

late-stage cancer patients.

methylation levels in cancer patients.

cancer patients from normals.

clear linearity of signal.

beyond gross methylation levels as assessed by WGBS.

Experimental Design & QC

Study design		Participant characteristic	
13 sam (cfDN	iples IA)		Affect
WGBS	Fractionation	Age (y) Median (Min, Max)	70 (49,
••	$\bullet \bullet \bullet \bullet$	Sex	
ACCGCTCTC	$\bigcirc \bigcirc \bigcirc \bigcirc$	Female	3
Bisulfite treatment	Boad treatment	Male	6
↓ ●● ●		Cancer Site	
ACCG T T T TC		Breast	2
Detect methylation	Detect highly	Colon	2
at base-level resolution	methylated regions	Lung	2
		Rectum	2
Sequence to ~	12X coverage	Renal	1
How well d	oes each assay pe	erform from a technic	al stan
100-	40-		_ 100 -

Comparison of bisulfite- and methyl-capture approaches for mapping the cell-free methylome in late-stage cancer patients

Nicole Lambert, Rohith Srivas, Neil Peterman, Alexander Robertson, Tim Wilson, Peter George, Haluk Tezcan

Lexent Bio, San Diego, CA & San Francisco, CA

To assess the repeatability of WGBS, we generated libraries in triplicate from two patients with late-stage cancer (Patient #1 and #2), as well as "synthetic" samples consisting of artificially methylated DNA mixed with hypomethylated DNA in specific proportions (25%, 50% and 75%). We observed significantly higher concordance (P<0.05; Mann-Whitney U test) between replicates, in methylation levels across numerous genomic regions (Panels I & J). More over, we observed a clear linearity of signal, down to a resolution of 20 kbp, amongst our synthetic samples (Panel K).

					
Patient #1	Patient #2	2 75%	50%		
Aug Mathulation					
Avg. Wethylation					
	$\cap \cap$	20406	081		

Mapping 5-hMC changes in cfDNA

To assess the levels of 5-hydroxymethylcytosine (5-hMC) in cfDNA, we performed oxy-bisulfite sequencing (oxBS) in the same cohort of patients. Whereas, WGBS measures levels of both 5-hMC and 5-mC, oxBS measures only 5-mC; thus, by subtracting measurements made in oxBS from WGBS, we can quantify 5-hMC levels. While we were unable to detect any 5-hMC at the resolution of single CpG sites (likely due to insufficient read depth; Panel L), mean 5-hMC levels across multiple genomic regions of interest ranged from 1-4% (Panel M). Clustering samples based on 5-hMC levels in these regions showed modest separation between cancer and normals, however, the extent of separation was no better than methylation levels derived from WGBS (Panels N-Q).

Robustness & repeatability of WGBS

