
Quick Guide:  
5 Steps to Tackle
Shadow Code Now
Security, Compliance, and Platform
Stability Start with Visibility

Guide

Your greatest vulnerability in high-velocity software delivery
environments may be hiding in plain sight, or worse, completely invisible.

This is called shadow code: unapproved, unreviewed, and untracked code that finds
its way into your CI/CD pipelines outside the standard guardrails of your software
delivery lifecycle. This risk is far from hypothetical. Nearly ,
even from advanced models, contains security flaws such as SQL injection and
cross-site scripting.

It can come from anywhere: AI-assisted development tools like Copilot or ChatGPT,
one-off manual pipeline tweaks, forgotten scripts left by former team members,
unregistered runners, or even third-party integrations that were never formally
onboarded.

Once it’s in your system, shadow code can quietly undermine , ,
and , while building operational debt that may not be uncovered
until it’s too late.

45% of AI-generated code

security compliance
platform stability

What shadow code is and why it’s
dangerous to your CI/CD pipelines

How to identify shadow code in your
current systems

Practical steps to control and eliminate
existing shadow code

Strategies to prevent shadow code from
creeping back in

In this guide, we’ll break down:

https://www.itpro.com/technology/artificial-intelligence/researchers-tested-over-100-leading-ai-models-on-coding-tasks-nearly-half-produced-glaring-security-flaws?utm_source=chatgpt.com
https://www.cloudbees.com/use-case/automated-devsecops
https://www.cloudbees.com/capabilities/compliance/features
https://www.cloudbees.com/platform-engineering-research

Shadow code is any build logic, automation, or script that runs in your software
delivery process but operates outside standard review, approval, or security
scanning controls. It’s not inherently malicious, but it’s inherently dangerous,
because it’s invisible to governance and often bypasses organizational safeguards.

It most often appears when:

You can’t govern what you can’t see. Left unchecked, shadow code becomes a silent
multiplier of risk that can:

What is Shadow Code?

Why It Matters

AI-assisted tools write config files,  
CI jobs, or scripts without code review

Manual changes are made directly  
in the build or deployment pipelines

Team turnover leaves behind orphaned
assets like runners, credentials, or shell
scripts

Unapproved third-party tools are
connected to your CI/CD without
security validation

Expose sensitive data by leaking credentials or tokens in unmonitored scripts

Introduce unstable
dependencies

that cause silent build breaks and runtime failures

Create compliance
blind spots

by bypassing audit trails and mandated reviews

Increase operational
complexity

as security and engineering teams spend cycles  
untangling the mess

Weaken supply chain
security

by introducing unverified tools, unmanaged runners,  
or hidden integration points that attackers can exploit

The five steps provide a framework for finding hidden build logic,
enforcing governance, and maintaining continuous assurance across your delivery
pipelines.

security-first

5 Steps to Tackle Shadow Code Now

Step 1
Inventory All
Build and
Pipeline
Assets

Step 2
Implement
AI-Aware
Developm
ent Policies

Why it matters: You can’t secure what you can’t see. Shadow jobs,
orphaned runners, and unmanaged credentials
expand your attack surface and weaken auditability.

Take action: � Catalog every pipeline (active and dormant) along
with custom scripts, CLI tools, service accounts,
runners, jobs, and dependencies. Many teams are
shocked to learn how many artifacts are running
without active ownership.

� Use your CI/CD platform or specialized tools like
and to automatically

discover and map jobs, credentials, runners, and
their relationships.

CloudBees Unify CloudBees CI

Pro Tip: Run a full “shadow asset sweep” at least once per
quarter to ensure your inventory stays current and
defensible during audits.

Why it matters: Generative AI is now part of ,
but it changes the threat landscape. AI tools can
produce code that can bypass peer review and
security scanning, creating invisible vulnerabilities.

modern development

Take action: � Require developers to label AI-assisted
contributions in pull requests

� Require teams to peer review any AI-generated code
before merging it.

� Maintain an “Approved AI Tools” list that clearly
defines where and how AI can be used

Pro Tip: Create accountability without blocking innovation.
Bake AI-use disclosure into your workflow for
transparency without slowing delivery.

https://www.cloudbees.com/capabilities/compliance
https://www.cloudbees.com/unify
https://www.cloudbees.com/capabilities/continuous-integration
https://www.cloudbees.com/blog/the-definitive-guide-to-modern-software-delivery

Step 3
Embed
Guardrails
Directly in
Your
Pipelines

Step 4
Continuously
Monitor for
Invisible
Changes

Step 5
Educate and
Empower
Your
Developers

Why it matters: Security policies only work if they’re enforced
automatically, at scale. Manual reviews can’t keep up
with tool sprawl.

Take action: � Implement policy-as-code to block unauthorized
jobs, tokens, API calls, or dependencies

� Enforce registry and image checks to reduce supply
change risk

Pro Tip: Use tools like OPA and CloudBees to enforce policy-
as-code directly in your pipelines, catching rogue
jobs before they can weaken your delivery chain.

Why it matters: Pipelines often look static in Git, but in reality, they
evolve dynamically - making \shadow code nearly
invisible.

Take action: � Monitor jobs appearing outside version control,
detached branches with deployment permissions,
and code paths skipping scans

� Unify secrets monitoring and drift dashboards to
surface risks early

Pro Tip: Treat drift detection as a control point - continuous
monitoring reduces mean time to detect (MTTD) for
hidden vulnerabilities.

Why it matters: Security isn’t effective in isolation. Preventing
shadow code requires a culture where developers
own security outcomes alongside delivery speed.

Take action: � Host a “Shadow Code Awareness” workshop and
add PR checklists

� Give developers a clear reporting path for rogue jobs
or AI-generated contributions

� Empower engineers to report rogue jobs or AI-
classified code

Pro Tip: Position security as an enabler, not a blocker.
Celebrate developers who flag shadow code,
making secure practices part of how they innovate.

Continuously redefine what’s possible through software. Book a demo today at cloudbees.com/contact-us

cloudbees.com 
info@cloudbees.com

CloudBees, Inc. © CloudBees, Inc., CloudBees® and the Infinity® logo are registered trademarks of CloudBees, Inc. in the
United States and may be registered in other countries. Other products or brand names may be trademarks
or registered trademarks of CloudBees, Inc. or their respective holders.

Jenkins® is a registered trademark of LF Charities Inc.  
Read more about Jenkins at: cloudbees.com/jenkins/about

Shadow code isn’t an edge-case problem. It is the next serious blind spot in the
software supply chain. The cost of ignoring it will always outweigh the effort of
addressing it.

The good news? With the right combination of visibility tools, automated guardrails,
continuous monitoring, and developer empowerment, platform teams can address
this challenge without slowing delivery.

Modern solutions are evolving to help organizations gain unified visibility across
their software delivery ecosystem, automatically detect security gaps, and
streamline remediation, turning what used to be manual detective work into
proactive risk management.

The Bottom Line: Seal Hidden
Vulnerabilities in Your Software Supply
Chain

See these principles in action.

Watch how CloudBees Unify provides a single experience for
software delivery, helping enterprises streamline development,
reduce manual operational tasks, and coordinate work across
different systems.

https://cloudbees.com/contact-us
https://cloudbees.com
mailto:info@cloudbees.com
https://cloudbees.com/jenkins/about
https://www.cloudbees.com/blog/unified-devops-solution

	P01
	P02
	P03
	P04
	P05

