ... */) {

 // ... snip ...

 // junit ‘reports/**’

 step([$class: ‘XUnitBuilder’,

 thresholds: [

 [$class: ‘FailedThreshold’, unstableThreshold: ‘1’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])

 // ... snip ...

 }

 }

 }

 }

Whitepaper

40Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 40

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 4141

Accept	a	Baseline
Most	projects	don’t	start	off	with	automated	tests	that	will	pass	or	even	will	run.	They	start	with	developers	
hacking	and	prototyping,	and	eventually	they	start	to	write	tests.	As	new	tests	are	written,	having	tests	checked-
in,	running	and	failing	can	provide	valuable	information.	With	the	xUnit	plugin,	we	can	accept	a	baseline	of	failed	
cases	and	drive	that	number	down	over	time.	Now	that	we’ve	switched	to	the	xUnit	Plugin	we	can	modify	our	
pipeline	to	fail	jobs	only	if	the	number	of	failures	is	greater	than	an	expected	baseline	–	in	this	case,	four	failures.	
When	we	run	the	job	with	the	following	change,	the	reported	numbers	will	remain	the	same,	but	the	job	will	be	
marked as passing.

 Jenkinsfile

 // The rest of the Jenkinsfile is unchanged.

 // Only the xUnit step() call is modified.

 step([$class: ‘XUnitBuilder’,

 thresholds: [[$class: ‘FailedThreshold’, failureThreshold: ‘4’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])

Whitepaper

42Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 42

Next,	we	can	also	check	that	the	plugin	reports	the	job	as	failed	if	more	failures	occur.	Since	this	is	sample	code,	
we’ll	do	this	by	adding	another	failing	test	and	checking	that	the	job	is	marked	as	failed	on	the	next	run.

 tests/guineaPig.js

 // ... snip ...

 ‘Guinea Pig Assert Title 0 - D’: function(client) { /* ... */ },

 ‘Guinea Pig Assert Title 0 - E’: function(client) {

 client

 .url(‘https://saucelabs.com/test/guinea-pig’)

 .waitForElementVisible(‘body’, 1000)

 //.assert.title(‘I am a page title - Sauce Labs’);

 .assert.title(‘I am a page title - Sauce Labs - Cause a Failure’);

 },

 afterEach: function(client, done) { /* ... */ }

 // ... snip ...

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 4343

In	a	real	project,	we’d	make	fixes	over	a	number	of	commits,	progressively	bringing	the	number	of	failures	down	
and	adjusting	our	baseline	to	match.	Since	this	is	a	sample,	we’ll	just	make	all	tests	pass,	and	set	the	job	failure	
threshold for failed and skipped cases to zero.

 Jenkinsfile

 // The rest of the Jenkinsfile is unchanged.

 // Only the xUnit step() call is modified.

 step([$class: ‘XUnitBuilder’,

 thresholds: [

 [$class: ‘SkippedThreshold’, failureThreshold: ‘0’],

 [$class: ‘FailedThreshold’, failureThreshold: ‘0’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])

 tests/guineaPig.js

 // ... snip ...

 ‘Guinea Pig Assert Title 0 - D’: function(client) { /* ... */ },

 ‘Guinea Pig Assert Title 0 - E’: function(client) {

 client

 .url(‘https://saucelabs.com/test/guinea-pig’)

 .waitForElementVisible(‘body’, 1000)

 .assert.title(‘I am a page title - Sauce Labs’);

 },

 afterEach: function(client, done) { /* ... */ }

 // ... snip ...

 tests/guineaPig_1.js

 // ... snip ...

 ‘Guinea Pig Assert Title 1 - A’: function(client) {

 client

 .url(‘https://saucelabs.com/test/guinea-pig’)

 .waitForElementVisible(‘body’, 1000)

 .assert.title(‘I am a page title - Sauce Labs’);

 },

 // ... snip ...

Whitepaper

44Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 44

Allow	for	Flakiness
We	have	all	known	the	frustration	of	having	one	flaky	test	that	fails	once	every	ten	jobs.	You	want	to	keep	it	
active	so	you	can	work	on	isolating	the	source	of	the	problem,	but	you	also	don’t	want	to	destabilize	your	CI	
pipeline	or	reject	commits	that	are	actually	okay.	You	could	move	the	test	to	a	separate	job	that	runs	the	flaky	
tests,	but	that	just	leads	to	a	job	that	is	always	in	a	failing	state	and	a	pile	of	flaky	tests	that	no	one	looks	at.

With	the	xUnit	plugin,	we	can	keep	the	flaky	test	in	our	main	test	suite,	but	still	allow	the	job	to	pass.	Let’s	add	a	
sample	flaky	test.	After	a	few	runs,	we	can	see	that	the	test	fails	intermittently	and	causes	the	job	to	fail,	too.

 tests/guineaPigFlaky.js

 // New test file: tests/guineaPigFlaky.js

 var https = require(‘https’);

 var SauceLabs = require(“saucelabs”);

 module.exports = {

 ‘@tags’: [‘guineaPig’],

 ‘Guinea Pig Flaky Assert Title 0’: function(client) {

 var expectedTitle = ‘I am a page title - Sauce Labs’;

 // Fail every fifth minute

 if (Math.floor(Date.now() / (1000 * 60)) % 5 === 0) {

 expectedTitle += “ - Cause failure”;

 }

Whitepaper

45Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 45

 client

 .url(‘https://saucelabs.com/test/guinea-pig’)

 .waitForElementVisible(‘body’, 1000)

 .assert.title(expectedTitle);

 }

 afterEach: function(client, done) {

 client.customSauceEnd();

 setTimeout(function() {

 done();

 }, 1000);

 }

 };

Whitepaper

46Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 46

You	can	almost	hear	your	teammates	screaming	in	frustration,	just	looking	at	this	report.	To	allow	specific	tests	to	
be	unstable	but	not	others,	we	will	add	a	guard	“suite	completed”	test	to	the	suites	that	should	be	stable,	and	keep	
the	flaky	test	on	its	own.	Then	we’ll	tell	xUnit	to	allow	a	number	of	failed	tests,	but	no	skipped	ones.	If	any	test	
fails	other	than	the	ones	we	allow	to	be	flaky,	it	will	result	in	one	or	more	skipped	tests	and	will	fail	the	build.

 Jenkinsfile

 // The rest of the Jenkinsfile is unchanged.

 // Only the xUnit step() call is modified.

 step([$class: ‘XUnitBuilder’,

 thresholds: [

 [$class: ‘SkippedThreshold’, failureThreshold: ‘0’],

 // Allow for a significant number of failures

 // Keeping this threshold so that large failures are guaranteed

 // to still fail the build

 [$class: ‘FailedThreshold’, failureThreshold: ‘10’]],

 tools: [[$class: ‘JUnitType’, pattern: ‘reports/**’]]])

 tests/guineaPig.js

 // ... snip ...

 ‘Guinea Pig Assert Title 0 - E’: function(client) { /* ... */ },

 ‘Guinea Pig Assert Title 0 - Suite Completed’: function(client) {

 // No assertion needed

 },

 afterEach: function(client, done) { /* ... */ }

 // ... snip ...

 tests/guineaPig_1.js

 // ... snip ...

 ‘Guinea Pig Assert Title 1 - E’: function(client) { /* ... */ },

 ‘Guinea Pig Assert Title 1 - Suite Completed’: function(client) {

 // No assertion needed

 },

 afterEach: function(client, done) { /* ... */ }

 // ... snip ...

After	a	few	more	runs,	as	you	can	see	in	build	number	18,	the	flaky	test	is	still	being	flaky,	but	it	is	no	longer	
failing	the	build.	Meanwhile,	if	another	test	fails,	it	will	cause	the	“suite	completed”	test	to	be	skipped,	failing	the	
job.	If	this	were	a	real	project,	the	test	owner	could	then	instrument	and	eventually	fix	the	test.	When	they	were	
confident	they	had	stabilized	the	test,	they	could	add	a	suite_completed test	after	it	to	enforce	passing	
without having to make changes to other tests or framework.

Whitepaper

Jenkins Pipeline with Plugins: Real-World Use Cases for Jenkins Pipeline 4747

Conclusion
This	section	has	shown	how	to	migrate	from	the	JUnit	plugin	to	the	xUnit	plugin	on	an	existing	project	in	Jenkins	
Pipeline.	It	also	covered	how	to	use	the	features	of	the	xUnit	plugin	to	get	more	meaningful	and	effective	Jenkins	
reporting.	Not	covered	was	how	many	other	formats	xUnit	supports	–	from	CCPUnit	to	MSTest.	You	can	also	
write	your	own	XSL	for	result	formats	not	on	the	known/supported	list.

Links

 » xUnit plugin
 » bitwiseman/JS-Nightwatch.js
 » Saucelabs-sample-test-frameworks

https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin
https://github.com/bitwiseman/JS-Nightwatch.js
https://github.com/saucelabs-sample-test-frameworks

Title of Whitepaper

CloudBees, Inc.
4 North Second Street | Suite 1270

San Jose, CA 95113
United States

www.cloudbees.com
info@cloudbees.com

CloudBees	CI	is	built	on	top	of	Jenkins,	an	independent	community	project.	Read	more	about	Jenkins	at:	www.cloudbees.com/jenkins/about	

©2022	CloudBees,	Inc.		CloudBees	is	a	registered	trademark	and	CloudBees	CI,	CloudBees	CD,	CloudBees	Cloud	Native	CI/CD,	CloudBees	
Engineering	Efficiency,	CloudBees	Feature	Management,	CloudBees	Build	Acceleration	and	CloudBees	CodeShip	are	trademarks	of	CloudBees.	
Other	products	or	brand	names	may	be	trademarks	or	registered	trademarks	of	their	respective	holders.

0122v00

Learn more!
www.cloudbees.com/get-started

Whitepaper

Summary
In	this	guide,	we’ve	shown	a	number	of	use	cases	for	Jenkins	plugins	and	Jenkins	Pipeline.		

Starting	with	an	outline	of	stages,	we	have:

 » Constructed	a	pipeline	from	scratch,	iterating	on	it	to	build	a	continuous	delivery	pipeline	using	Docker	
containers that interact with each other

 » Added	an	HTML	report	to	an	existing	pipeline	
 » Made	Jenkins	notify	us	when	builds	start,	succeed	or	fail
 » Implemented	cloud-based	and	parallelized	browser	testing
 » Improved	result	processing	with	tolerance	for	flaky	tests

We	hope	you	have	found	it	informative	and	helpful.

For	additional	resources,	please	visit:	www.cloudbees.com/devops/continuous-delivery/pipeline

https://www.cloudbees.com/devops/continuous-delivery/pipeline

