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Biomarker Findings
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Genomic Findings
For a complete list of the genes assayed, please refer to the Appendix.

NTRK1NTRK1 A10A107V - subclonal,7V - subclonal,
rrearrearrangangement intrement intron 6on 6††

CD2CD2774 (PD-L1)4 (PD-L1) amplificationamplification
EEGFRGFR amplification - equivamplification - equivocalocal††

PDCD1LPDCD1LG2 (PD-L2)G2 (PD-L2) amplificationamplification
AATRXTRX T158T1582f2fs*2s*244
CCADAD V12V12226I6I
CDKN2A/BCDKN2A/B loslosss
CCTNNA1TNNA1 R55R551Q1Q
EPHA3EPHA3 amplificationamplification
FFANCD2ANCD2 truncation intrtruncation intron 31on 31
FFOOXP1XP1 G433*, amplificationG433*, amplification

JJAK2AK2 amplification - equivamplification - equivocalocal††

KDM4CKDM4C amplificationamplification
MITFMITF amplificationamplification
NONOTTCH1CH1 D18D18770N0N
PPAX5AX5 loslosss
PPCLCLOO A915S - subclonalA915S - subclonal††

PRKDCPRKDC T12T12669M9M
PPTPN11TPN11 V428MV428M
SMARSMARCCA4A4 G1232DG1232D
TP53TP53 R2R273H, R1773H, R175H5H
ZMZMYYM3M3 rrearrearrangangement eement exxon 17on 17

† See About the Test in appendix for details.
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(IN O(IN OTHER TUTHER TUMOR TYPE)MOR TYPE)

NTRK1 - A107V - subclonal, rearrangement
intron 6

7 T7 Trialsrials see psee p.. 3434

Larotrectinib Crizotinib

CD274 (PD-L1) - amplification
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none Atezolizumab

Avelumab

Cemiplimab-rwlc

Durvalumab

Nivolumab

Pembrolizumab

EGFR - amplification - equivocal
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none Afatinib
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Erlotinib
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Lapatinib

Panitumumab

PDCD1LG2 (PD-L2) - amplification

10 T10 Trialsrials see psee p.. 3636

none Atezolizumab

Avelumab

Cemiplimab-rwlc

Durvalumab

Nivolumab

Pembrolizumab
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GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIALS OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity
implications, see the Genomic Findings section.

NONOTETE Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type.
Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.
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EPHA3 -EPHA3 - amplification
FFANCD2 -ANCD2 - truncation intron 31
FFOOXP1 -XP1 - G433*, amplification
JJAK2 -AK2 - amplification - equivocal
KDM4C -KDM4C - amplification

MITF -MITF - amplification
NONOTTCH1 -CH1 - D1870N
PPAX5 -AX5 - loss
PPCLCLO -O - A915S - subclonal
PRKDC -PRKDC - T1269M
PPTPN11 -TPN11 - V428M
SMARSMARCA4 -CA4 - G1232D
TP53 -TP53 - R273H, R175H
ZMZMYYM3 -M3 - rearrangement exon 17
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BIOMARKERBIOMARKER

Microsatellite status
CACATEGORTEGORYY

MSI-High

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
On the basis of prospective clinical evidence in
multiple solid tumor types, MSI and associated
increased mutational burden 1-2 may predict
sensitivity to anti-PD-1 and anti-PD-L1
immune checkpoint inhibitors3-4 2,5-6,
including the approved therapies nivolumab7-8,
pembrolizumab 9-10, atezolizumab, avelumab,
and durvalumab3-4 5.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Reports of MSI in sarcomas in the literature
are conflicting and varied due to substantial
heterogeneity, lack of consensus on the
markers and methods used for MSI
assessment, and small sample size in most
studies 11. In a computational analysis of paired

tumor and normal sarcomas in the TCGA
dataset, of which 40% were leiomyosarcomas
and 25% were liposarcomas, only 0.8% (2/255)
of samples were MSI-high (MSI-H) 12. In
smaller studies of soft tissue sarcoma, reports
of MSI at any level have been rare, with the
highest incidences between 11% (2/18) to 25%
(10/40) of cases 13-18. In one study, MSI was
reported to occur more frequently in high-
grade soft tissue sarcomas compared with
lower grade 19. However, the prognostic
significance of MSI in sarcoma is unknown
(PubMed, Jan 2018).

FINDING SUMMARFINDING SUMMARYY
Microsatellite instability (MSI) is a condition of
genetic hypermutability that generates
excessive amounts of short insertion/deletion
mutations in the genome; it generally occurs at
microsatellite DNA sequences and is caused by
a deficiency in DNA mismatch repair (MMR)
in the tumor 20. Defective MMR and
consequent MSI occur as a result of genetic or
epigenetic inactivation of one of the MMR

pathway proteins, primarily MLH1, MSH2,
MSH6, or PMS2 20-22. This sample has a high
level of MSI, equivalent to the clinical
definition of an MSI-high (MSI-H) tumor: one
with mutations in >30% of microsatellite
markers 23-25. MSI-H status indicates high-level
deficiency in MMR and typically correlates
with loss of expression of at least one, and
often two, MMR family proteins 20,22,24-25.
While approximately 80% of MSI-H tumors
arise due to somatic inactivation of an MMR
pathway protein, about 20% arise due to
germline mutations in one of the MMR genes
20, which are associated with a condition
known as Lynch syndrome (also known as
hereditary nonpolyposis colorectal cancer or
HNPCC) 26. Lynch syndrome leads to an
increased risk of colorectal, endometrial,
gastric, and other cancers 26-28 and has an
estimated prevalence in the general population
ranging from 1:600 to 1:2000 29-31. Therefore,
in the appropriate clinical context, germline
testing of MLH1, MSH2, MSH6, and PMS2 is
recommended.
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BIOMARKERBIOMARKER

Tumor Mutational
Burden
CACATEGORTEGORYY

TMB-High (40 Muts/Mb)

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
On the basis of emerging clinical evidence,
increased TMB may be associated with greater
sensitivity to immunotherapeutic agents,
including anti-CTLA-4 32, anti-PD-L1 33-36, and
anti-PD-1 therapies 9-10,37; FDA-approved
agents include ipilimumab, atezolizumab,
avelumab, durvalumab, pembrolizumab, and
nivolumab. In multiple solid tumor types,
higher mutational burden has corresponded
with response and improved prognosis.
Pembrolizumab improved progression-free
survival (14.5 vs. 3.4-3.7 months) for patients
with non-small cell lung cancer (NSCLC) and
higher mutational load (greater than 200
nonsynonymous mutations; hazard ratio =
0.19)10. In studies of patients with either
NSCLC or colorectal cancer (CRC), patients
whose tumors harbored elevated mutational
burden reported higher overall response rates
to pembrolizumab 9-10,37. Anti-PD-1 therapies
have achieved clinical benefit for certain
patients with high mutational burden,
including 3 patients with endometrial
adenocarcinoma who reported sustained
partial responses (PRs) following treatment

with pembrolizumab 38 or nivolumab 39, a
patient with hypermutant glioblastoma who
obtained clinical benefit from pembrolizumab
40, 2 pediatric patients with biallelic mismatch
repair deficiency-associated ultrahypermutant
glioblastoma who experienced clinically and
radiologically significant responses to
nivolumab 41, and 2 patients with
microsatellite-stable rectal cancers, 1 who
achieved an ongoing PR to pembrolizumab and
the other an ongoing complete response to
nivolumab 42. For patients with melanoma,
mutational load was associated with long-term
clinical benefit from ipilimumab 32,43 and anti-
PD-1/anti-PD-L1 treatments 34. For patients
with metastatic urothelial carcinoma (mUC),
those who responded to atezolizumab
treatment had a significantly increased
mutational load (12.4 mutations [muts] per
megabase [Mb]) compared to nonresponders
(6.4 muts/Mb)33, and mutational load of 16
muts/Mb or higher was associated with
significantly longer overall survival 35. In a
retrospective analysis of 17 solid tumor types
(comprised of 47% NSCLC, 40% mUC, and 13%
encompassing 15 other solid tumors), a TMB of
≥16 muts/Mb associated with an objective
response rate to atezolizumab of 30% vs. 14%
for chemotherapy alone44.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Soft tissue sarcomas harbor a median TMB of
2.5 mutations per megabase (muts/Mb), with
angiosarcoma (13.4%) and malignant

peripheral nerve sheath tumor (MPNST) (8.2%)
having the highest percentage of cases with
high TMB (>20 muts/Mb)45. Increased
mutation burden has been reported in
undifferentiated pleomorphic sarcomas as
compared to Ewing sarcomas or
rhabdomyosarcomas 46-48. The association of
mutational burden and prognosis of specific
soft tissue sarcoma subtypes has not been
extensively investigated in the literature
(PubMed, Dec 2018).

FINDING SUMMARFINDING SUMMARYY
Tumor mutational burden (TMB, also known
as mutation load) is a measure of the number
of somatic protein-coding base substitution
and insertion/deletion mutations occurring in
a tumor specimen. TMB is affected by a variety
of causes, including exposure to mutagens
such as ultraviolet light in melanoma 49-50 and
cigarette smoke in lung cancer 10,51, mutations
in the proofreading domains of DNA
polymerases encoded by the POLE and POLD1
genes 52-56, and microsatellite instability (MSI)
52,55-56. This sample harbors a high TMB. This
type of mutation load has been shown to be
associated with sensitivity to immune
checkpoint inhibitors, including anti-CTLA-4
therapy in melanoma 32, anti-PD-L1 therapy in
urothelial carcinoma 33, and anti-PD-1 therapy
in non-small cell lung cancer and colorectal
cancer 9-10, potentially due to expression of
immune-reactive neoantigens in these tumors
10.
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GENEGENE

NTRK1
ALALTERATERATIONTION

A107V - subclonal,
rearrangement intron 6

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
Clinical and preclinical data indicate that
NTRK1 fusions predict sensitivity to TRK
inhibitors 57-66 such as larotrectinib,
entrectinib, AZD7451, belizatinib, PLX7486,
and to the mutikinase inhibitors crizotinib and
lestaurtinib. Larotrectinib is approved to treat
patients with NTRK fusion-positive solid
tumors based on significant clinical efficacy in
that population. Analysis of combined data
from several larotrectinib studies reported an
ORR of 81% (88/109) in adult and pediatric
patients with various solid tumors harboring
NTRK fusions treated with larotrectinib; the
responses were durable and CR was observed
in 17% of patients 65. Pooled analysis of 3 Phase
1/2 trials of entrectinib for adult patients with
NTRK fusion-positive solid tumors reported an
ORR of 57% (31/54), median PFS of 11.2
months, and median OS of 20.9 months67.
Similar activity was observed for patients with
NTRK1 fusions [ORR of 59% (13/22)] or
patients with CNS metastasis [ORR of 55% (6/
11)]67. Acquired resistance to larotrectinib and
entrectinib due to the emergence of kinase
domain mutations in NTRK fusions has been
reported in some patients 64-65,68-69. Next-
generation TRK inhibitors in development,
such as LOXO-195 and repotrectinib, have
shown preclinical and clinical activity against

acquired NTRK resistance mutations 68,70.
Patients with NTRK1 fusions have also
experienced clinical benefit from crizotinib,
including a durable near CR 60 and a partial
remission of lung masses 61 in patients with
infantile fibrosarcoma harboring LMNA-
NTRK1 fusions and a minor radiographic
response in a patient with lung
adenocarcinoma and an MPRIP-NTRK1 fusion
57. As it is unclear if the rearrangement seen
here results in expression of an oncogenic
protein, it is not known whether these
therapeutic approaches would be relevant. It is
also not known whether these therapeutic
approaches would be relevant in the context of
alterations that have not been fully
characterized, as seen here.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
NTRK1 fusions have been detected in multiple
types of sarcomas including infantile
fibrosarcoma 58,66,71. In the Sarcoma MSKCC/
Broad dataset, putative high-level
amplification of NTRK1 has been reported in
4.8% of tumors 72. NTRK1 mutations are rare
in sarcomas, occurring in <1% of the samples
analyzed in COSMIC (Dec 2018). TRKA
expression has been demonstrated in some
sarcoma subtypes such as osteosarcoma,
Ewing sarcoma, and rhabdomyosarcoma 73-75.
In a preclinical study, overexpression of TRKA
induced cell death in sarcoma and neuronal
cancer cell lines 76. Published data
investigating the prognostic implications of
NTRK1 alterations in sarcoma are limited
(PubMed, Dec 2018). Two patients with
infantile fibrosarcoma harboring LMNA-

NTRK1 fusion experienced a CR 60 or PR 61 in
response to crizotinib.

FINDING SUMMARFINDING SUMMARYY
NTRK1 encodes the receptor tyrosine kinase
TRKA, which plays a role in the development
of the nervous system by regulating cell
proliferation, differentiation, and survival of
neurons. TRKA is activated upon binding of its
ligand NGF to promote several downstream
signaling pathways including GRB2-RAS-
MAPK, NF-Kappa-B, and RAS-PI3K-AKT1
77-80. NTRK1 fusions that include an N-
terminal oligomerization-promoting partner
gene linked to the kinase domain of TRKA (aa
510-781) have been characterized as activating,
exhibiting constitutive kinase activity and
tyrosine phosphorylation 57-58,81-86. Certain
NTRK1 rearrangements affecting the
extracellular domain have also been shown to
be activating and transforming 80,87-89. NTRK1
rearrangements such as observed here that are
detected as a reciprocal fusion, are not clearly
in-frame, or may lack a fusion partner may be
indicative of an activating rearrangement
event, such as a fusion; however, it is unclear
whether an oncogenic rearrangement is
present and expressed in this case. Patients
with NTRK1 fusions have experienced clinical
benefit from crizotinib 57,60-61 and from TRK
inhibitors, including LOXO-101 58 and
entrectinib 62,90. Although alterations such as
seen here have not been fully characterized
and are of unknown functional significance,
similar alterations have been previously
reported in the context of cancer, which may
indicate biological relevance.
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GENEGENE

CD274 (PD-L1)
ALALTERATERATIONTION

amplification

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
On the basis of strong clinical evidence, CD274
amplification and PD-L1 overexpression may
predict sensitivity to antibodies targeting PD-
L1 or PD-1. Patients with high tumor PD-L1
expression across multiple solid tumor types
have exhibited improved overall survival (OS)
with the FDA-approved PD-L1 antibody
atezolizumab91-93. Compared with PD-
L1-negative patients, clinical studies with the
PD-L1 antibody durvalumab have suggested
higher response rates for patients with
urothelial carcinoma and PD-L1-positive
tumor or immune cells94-95, non-small cell lung
cancer and PD-L1-positive tumor cells96-97, or
head and neck squamous cell carcinoma and
PD-L1-positive tumor cells98-99. The PD-1
antibodies pembrolizumab and nivolumab
have elicited significant clinical responses 100,

including in patients with Hodgkin lymphoma,
a tumor type that harbors frequent PD-L1 copy
number gains101-102. Clinical studies have
reported that PD-L1 amplification 100 or
expression103-104 in solid tumors is associated
with response to anti-PD-1 antibodies.
However, a study evaluating nivolumab in
patients with urothelial carcinoma observed
no correlation between OS benefit and PD-L1
expression levels105. JAK2 has been reported as
important for PD-L1 expression in Hodgkin
lymphoma and primary mediastinal B-cell
lymphoma cell lines, and JAK2 inhibition has
been reported to decrease PD-L1 transcript
accumulation 106-107. Therefore, JAK2 inhibitors
such as ruxolitinib may also be relevant for a
patient with PD-L1 amplification.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Amplification of CD274 has been observed in
1.4% of sarcomas 72. PD-L1 protein expression
was observed in 50% of all sarcoma cases in
one study 108, although in another study,
differences in PD-L1 expression were observed
between the tumor (12%), lymphocytes (30%),

and macrophages (58%) within sarcomas 109.
Overexpression of PD-L1 has been shown to
correlate with poor prognosis in malignant
melanoma, colon, hepatocellular, renal cell, and
ovarian carcinomas 110-114, although data
regarding the prognostic significance of PD-L1
expression in soft tissue sarcomas is
conflicting 109,115.

FINDING SUMMARFINDING SUMMARYY
CD274 encodes the programmed cell death
ligand 1 (PD-L1), also known as B7-H1, which
is a cell surface molecule important for
regulating the activity of T-cells through
binding to various T-cell receptors. Although
PD-L1 is a costimulatory molecule for naive T-
cells, it can provide inhibitory signals to
activated T-cells through interactions with the
receptors PD-1 or CD80 116-117. These signals
can help PD-L1-expressing tumor cells evade
immune detection by natural killer cells or T-
cells 118-120. PD-L1 amplification has been
reported to be associated with increased
expression 102,106,121-122.

GENEGENE

EGFR
ALALTERATERATIONTION

amplification - equivocal

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
EGFR activating mutations or amplification
may predict sensitivity to EGFR inhibitors,
including erlotinib, gefitinib, afatinib,
dacomitinib, lapatinib, osimertinib, cetuximab,
and panitumumab 123-128. Necitumumab is an
anti-EGFR antibody that is approved to treat
metastatic squamous NSCLC in combination
with gemcitabine and cisplatin 129-130 that has
also shown benefit in patients with CRC and
melanoma 131-132. Irreversible EGFR inhibitors,
as well as HSP90 inhibitors, may be
appropriate for patients with de novo or
acquired resistance to EGFR-targeted therapy

133-136. Preclinical studies have reported that
EGFR-mutant cells 133-135, including cells with
exon 20 insertions 137, are sensitive to HSP90
inhibitors. The reovirus Reolysin targets cells
with activated RAS signaling 138-140 and is in
clinical trials in patients with some tumor
types. Reolysin has demonstrated mixed
clinical efficacy, with the highest rate of
response reported for patients with head and
neck cancer 141-149.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
EGFR mutation and amplification have been
observed in 1% and 4% of soft tissue sarcomas,
respectively (COSMIC, Dec 2018)72. EGFR
amplification has also been found in 26% of
malignant peripheral nerve sheath tumors
(MPNST)150. EGFR overexpression and/or
activation has been reported in a number of
sarcomas 151-155. EGFR expression was

associated with decreased probability of
overall survival in a study of sarcomas, 42/281
of which were synovial sarcomas 156, whereas a
subsequent study did not correlate EGFR
overexpression with poor prognosis in
synovial sarcoma specifically 151. EGFR was
found to be overexpressed in bone metastases
of soft tissue sarcomas but was not associated
with risk of primary tumor metastasis 157.

FINDING SUMMARFINDING SUMMARYY
EGFR encodes the epidermal growth factor
receptor, which belongs to a class of proteins
called receptor tyrosine kinases. In response to
signals from the environment, EGFR passes
biochemical messages to the cell that stimulate
it to grow and divide 158. Amplification of
EGFR has been associated with increased
expression of EGFR mRNA and protein in
several cancer types 159-161.
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GENEGENE

PDCD1LG2 (PD-L2)
ALALTERATERATIONTION

amplification

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
PDCD1LG2 amplification, which is often co-
amplified with CD274, may lead to PD-L2
overexpression and predict sensitivity to PD-1,
PD-L1, or PD-L2 antibodies. The PD-1
antibodies pembrolizumab and nivolumab
have elicited significant clinical responses in
several cancer types, including melanoma,
NSCLC, renal cell carcinoma 162-170, and
Hodgkin lymphoma, which harbors frequent
PD-L2 copy number gains101-102. The PD-L1
antibody atezolizumab does not block
interaction between PD-1 and PD-L2; however,
multiple clinical studies with atezolizumab
have reported an association between
increased PD-L2 expression and response or

improved overall survival in multiple solid
tumor types, thereby suggesting that PD-L2
overexpression may serve as a biomarker of
response92-93,171. Additionally, JAK2 has been
reported as important for PD-L2 expression in
Hodgkin lymphoma and PMBCL cell lines, and
JAK2 inhibition has been reported to decrease
PD-L2 transcript accumulation in preclinical
studies 106-107. Therefore, JAK2 inhibitors may
also be relevant for a patient with PD-L2
amplification. Ruxolitinib is a kinase inhibitor
that targets JAK1 and JAK2 and is approved to
treat intermediate or high-risk myelofibrosis
172.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Amplification of PDCD1LG2 has been
observed in 1% of sarcomas 72. A case study of
a patient with parapharyngeal liposarcoma
observed PD-L2 expression on liposarcoma
and endothelial cells 173. Published data
investigating the prognostic implications of

PDCD1LG2 alterations in sarcomas are limited
(PubMed, Dec 2018).

FINDING SUMMARFINDING SUMMARYY
PDCD1LG2 encodes the programmed cell
death 1 ligand 2 (PD-L2), also known as CD273,
PD-L2, and B7-DC, which is essential for T-cell
proliferation and interferon production. PD-1
signaling, which can be stimulated by PD-L2,
results in 'T-cell exhaustion', a temporary
inhibition of activation and proliferation that
can be reversed on removal of the PD-1 signal
116-117. Amplification of PDCD1LG2 and the
adjacent locus CD274, encoding PD-L1, has
been reported in 29% of primary mediastinal
B-cell lymphoma (PMBCL) cases, and
PDCD1LG2 copy number gain has been
reported to correlate with increased PD-L2
protein expression as determined by
immunohistochemistry 174-175.

GENEGENE

ATRX
ALALTERATERATIONTION

T1582fs*24

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
No targeted therapies are available to address
ATRX inactivation. Although ATR inhibition
is being investigated as a potential therapeutic
approach in the context of ALT, a preclinical
study demonstrated that ATRX inactivation is
not sufficient to confer sensitivity to ATR
inhibitors 176. However, ATRX-deficient GBM
cells were sensitive to the double-strand break-
inducing agents doxorubicin, irinotecan, and
topotecan but not single-strand break-
inducing agents such as temozolomide 177.
Preclinical evidence suggests that ATRX may
be required for CDK4/6 inhibitors to be most
effective 178.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Somatic mutation of ATRX has been reported
in a number of solid tumor types, often

associated with ALT 179. ATRX mutation
correlating with ALT has been reported in
10-20% of pancreatic neuroendocrine tumors
(PNETs)179-181, 12.6% of pheochromocytomas
and paragangliomas 182, and 48% of adolescent
and young adult (AYA) patients with
glioblastoma (GBM) or neuroblastoma183-187.
ATRX loss in PNET180,188 and melanoma 189 and
mutation in other neuroendocrine tumors 182 is
associated with poor prognosis. Pediatric
patients with high-grade glioma and ATRX
mutation were shown to have more aggressive
disease but are more responsive to treatment
with double-strand break therapy 177. ATRX
mutation or loss of expression is more
frequent in Grade 2/3 astrocytoma and
secondary GBM than primary GBM,
oligodendroglioma, and oligoastrocytoma 190-193

and has been proposed as a distinguishing
biomarker 191-193. ATRX mutation has not been
detected in concurrence with MYCN
amplification in glioma and neuroblastoma
184-187. Low-grade gliomas with both IDH1/2
mutation and ATRX mutation are associated
with worse prognosis than those with IDH1/2
mutation but no ATRX mutation 191. Loss of

ATRX protein expression has been reported in
33-39% of incidences of leiomyosarcoma (LMS)
associating with ALT, a poor prognostic factor
across all LMS subtypes, and with poor
prognosis in extrauterine LMS but not in
uterine LMS194-195.

FINDING SUMMARFINDING SUMMARYY
ATRX encodes a SWI/SNF chromatin
remodeling protein implicated in histone
variant H3.3 deposition, transcriptional
regulation, and telomere maintenance 196-197.
ATRX inactivation or loss of expression is
associated with alternative lengthening of
telomeres (ALT)179,195,198-199. Alterations that
disrupt the ADD domain (aa 167-270) or
helicase domain (aa 2010-2280) of ATRX are
predicted to result in loss of ATRX function
200-202; however, the loss of ATRX function is
not sufficient to induce ALT, which requires
other undetermined factors 176,196. Germline
mutations in ATRX give rise to alpha-
thalassemia X-linked intellectual disability
syndrome (ATR-X syndrome)203.
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GENEGENE

CAD
ALALTERATERATIONTION

V1226I

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES

There are no therapies available to target
alterations in CAD.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Mutations in this gene have been observed in
~5% of Burkitt lymphomas in one study 204

and 1% of cancer samples in the COSMIC
database (COSMIC, 2018).

FINDING SUMMARFINDING SUMMARYY
CAD encodes an enzyme involved in
pyrimidine biosynthesis in the cell. CAD is
activated by the mitogen-activated protein
(MAP) kinase and is required for cell
proliferation 205.

GENEGENE

CDKN2A/B
ALALTERATERATIONTION

loss

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
Preclinical data suggest that tumors with loss
of p16INK4a function may be sensitive to
CDK4/6 inhibitors, such as abemaciclib,
ribociclib, and palbociclib 206-209. Although
case studies have reported that patients with
breast cancer or uterine leiomyosarcoma
harboring CDKN2A loss responded to
palbociclib treatment 210-211, multiple other
clinical studies have shown no significant
correlation between p16INK4a loss or
inactivation and therapeutic benefit of these
agents212-213 214-218; it is not known whether
CDK4/6 inhibitors would be beneficial in this
case. Although preclinical studies have
suggested that loss of p14ARF function may be

associated with reduced sensitivity to MDM2
inhibitors 219-220, the clinical relevance of
p14ARF as a predictive biomarker is not clear.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Putative homozygous deletion of CDKN2A and
CDKN2B has been reported in 5% of sarcoma
samples analyzed in the MSKCC dataset 72. In
some sarcomas, such as malignant peripheral
nerve sheath tumor, rhabdomyosarcoma, and
Ewing sarcoma, loss of p16INK4a has been
reported at 50-83% 221-222. The loss of CDKN2A
and CDKN2B and/or the reduction of
p15INK4b and p16INK4a protein levels has
been noted in multiple types of sarcomas
221,223-226. Loss of CDKN2A and/or the loss of
p16INK4a expression has been associated with
poor prognosis in patients with some types of
sarcoma, including leiomyosarcoma, clear cell
sarcoma, osteosarcoma, and malignant
peripheral nerve sheath tumors 221,226-227.

FINDING SUMMARFINDING SUMMARYY

CDKN2A encodes two different, unrelated
tumor suppressor proteins, p16INK4a and
p14ARF, whereas CDKN2B encodes the tumor
suppressor p15INK4b 228-229. Both p15INK4b
and p16INK4a bind to and inhibit CDK4 and
CDK6, thereby maintaining the growth-
suppressive activity of the Rb tumor
suppressor; loss or inactivation of either
p15INK4b or p16INK4a contributes to
dysregulation of the CDK4/6-cyclin-Rb
pathway and loss of cell cycle control 230-231.
The tumor suppressive functions of p14ARF
involve stabilization and activation of p53, via
a mechanism of MDM2 inhibition 232-233. This
alteration is predicted to result in p16INK4a
234-255 loss of function. This alteration is
predicted to result in p14ARF 238,255-258 loss of
function. The CDKN2B alteration is predicted
to inactivate p15INK4b 259.
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GENEGENE

CTNNA1
ALALTERATERATIONTION

R551Q

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no available targeted therapies to
address genomic alterations in CTNNA1. In
two preclinical studies, treating
CTNNA1-deficient cells either with the MAPK
inhibitor PD98059 or the SMO inhibitor
cyclopamine had significant effect on cell
proliferation 260-261.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
CTNNA1 mutations have been observed with
highest incidence in uterine corpus
endometrial carcinoma (6.8%)262, skin
cutaneous melanoma (6.4%)263, colorectal
adenocarcinoma (4.4%)262, and stomach

adenocarcinoma (3.1%) TCGA datasets
(cBioPortal, 2019). CTNNA1 mutations have
been observed in patients with hereditary
diffuse gastric carcinoma without CDH1
mutations 264-265. Reduced CTNNA1 expression
in patients with breast cancer has been
correlated with a poor clinical outcome and
breast cancer brain metastasis 266-267. Deletion
and hypermethylation of CTNNA1 has been
observed in up to 22% (18/83) of
myelodysplastic syndrome (MDS) cases and
associated with poor clinicopathological
features 268-270 and a trend for inferior survival
268. Loss of CTNNA1 expression via 5q deletion
or hypermethylation has been reported as a
frequent event in acute myeloid leukemia and
associated with shorter relapse-free survival in
one study 270-272.

FINDING SUMMARFINDING SUMMARYY
CTNNA1 encodes alpha-catenin, a member of
the cadherin family that functions in cell

adhesion. Alpha-catenin acts as a tumor
suppressor, through mechanisms that can vary
by tissue 273-274. Alpha-catenin is one of three
catenin proteins that are in complex with E-
cadherin to help mediate cell-cell adhesion in
epithelial tumor suppression 273-274; loss of cell
adhesion may contribute to cancer cell
invasiveness and formation of metastases. In
epidermal cells, alpha-catenin acts as a tumor
suppressor by inducing YAP1 phosphorylation
and cytoplasmic localization 267,275. Alpha-
catenin also acts as a tumor suppressor by
interacting with IKBalpha to influence the NF-
KB pathway in E-cadherin-negative basal-like
breast cancer cells 267. Loss of alpha-catenin
expression is also hypothesized to alter the
balance between the cytoplasmic (cell
adhesion) and nuclear (cell proliferation)
functions of beta-catenin, further contributing
to oncogenesis 276.

GENEGENE

EPHA3
ALALTERATERATIONTION

amplification

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no approved therapies that target
EPH receptor mutation or amplification in
cancer. A humanized monoclonal antibody
targeting EPHA3 has exhibited several clinical
responses and a tolerable safety profile in a
Phase 1/2 trial in hematological
malignancies277-278, although EPHA3
amplification, expression, or mutations have
not been evaluated as biomarkers for efficacy.
Furthermore, clinical trials for this therapy are
not recruiting.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
EPHA3 mutations have been reported in a
range of tumor types, including lung

adenocarcinoma (8–16%), melanoma (8–14%),
diffuse large B-cell lymphoma (8%), gastric
carcinoma (7%), and colorectal carcinoma
(CRC; 5%)(cBioPortal, 2018) 279-282. EPHA3
amplification has been reported most
frequently in prostate adenocarcinoma (7%),
sarcoma (5%), and lung squamous cell
carcinoma (4%)(cBioPortal, 2018). EPHA3
mRNA has been reported to be highly
expressed in glioma samples, as compared
with normal brain tissue, and high EPHA3
mRNA expression has been found to be
associated with an aggressive glioblastoma
subtype 283. EPHA3 expression has been
correlated with poor prognosis in studies of
gastric carcinoma, hepatocellular carcinoma,
small cell lung cancer, and CRC 284-287. EPHA3
expression has been observed in hematological
malignancies, and low incidences of EPHA3
amplification and loss of heterozygosity have
both been reported in leukemias and
lymphomas 288-289. Although EPHA3
expression is frequently associated with

advanced disease, conflicting data have been
reported 290.

FINDING SUMMARFINDING SUMMARYY
EPHA3 encodes a member of the EPH family
of receptor tyrosine kinases, which have been
implicated in multiple processes, including cell
adhesion, cytoskeletal organization, and cell
migration 291-292. EPHA3 has been reported to
be amplified in cancer 293, and EPHA3 copy
number has been shown to associate with gene
expression levels 289. Predominantly
inactivating EPHA3 mutations have been
reported in several cancers, and preclinical
studies have found that mutations in EPHA3
may reduce activity through diverse
mechanisms 294-300. Conflicting data have been
published regarding the tumor-promoting and
tumor-suppressive activities of EPHA3 in
cancer, which are likely context dependent
283,290,301.
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GENEGENE

FANCD2
ALALTERATERATIONTION

truncation intron 31

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no targeted therapies that directly
address genomic alterations in FANCD2.
However, somatic FANCD2 alterations may
predict cancer sensitivity to DNA-damaging
drugs, such as cisplatin or mitomycin C, and to
PARP inhibitors 302-304. The PARP inhibitors
olaparib and rucaparib are FDA approved to

treat patients with BRCA1/2-mutant ovarian
cancer, and PARP inhibitors are in clinical
trials in patients with solid tumors.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Somatic mutations in FANCD2 are very
infrequently observed (<1%) in human
malignancies (COSMIC, 2017).

FINDING SUMMARFINDING SUMMARYY
FANCD2 encodes a key component of the
Fanconi anemia (FA) DNA damage response
system. The FA core complex (FANCA/B/C/E/
F/G/L/M) is a nuclear E3 ubiquitin ligase,
which is recruited to the sites of DNA damage/

DNA repair 305. The FA core complex then
activates FANCD2 and FANCI via
monoubiquitination, leading to their co-
localization with FANCD1/BRCA2, BRCA1,
RAD51, PCNA, and other proteins at the DNA
repair foci on chromatin. The activity of this
complex is essential for prevention of
chromosome breakage caused by DNA damage
306. Germline mutations in FANCD2 cause
Fanconi anemia, a clinically heterogeneous
disorder involving various developmental
abnormalities as well as predisposition to
cancer; underlying these phenotypes are
defects in DNA repair 307.

GENEGENE

FOXP1
ALALTERATERATIONTION

G433*, amplification

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no approved therapies available to
address alterations in FOXP1.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Loss of FOXP1 expression has been reported
to be a frequent event in endometrial cancer
308. FOXP1 translocations have been described
in acute lymphoblastic leukemia 309-310, and

deletions of the chromosomal region where
FOXP1 is located have been reported in acute
myeloid leukemia and myeloproliferative
neoplasms 311-312. Genomic rearrangements that
disrupt the 5' regulatory region of FOXP1 have
been detected and characterized in several
lymphomas 313-315. Such alterations have been
demonstrated to result in expression of N-
terminally truncated variants of FOXP1, or
aberrant expression of full length FOXP1
driven by strong regulatory elements, such as
IGH, as observed in the t(3;14)(p13;q32)
translocation 316. In a genome-wide association
study, polymorphisms at the FOXP1 locus were
found to be significantly associated with
Barrett esophagus and esophageal

adenocarcinoma 317. Conflicting data have been
presented on the prognostic impact of FOXP1
expression, as high expression of FOXP1 is
associated with poor prognosis in patients
with cutaneous large B-cell lymphomas or
mucosal tissue-associated lymphoid tissue
(MALT) lymphomas, but improved prognosis
in patients with breast or lung cancer
313-314,318-320.

FINDING SUMMARFINDING SUMMARYY
FOXP1 encodes the protein 'forkhead box
protein P1', a transcription factor previously
reported as a tumor suppressor, but one which
can also function as an oncogene when shorter
isoforms are expressed 321-322.

GENEGENE

JAK2
ALALTERATERATIONTION

amplification - equivocal

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
On the basis of extensive clinical data in
myelofibrosis, a disease type that frequently
harbors the JAK2 V617F mutation 172,323-325,
and a case report in chronic myelomonocytic
leukemia326, JAK2 activating mutations may
predict sensitivity to JAK2 inhibitors, such as
the approved agent ruxolitinib. Other
alterations that activate JAK2, such as fusions

327-333 or amplification334-335, may also confer
sensitivity to JAK2 inhibitors, on the basis of
clinical data in myeloid neoplasms as well as
preclinical data. Preclinical studies have
suggested that activating alterations in JAK2
may confer sensitivity to HDAC inhibitors
336-338 or HSP90 inhibitors 339-340.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
JAK2 amplification has been reported in 1-5%
of sarcomas (cBioPortal, Jan 2019). Activation
of a JAK family kinase substrate, STAT3, has
been reported to occur in leiomyosarcoma and
is associated with better prognosis 341.

FINDING SUMMARFINDING SUMMARYY

JAK2 encodes Janus kinase 2, a tyrosine kinase
that regulates signals triggered by cytokines
and growth factors 342. JAK2 is often mutated
in hematopoietic and lymphoid cancers. Cell
lines and primary lymphoid cancer cells from a
small number of patients with the JAK2
amplification exhibit overabundance of JAK2
mRNA, protein, and phosphorylated JAK2
targets and respond to JAK2 inhibitors such as
ruxolitinib similarly to the JAK2-rearranged
(activated) cell lines and primary blood cells
from patients 106,331.
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GENEGENE

KDM4C
ALALTERATERATIONTION

amplification

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
Small molecules that target the KDM4 proteins
are in preclinical development 343, but no

therapies are currently available to address
mutations in KDM4C.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
KDM4C mutations are rare in cancer
(COSMIC, 2018). Increased expression of
KDM4C or altered enzyme activity has been
implicated in the growth of breast and colon
cancer cells, among other tumor types, and
inhibition of KDM4 activity has been shown

in some contexts to reduce cancer cell growth
and proliferation 344-347.

FINDING SUMMARFINDING SUMMARYY
KDM4C encodes a histone demethylase, also
known as Jumonji C domain-containing
protein 2C (JMJDC2C), which functions to
regulate transcription and gene expression by
altering methylation patterns on histones 347.

GENEGENE

MITF
ALALTERATERATIONTION

amplification

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no available therapies to directly
target MITF, but small-molecule inhibitors are
in preclinical development 348-349. Preclinical
studies have reported that histone deacetylase
(HDAC) inhibitors suppress MITF expression
in melanoma and clear cell sarcoma cells,
reduce cell proliferation, and sensitize the cells
to other therapies, such as MAPK pathway
inhibitors 350-351. MITF has also been reported
to transcriptionally activate MET 352-353, but it
is not known if MITF alterations are
associated with sensitivity to MET inhibitors;
a clinical trial of the putative MET inhibitor
tivantinib (ARQ 197) for MITF-associated
tumors displayed only modest antitumor

activity 354-356. Preclinical data suggest that
MITF overexpression confers resistance to
MEK inhibitors in melanoma cells 357-358.
However, MITF amplification does not affect
the sensitivity of melanoma cells to
chemotherapeutic agents or the sensitivity of
cells harboring BRAF V600E mutations to
vemurafenib 359-360.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
In the TCGA datasets, MITF amplification was
most frequently observed in melanoma (4.2%),
uterine carcinosarcoma (3.5%), ovarian serous
cystadenocarcinoma (2.1%), and pancreatic
adenocarcinoma (1.6%) (cBioPortal, 2019).
MITF amplification has been reported in
5–21% of melanoma samples and in 5–40% of
melanoma cell lines analyzed 359,361-364, and
MITF expression in melanoma cells has been
reported to vary widely 365-367. The significance
of MITF alterations in tumor types other than
melanoma have not been extensively studied,

with the exception of clear cell sarcoma and a
renal cell carcinoma subtype characterized by
alterations in MITF-related transcription
factors 368.

FINDING SUMMARFINDING SUMMARYY
MITF encodes microphthalmia-associated
transcription factor, a protein required for
pigment cell development 369. Along with its
role as a transcriptional activator, MITF plays a
critical role in regulating cell cycle progression
by interacting with RB1 370. MITF is
commonly amplified in human melanomas and
is considered an oncogene in this context
359,361. Although the MITF E318K mutation has
been demonstrated to activate MITF and is
associated with germline predisposition to
melanoma and renal cell carcinoma 371,
characterization of other cancer-associated
MITF mutations is lacking.
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GENEGENE

NOTCH1
ALALTERATERATIONTION

D1870N

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
NOTCH1 inhibitors and gamma-secretase
inhibitors (GSIs) may be potential therapeutic
approaches in the case of NOTCH1 activating
mutations 372-379. Complete responses to the
GSI BMS-906024 (AL101) were achieved in a
patient with T-cell acute lymphoblastic
leukemia (T-ALL) harboring a NOTCH1 HD
domain mutation 380 and in a patient with
gastroesophageal junction adenocarcinoma
harboring multiple NOTCH1 mutations, as
well as a partial response in a patient with
adenoid cystic carcinoma harboring a single
NOTCH1 mutation381. BMS-906024 has been
shown to have pan-NOTCH signaling
inhibitory activity in vitro and anti-tumor
efficacy in xenograft models of leukemia and
triple-negative breast cancer harboring
NOTCH1 and NOTCH3 activating mutations or

overexpression 382. On the basis of clinical data
in non-Hodgkin lymphoma, NOTCH1
activating alterations may be associated with
sensitivity to the FDA-approved PI3K inhibitor
copanlisib 383; this is further supported by
limited preclinical data that suggest that
NOTCH1 may be a negative regulator of PTEN
384-385. It is not known whether these
therapeutic approaches would be relevant in
the context of alterations that have not been
fully characterized, as seen here.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
In the Sarcoma TCGA dataset, NOTCH1
mutation and homozygous deletion have been
reported in 0.4% and 1.5% of samples analyzed,
respectively (cBioPortal, Jan 2019). In one
study, NOTCH1 mutation was reported in 1/25
sarcoma samples 386. Although lower NOTCH1
protein levels were associated with advanced
stage of angiosarcomas in one study 387,
published clinical data on the prognostic
implications of NOTCH1 alterations in soft
tissue sarcomas are limited (PubMed, Dec
2018).

FINDING SUMMARFINDING SUMMARYY
NOTCH1 encodes a member of the NOTCH
family of receptors, which are involved in cell
fate determination and various developmental
processes. Depending on cellular context,
NOTCH1 can act as either a tumor suppressor
or an oncogene 388-389. Upon binding of
membrane-bound ligands, the NOTCH1
intracellular domain (NICD) is cleaved and
forms part of a transcription factor complex
that regulates downstream target genes
involved in cell fate determination,
proliferation, and apoptosis 390-391. NOTCH1
mutations leading to gamma-secretase
inhibitor (GSI)-sensitive activation have been
identified in the extracellular domain 392,
heterodimerization domain (HD; amino acids
1571-1735) 393-397 and PEST domain (amino
acids 2424-2555) 398 in multiple cancer types
including T-cell acute lymphoblastic leukemia
(T-ALL) 393. However, this alteration has not
been characterized and its effect on function is
unclear, although it has been reported in the
context of cancer, which may indicate
biological relevance.

GENEGENE

PAX5
ALALTERATERATIONTION

loss

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no therapies available to target
genomic alterations in PAX5. In pulmonary
neuroendocrine tumors, particularly SCLC,
PAX5 is coexpressed and colocalized with
active MET 399-400, and a preclinical study of
SCLC showed that PAX5 activates MET
transcription 399. This same study showed that
combinatorial reduction of SCLC cell viability
can be achieved by PAX5 knockdown and
treatment with inhibitors of MET or

topoisomerase 1 399, although whether PAX5
mutations confer sensitivity to these inhibitors
has not been evaluated.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
Compared with hematologic malignancies,
PAX5 genomic alterations are rare in solid
tumors and have not been extensively studied
in this context (COSMIC, PubMed, 2017).
However, it has been suggested that PAX5 is a
tumor suppressor for various epithelial
cancers, as transcriptional silencing of PAX5
by promoter methylation has been reported in
multiple tumor types including non-small cell
lung cancer, breast cancer, and head and neck
squamous cell carcinoma 401-404. In gastric
cancer, PAX5 methylation is correlated with
worse survival 405-406. In contrast, PAX5 is

believed to act as an oncogene in
neuroendocrine tumors. PAX5 is frequently
expressed in Merkel cell carcinoma, small cell
lung carcinoma (SCLC), other pulmonary
neuroendocrine carcinomas, and
neuroblastoma 399-400,407-411.

FINDING SUMMARFINDING SUMMARYY
Paired box (PAX) genes such as PAX5 encode
transcription factors that regulate cell
differentiation and development. The protein
PAX5 (also known as BSAP) is a master
regulator of B-cell development 412-413. PAX5
has been extensively studied in B-cell
malignancies, particularly B-cell acute
lymphoblastic leukemia (B-ALL), for which it
has both oncogenic and tumor suppressive
activities 413.
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GENEGENE

PCLO
ALALTERATERATIONTION

A915S - subclonal

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are currently no therapies or clinical
trials targeting alterations in PCLO.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS

Although a mechanistic or prognostic role for
piccolo has not been defined in cancer,
mutations in PCLO have been found in up to
30% of tumors for some cancer types,
particularly in adenocarcinomas of the lung,
esophagus, and large intestine, and in up to
15% of diffuse large B cell lymphomas
(DLBCL), plasma cell myelomas, and mantle
cell lymphomas (COSMIC, PubMed, 2017)414.
However, the ratio of nonsynonymous to
synonymous mutations led researchers to
suggest that many of these alterations may be

passenger mutations of no significance in
DLBCL.

FINDING SUMMARFINDING SUMMARYY
PCLO encodes the high-molecular weight
protein piccolo, which is an important
component of the presynaptic active zone in
neurons and plays a role in neurotransmitter
release 415.

GENEGENE

PRKDC
ALALTERATERATIONTION

T1269M

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no therapies that have been shown to
target PRKDC alterations in cancer. Preclinical
studies have demonstrated synthetic lethal
interactions between PRKDC and ATM 416 or
MSH3 417, and that inhibition of DNA-PK
results in increased sensitivity to radiation or
DNA damaging chemotherapies 418-419;
however, therapeutic targeting of cells with
PRKDC loss-of-function alterations has not
been demonstrated. High expression of DNA-
PKcs has been correlated with resistance to
radiotherapy in prostate cancer 420 and cervical
cancer 421, but with better response to
radiotherapy in breast cancer 422. Preclinical
studies have suggested that DNA-PKcs
inhibition may potentiate treatment with
chemotherapy or radiotherapy in cancer types

with high DNA-PKcs expression such as CLL
423 or HCC 424.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
In the TCGA datasets, PRKDC mutation has
been observed most frequently in stomach
adenocarcinoma (11%)121, endometrial
carcinoma (9.7%)52, and lung squamous cell
carcinoma (9.6%)425; PRKDC amplification was
detected most frequently in uterine
carcinosarcoma (18%), prostate (15%)426, breast
(12%) 427, and uveal melanoma (8%)(cBioPortal,
2018). A CPQ-PRKDC fusion has been
described in a endometrial cancer cell line, but
this cell line was not dependent on the PRKDC
fusion transcript 428. Overexpression of DNA-
PK has been observed in various cancer types
429-431 and has been associated with poor
outcomes in chronic lymphocytic leukemia
(CLL) 423,432, prostate cancer 433, HCC424,434,
non-small cell lung cancer 435, and breast
cancer 436. In contrast, other studies have
suggested that loss of DNA-PK expression has
been associated with poor outcome in gastric

cancer 437 and patients with breast cancer
422,438.

FINDING SUMMARFINDING SUMMARYY
PRKDC encodes DNA-PKcs, which is the
catalytic subunit of the DNA-dependent
protein kinase complex (DNA-PK) that is
involved in DNA repair by non-homologous
end joining and homologous recombination
430. DNA-PKcs may function as a tumor
suppressor via maintenance of genomic
stability; however, some studies have
suggested a role for DNA-PKcs in promoting
tumorigenesis by resistance to genotoxic
chemotherapy or by transcriptional regulation
of hormone receptor activity in breast and
prostate cancer 430,433. PRKDC missense
mutations, truncation mutations, and fusions
have been observed in the context of cancer
but these alterations have not been
characterized, and their significance in cancer
has not been established 428-430,439. PRKDC
copy number increase has been correlated
with PRKDC mRNA expression in one study
of hepatocellular carcinoma (HCC) 424.
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GENEGENE

PTPN11
ALALTERATERATIONTION

V428M

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
SHP-2 has been reported to activate the RAS-
MEK-ERK, PI3K, and SRC kinase pathways
440-443. Preclinical studies in hematologic and
solid cancer cell lines442,444-445 and in animal
models of developmental abnormalities
associated with Noonan syndrome and
LEOPARD syndrome 446-448 have suggested
that PTPN11 mutations may predict sensitivity
to MEK or PI3K inhibitors. The MEK
inhibitors trametinib and cobimetinib are
approved to treat unresectable or metastatic

BRAF V600E or V600K mutant melanoma
449-450. Various MEK and PI3K inhibitors are
under investigation in clinical trials. It is not
known whether these therapeutic approaches
would be relevant in the context of alterations
that have not been fully characterized, as seen
here.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
PTPN11 mutation has been observed in <1% of
sarcomas (cBioPortal, COSMIC, Mar 2018).
Published data investigating the prognostic
implications of PTPN11 alterations in sarcoma
are limited (PubMed, Mar 2018).

FINDING SUMMARFINDING SUMMARYY
PTPN11 encodes the protein tyrosine-protein
phosphatase non-receptor type 11, also known
as SHP-2. PTPN11 plays a critical role in both

embryonic development and cancer 451.
PTPN11 is also known to be somatically
mutated in a variety of cancers, where both
oncogenic and tumor suppressor roles for
PTPN11 have been described 452-454. Although
alterations such as seen here have not been
fully characterized and are of unknown
functional significance, similar alterations have
been previously reported in the context of
cancer, which may indicate biological
relevance. Germline mutations in PTPN11 have
been found in the developmental disorder
Noonan syndrome, which predisposes
individuals to various cancers, including
embryonal rhabdomyosarcoma,
neuroblastoma, and juvenile myelomonocytic
leukemia 455-460.

GENEGENE

SMARCA4
ALALTERATERATIONTION

G1232D

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no therapies that directly address
mutant SMARCA4 or loss of functional BRG1.
However, on the basis of both clinical461-462 and
preclinical462-463 data, patients with small cell
carcinoma of the ovary, hypercalcemic type
(SCCOHT) harboring SMARCA4 loss or
inactivation may benefit from treatment with
inhibitors of EZH2. In preclinical studies, cells
with dual inactivation of SMARCA4 and
SMARCA2, which is characteristic of
SCCOHT 464-465, were sensitive to EZH2
inhibitors462-463,466, and two patients with
SCCOHT experienced clinical benefit (1 partial
response, 1 long-term stable disease) upon
treatment with the EZH2 inhibitor

tazemetostat461-462. Downregulation of BRG1
and BRM was reported to enhance cellular
sensitivity to cisplatin in lung and head and
neck cancer cells 467. In vitro studies have
shown that SCCOHT cell lines are sensitive to
treatment with epothilone B, methotrexate,
and topotecan, compared to treatment with
other chemotherapies such as platinum-
containing compounds; similar sensitivity was
not observed for treatment with ixabepilone, a
compound closely related to epothilone B 468.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
SMARCA4 mutations have been reported in
0-3% of sarcoma cases in large datasets
(COSMIC, cBioPortal, Nov 2017). SMARCA4/
BRG1-deficiency has been associated with an
aggressive subtype of thoracic sarcoma with a
rhabdoid histology and male-predominance
469-471. A study of epithelioid sarcoma did not
find loss of BRG1 expression in any of the 23
analyzed cases 472. Published data investigating

the prognostic implications of SMARCA4
alterations in sarcomas are limited (PubMed,
Dec 2018). Loss of BRG1 expression has been
shown to correlate with a poor patient
prognosis in some cancers, while in others,
elevated BRG1 expression is associated with
poor patient prognosis 473-474.

FINDING SUMMARFINDING SUMMARYY
SMARCA4 encodes the protein BRG1, an ATP-
dependent helicase that regulates gene
transcription through chromatin remodeling
475. SMARCA4 is inactivated in a variety of
cancers and considered a tumor suppressor 476.
Alterations in SMARCA4 that disrupt or
remove the ARID1A-interaction domain (aa
476-587)477, ATP-binding domain (aa 766-931),
or the bromodomain (aa 1477-1547)478 are
predicted to result in loss of SMARCA4
function. Certain point mutations have also
been characterized to inactivate SMARCA4
479-480.
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GENEGENE

TP53
ALALTERATERATIONTION

R273H, R175H

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no approved therapies to address
TP53 mutation or loss. However, tumors with
TP53 loss of function alterations may be
sensitive to the WEE1 inhibitor AZD1775
481-484, or p53 gene therapy and
immunotherapeutics such as SGT-53 485-489 and
ALT-801490. Missense mutations leading to
TP53 inactivation may also be sensitive to
therapies that reactivate mutant p53 such as
APR-246 491-493. In a Phase 1b trial in patients
with p53-positive high-grade serous ovarian
cancer, APR-246 combined with carboplatin
and pegylated liposomal doxorubicin achieved
a 52% (11/21) response rate and 100% disease
control rate494. In a Phase 1 study, AZD1775 in
combination with gemcitabine, cisplatin, or
carboplatin elicited partial response in 10%
(17/176) and stable disease in 53% (94/176) of
patients with solid tumors; the response rate
was 21% (4/19) in patients with TP53
mutations versus 12% (4/33) in patients who
were TP53-wild-type 495. Combination of
AZD1775 with paclitaxel and carboplatin

achieved significantly longer progression-free
survival than paclitaxel and carboplatin alone
in patients with TP53-mutant ovarian
cancer496. Furthermore, AZD1775 in
combination with carboplatin achieved a 27%
(6/22) response rate and 41% (9/22) stable
disease rate in patients with TP53-mutant
ovarian cancer refractory or resistant to
carboplatin plus paclitaxel497. In a Phase 1b
clinical trial of SGT-53 in combination with
docetaxel in patients with solid tumors, 75%
(9/12) of evaluable patients experienced
clinical benefit, including two confirmed and
one unconfirmed partial responses and two
instances of stable disease with significant
tumor shrinkage 489. Additionally, the
combination of a CHK1 inhibitor and
irinotecan reportedly reduced tumor growth
and prolonged survival in a TP53 mutant, but
not TP53 wild-type, breast cancer
xenotransplant mouse model 498.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
In the Sarcoma MSKCC dataset, TP53 deletion
has been reported in 11% of cases 72. Mutations
of TP53 have been reported in 14% of soft
tissue tumors analyzed in COSMIC, including
28% of angiosarcomas, 33% of
leiomyosarcomas, and 11% of
rhabdomyosarcomas (Oct 2018). TP53

alterations appear to lead to chromosomal
instability and drive oncogenesis in soft tissue
sarcomas 499. One study of soft tissue
sarcomas reported that TP53 non-frameshift
mutations correlated with poor prognosis,
including lymph node metastasis, increased
rate of relapse, and decreased overall survival
500.

FINDING SUMMARFINDING SUMMARYY
Functional loss of the tumor suppressor p53,
which is encoded by the TP53 gene, is common
in aggressive advanced cancers 501. Any
alteration that results in the disruption or
partial or complete loss of the region encoding
the TP53 DNA-binding domain (DBD, aa
100-292) or the tetramerization domain (aa
325-356), such as observed here, is thought to
dysregulate the transactivation of
p53-dependent genes and is predicted to
promote tumorigenesis 502-504. Germline
mutations in TP53 are associated with the very
rare disorder Li-Fraumeni syndrome and the
early onset of many cancers 505-507, including
sarcomas 508-510. Estimates for the prevalence
of germline TP53 mutations in the general
population range from 1:5,000 511 to 1:20,000
510. In the appropriate clinical context,
germline testing of TP53 is recommended.

GENEGENE

ZMYM3
ALALTERATERATIONTION

rearrangement exon 17

POPOTENTIAL TREATENTIAL TREATMENT STMENT STRATRATEGIESTEGIES
There are no targeted therapies to address
genomic alterations in ZMYM3.

FREQUENCFREQUENCY & PROGNOY & PROGNOSISSIS
ZMYM3 mutations are rare in solid tumors
and hematological cancers, being most
frequently reported in chronic lymphocytic
leukemia (CLL)/small lymphocytic lymphoma
(SLL) (2-4.3% of cases) 512.

FINDING SUMMARFINDING SUMMARYY
ZMYM3, also known as ZNF261, is a zinc-
finger containing protein capable of binding to

methylated histones 513. ZMYM3 is a
component of multi-protein complexes
containing histone deacetylase activity that
function to silence gene expression by
modifying chromatin structure 514-515. However,
the role of ZMYM3 in cancer is not clear.
Disruptions at the ZMYM3 locus have been
linked to intellectual disability 516-517.
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LarLarotrotrectinibectinib
Assay findings association

NTRK1NTRK1
A107V - subclonal,
rearrangement intron 6

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Larotrectinib is a tyrosine kinase inhibitor that targets
NTRK1, NTRK2, and NTRK3. It is FDA approved to treat
adult and pediatric patients with NTRK fusion-positive
solid tumors that lack a known acquired resistance
mutation and are metastatic or likely to result in severe
morbidity after surgical resection, and have no
satisfactory alternative treatments, or that have
progressed following treatment.

GENE AGENE ASSSOCIASOCIATIONTION
Based on extensive clinical evidence in various solid
tumors65,518 66, NTRK fusions may predict sensitivity to
larotrectinib. As it is unclear if the rearrangement seen
here results in expression of an oncogenic protein, it is
not known whether this therapeutic approach would be
relevant.

SUPPORTING DSUPPORTING DAATTAA
Analysis of combined data from several clinical trials,
including the pediatric Phase 1/2 SCOUT trial, reported
an ORR of 91% (29/32) in pediatric and adult patients
with NTRK fusion-positive sarcomas; the ORR was 90%
(9/10) in patients with infantile fibrosarcoma (IFS), 88%
(15/17) in patients with other soft tissue sarcomas, and
100% (5/5) in patients with GIST519. The SCOUT trial
included 5 patients (3 with IFS and 2 with other soft
tissue sarcomas) that received larotectinib as a
neoadjuvant treatment, and each patient achieved a PR
prior to surgery; CR or near CR (>98%) was reached in 3
of these patients following surgery71. One of two patients
with NTRK fusion-positive bone sarcoma treated with
larotrectinib exhibited a PR518.
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PPembrembrolizumabolizumab
Assay findings association

MicrMicrosatosatellitellite ste statusatus
MSI-High

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Pembrolizumab is a monoclonal antibody that binds to
the PD-1 receptor and blocks its interaction with the
ligands PD-L1 and PD-L2 to enhance antitumor immune
responses. It is FDA approved as second-line treatment
for adult and pediatric patients with unresectable or
metastatic microsatellite instability-high (MSI-H) or
mismatch repair deficient (dMMR) solid tumors or with
MSI-H or dMMR colorectal cancer that has progressed on
fluoropyrimidine, oxaliplatin, and irinotecan.
Pembrolizumab is also approved in unresectable or
metastatic melanoma, recurrent or metastatic head and
neck squamous cell carcinoma that has progressed on or
after platinum chemotherapy, hepatocellular carcinoma
previously treated with sorafenib, adult or pediatric
classical Hodgkin lymphoma that is refractory or
following relapse after 3 or more prior lines of therapy,
adult or pediatric primary mediastinal large B-cell
lymphoma (PMBCL) that is refractory or has relapsed
after 2 or more prior lines of therapy, PD-L1-positive
gastric or gastroesophageal junction (GEJ)
adenocarcinoma that has progressed on 2 or more lines of
therapy, PD-L1-positive recurrent or metastatic cervical
cancer that has progressed on or after chemotherapy, and
adult or pediatric recurrent locally advanced or metastatic
Merkel cell carcinoma (MCC). Pembrolizumab is also
approved in PD-L1-positive metastatic non-small cell lung
cancer (NSCLC) following progression on prior therapy, as
first-line treatment for metastatic NSCLC with high PD-
L1 expression and without EGFR or ALK genomic
alterations, as first-line treatment in combination with
pemetrexed and carboplatin for metastatic non-squamous
NSCLC without EGFR or ALK genomic alterations, and
as first-line treatment in combination with carboplatin
and paclitaxel or nab-paclitaxel for metastatic squamous
NSCLC. It is also approved to treat patients with
advanced urothelial carcinoma who are not eligible for
any platinum-containing chemotherapy, who have PD-L1
positive tumors and are not eligible for cisplatin-
containing chemotherapy, or who progress on or after
platinum chemotherapy or within 12 months of
neoadjuvant or adjuvant platinum chemotherapy.

GENE AGENE ASSSOCIASOCIATIONTION

Amplification of CD274 or PDCD1LG2 may lead to
overexpression of PD-1 ligand(s) and may predict
sensitivity to pembrolizumab. A patient with cancer of
unknown primary harboring CD274 amplification
experienced lasting partial remission upon treatment with
pembrolizumab100. PD-L1 expression in at least 50% of
tumor cells was associated with a higher response rate
and longer overall survival in patients with non-small cell
lung cancer (NSCLC)520-521. One trial in patients with
melanoma observed an improved objective response rate
(51% vs. 6%) and progression-free survival (12 vs. 3
months) for PD-L1 positive compared to PD-L1 negative
tumors103. Furthermore, PD-L1 expression correlated
positively with expression of PD-1 (on lymphocytes) and
PD-L2, as well as with objective response to the anti-PD-1
antibody nivolumab in various advanced solid tumors104.
On the basis of multiple prospective clinical studies
showing efficacy of pembrolizumab against various
microsatellite instability (MSI)-high or mismatch repair-
deficient solid tumors522-523 524-5259, MSI may predict
sensitivity to pembrolizumab. On the basis of emerging
clinical data in patients with non-small cell lung
cancer10,526 37, colorectal cancer9, or melanoma34 and case
reports in endometrial cancer38-39 and glioblastoma40-41,
high tumor mutational burden (TMB) may predict
sensitivity to anti-PD-1 therapies such as pembrolizumab.

SUPPORTING DSUPPORTING DAATTAA
A Phase 2 study of pembrolizumab for patients with
advanced soft tissue or bone sarcomas reported objective
responses for 22% (2/9) of undifferentiated pleomorphic
sarcoma (UPS) cases and 5% (1/19) of bone sarcoma
cases527. Although objective responses were not seen for
patients with leiomyosarcoma (LMS, 0/10), liposarcoma
(LPS, 0/9), synovial sarcoma (0/10), Ewing sarcoma (0/
13), or chondrosarcoma (CS, 0/6) at 8 weeks of therapy,
three additional partial responses were recorded for cases
with UPS, LPS, or CS after 20 weeks of
pembrolizumab527. In a Phase 1b trial of pembrolizumab
for PD-L1-positive advanced solid tumors, a patient with
resected uterine LMS had a complete pathological
response at all but one metastatic site528. Pembrolizumab
combined with liposomal doxorubicin achieved prolonged
stable disease for a patient with sarcoma529.
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AAffatinibatinib
Assay findings association

EEGFRGFR
amplification - equivocal

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Afatinib is an irreversible kinase inhibitor that targets the
kinase domains of EGFR, ERBB2/HER2, and ERBB4. It is
FDA approved for the first-line treatment of patients with
metastatic non-small cell lung cancer (NSCLC) and
nonresistant EGFR mutations and for the treatment of
patients with metastatic, squamous NSCLC after
progression on platinum-based chemotherapy.

GENE AGENE ASSSOCIASOCIATIONTION
EGFR activating mutations or amplification may indicate
sensitivity to afatinib. In Phase 2 studies of afatinib,
patients with EGFR-amplified NSCLC achieved an
objective response rate of 20% (5/25) and a disease-
control rate of 64% (16/25)530, and 2/5 patients with
EGFR amplification in other solid tumors experienced
stable disease531.

SUPPORTING DSUPPORTING DAATTAA
Afatinib has been primarily evaluated for the treatment of
EGFR-mutant NSCLC, in which treatment with afatinib
exhibited significant improvement in progression free
survival (PFS) vs. chemotherapy treatments125,532. A Phase
2 trial of afatinib in patients with either EGFR or ERBB2
amplification and esophagogastric, biliary tract, urothelial
tract, or gynecologic cancer reported a 5% (1/20) objective
response rate, with complete response achieved in one
patient and stable disease (SD) achieved in 8 patients; the
authors concluded that afatinib activity as a single agent
was encouraging531. A Phase 1 trial of afatinib in advanced
cancer reported SD in 14/31 patients533. A Phase 1 study
of afatinib combined with pemetrexed in patients with
advanced solid tumors reported confirmed partial
response in 3% (1/30) of patients and SD in 33% (10/30) of
patients534.

AAttezezolizumabolizumab
Assay findings association

CD2CD2774 (PD-L1)4 (PD-L1)
amplification

MicrMicrosatosatellitellite ste statusatus
MSI-High

PDCD1LPDCD1LG2 (PD-L2)G2 (PD-L2)
amplification

TTumor Mutumor Mutational Burational Burdenden
TMB-High (40 Muts/Mb)

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Atezolizumab is a monoclonal antibody that binds to PD-
L1 and blocks its interaction with PD-1 to enhance
antitumor immune responses. It is FDA approved to treat
patients with advanced urothelial carcinoma who are not
eligible for any platinum-containing therapy, who have
PD-L1-positive tumors and are not eligible for cisplatin-
containing chemotherapy, or who progress during or
following platinum-based chemotherapy. It is also
approved to treat patients with metastatic non-small cell
lung cancer (NSCLC) who progressed on prior treatments
and as a first line treatment in combination with
bevacizumab, paclitaxel, and carboplatin for patients with
metastatic non-squamous NSCLC without EGFR or ALK
alterations.

GENE AGENE ASSSOCIASOCIATIONTION
CD274 alterations, such as amplification or
rearrangements, that lead to overexpression of PD-L1 may
predict sensitivity to atezolizumab based on clinical
evidence in multiple solid tumor types92,171 535. On the
basis of emerging clinical data showing efficacy of
atezolizumab alone or in combination with antiangiogenic
therapy for patients with MSI-H colorectal cancer3 or
endometrial cancer4, MSI-H status may predict sensitivity
to atezolizumab. Amplification of PDCD1LG2, which is
often co-amplified with CD274, may lead to PD-L2
overexpression and predict sensitivity to anti-PD-L1
inhibitors such as atezolizumab. Although atezolizumab
does not block the interaction between PD-L2 and PD-1,
clinical evidence in multiple solid tumor types suggests
that PD-L2 expression may correlate with improved
overall survival and response to atezolizumab171,535 92. On
the basis of emerging clinical data in patients with
urothelial carcinoma33,35, non-small cell lung cancer
(NSCLC)526,536, or melanoma34, high tumor mutational

burden (TMB) may predict sensitivity to anti-PD-L1
therapies such as atezolizumab. In a retrospective analysis
that included these 3 solid tumor types as well as 14
others, TMB ≥20 correlated with an objective response
rate of ≥33% for patients treated with atezolizumab-based
regimens; for those whose tumors harbored TMB ≥16
muts/Mb, atezolizumab improved duration of response
relative to chemotherapy (29 vs. 6.2 months)44.

SUPPORTING DSUPPORTING DAATTAA
Atezolizumab has been studied primarily for the
treatment of non-small cell lung cancer (NSCLC)537-538

539-54092-93 and urothelial carcinoma541-54233,543. A study of
atezolizumab as monotherapy for patients with advanced
solid tumors reported a median progression-free survival
(PFS) of 18 weeks and an overall response rate (ORR) of
21%, including confirmed responses in 26% (11/43) of
melanomas, 13% (7/56) of renal cell carcinomas (RCC) and
13% (1/6) of colorectal cancers (CRCs)93. A Phase 1a study
of atezolizumab reported an ORR of 15% (9/62), median
PFS of 5.6 months, and median overall survival (OS) of
28.9 months for patients with clear cell RCC544. A Phase
1b study evaluated atezolizumab combined with nab-
paclitaxel for patients with previously treated metastatic
triple-negative breast cancer (mTNBC) and reported
confirmed objective responses for 42% (10/24) of
patients; no dose-limiting toxicities were observed545. A
Phase 1b study evaluated atezolizumab in combination
with the MEK inhibitor cobimetinib for advanced solid
tumors and enrolled 23 patients with CRC, who were
mostly (22/23) KRAS-mutant; 17% (4/23) of these patients
achieved objective partial responses, with three of the
responders being mismatch repair (MMR)-proficient and
one of them having unknown MMR status. In addition,
stable disease was observed for 22% (5/23) of patients,
and no dose-limiting toxicities were encountered546.
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AAvvelumabelumab
Assay findings association

CD2CD2774 (PD-L1)4 (PD-L1)
amplification

MicrMicrosatosatellitellite ste statusatus
MSI-High

PDCD1LPDCD1LG2 (PD-L2)G2 (PD-L2)
amplification

TTumor Mutumor Mutational Burational Burdenden
TMB-High (40 Muts/Mb)

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Avelumab is a monoclonal antibody that binds to PD-L1
and blocks its interaction with PD-1 in order to enhance
antitumor immune responses. It is FDA approved to treat
patients 12 years and older with metastatic Merkel cell
carcinoma and patients with advanced urothelial
carcinoma who have progressed on or after platinum
chemotherapy or within 12 months of neoadjuvant or
adjuvant platinum chemotherapy.

GENE AGENE ASSSOCIASOCIATIONTION
CD274 alterations, such as amplification or rearrangement,
may lead to overexpression of PD-L1 and predict
sensitivity to PD-L1-blocking antibodies such as avelumab
based on clinical evidence in multiple solid tumor
types171,547 548-549 92,550 535. On the basis of emerging
clinical data in patients with MSI-H colorectal cancer3,
endometrial cancer4, or gastric/gastroesophageal junction
cancer5, MSI-H status may predict sensitivity to anti-PD-
L1 therapies such as avelumab. Amplification of
PDCD1LG2, which is often co-amplified with CD274,
may lead to PD-L2 overexpression and predict sensitivity
to PD-L1-blocking antibodies such as avelumab. Although
avelumab does not block the interaction between PD-L2
and PD-1, clinical evidence in multiple solid tumor types
suggests that PD-L2 expression may correlate with
improved overall survival and response to the similar PD-
L1-blocking antibody atezolizumab171,535 92. On the basis of

emerging clinical data in patients with urothelial
carcinoma33, non-small cell lung cancer526,536, or
melanoma34, high tumor mutational burden (TMB) may
predict sensitivity to immune checkpoint inhibitors
targeting PD-1/PD-L1 signaling such as avelumab.

SUPPORTING DSUPPORTING DAATTAA
The JAVELIN Phase 1b study has demonstrated clinical
benefit from single-agent avelumab in a variety of solid
tumor types, including non-small cell lung carcinoma
(NSCLC)549, gastric carcinoma and gastroesophageal
junction (GEJ) adenocarcinoma551, urothelial carcinoma552,
mesothelioma553, ovarian carcinoma547, and breast
cancer548, and from avelumab combined with axitinib in
renal cell carcinoma554. Emerging clinical data show a
positive trend toward the association of tumor cell PD-L1
expression and improved objective response rate,
progression-free survival, or overall survival in NSCLC in
the first-line setting and in ovarian and breast
cancer547-548 549. Limited clinical data indicate activity of
avelumab in adrenocortical carcinoma, metastatic
castration-resistant prostate cancer, and thymic
cancer555-556 557. Phase 3 studies are evaluating avelumab
with chemoradiotherapy alone (NCT02952586) or in
combination with cetuximab (NCT02999087) in patients
with locally advanced head and neck squamous cell
carcinoma (Mar 2017).

CCemiplimab-emiplimab-
rwlcrwlc
Assay findings association

CD2CD2774 (PD-L1)4 (PD-L1)
amplification

MicrMicrosatosatellitellite ste statusatus
MSI-High

PDCD1LPDCD1LG2 (PD-L2)G2 (PD-L2)
amplification

TTumor Mutumor Mutational Burational Burdenden
TMB-High (40 Muts/Mb)

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Cemiplimab-rwlc is a monoclonal antibody that binds to
the PD-1 receptor and blocks its interaction with the
ligands PD-L1 and PD-L2 to enhance antitumor immune
responses. It is FDA approved to treat patients with
locally advanced or metastatic cutaneous squamous cell
carcinoma (CSCC) that is not amenable to surgery or
radiation therapy.

GENE AGENE ASSSOCIASOCIATIONTION
Amplification of CD274 or PDCD1LG2 may lead to
overexpression of PD-1 ligand(s). In multiple cancer types,
PD-L1 expression correlated positively with PD-1 (on
lymphocytes) and PD-L2 expression as well as improved
clinical benefit in response to anti-PD-1
immunotherapies103,520 104,521 558-559 101-102 and may predict
sensitivity to cemiplimab-rwlc. On the basis of

prospective clinical data showing efficacy of anti-PD-1
therapies against various MSI-high (MSI-H) solid
tumors522-523 524-525 9,560 8, MSI-H status may predict
sensitivity to cemiplimab-rwlc. On the basis of emerging
clinical data in patients with non-small cell lung
cancer10,526 561, colorectal cancer9, or melanoma34 and case
reports in endometrial cancer38-39 and glioblastoma41, high
tumor mutational burden (TMB) may predict sensitivity to
anti-PD-1 therapies, such as cemiplimab-rwlc.

SUPPORTING DSUPPORTING DAATTAA
Cemiplimab-rwlc has been studied primarily in advanced
CSCC, where it elicited a combined ORR of 48% (41/85)
in Phase 1 and 2 studies562. Clinical responses have also
been reported in non-small cell lung cancer (40% ORR, 1
CR and 7 PRs) and basal cell carcinoma (1 PR)563-564.
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CCetuximabetuximab
Assay findings association

EEGFRGFR
amplification - equivocal

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Cetuximab is a monoclonal antibody that targets EGFR. It
is FDA approved for the treatment of head and neck
squamous cell carcinoma (HNSCC) and KRAS wild-type
metastatic colorectal cancer (CRC).

GENE AGENE ASSSOCIASOCIATIONTION
EGFR amplification or activating alteration may confer
sensitivity to EGFR inhibitory antibodies such as
cetuximab. For patients with metastatic CRC receiving
cetuximab or panitumumab as mono- or combination
therapy, increased EGFR copy number associated with
improved overall survival (hazard ratio = 0.62) in a meta-
analysis, although increased survival was not seen in

populations that received first-line treatment with EGFR
antibodies565.

SUPPORTING DSUPPORTING DAATTAA
In a Phase 2 trial of cetuximab in patients with metastatic
or advanced soft tissue or bone sarcoma, no clinical
benefit was observed irrespective of MAPK, PTEN or
phospho-EGFR status566. Two case studies have reported
that a combination of gefitinib with the anti-EGFR
antibody cetuximab achieved a durable partial response
and tumor regression in two patients with recurrent
chordomas567-568. Cetuximab exhibited some efficacy
against cultured osteosarcoma cells569-570.

CrizCrizotinibotinib
Assay findings association

NTRK1NTRK1
A107V - subclonal,
rearrangement intron 6

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Crizotinib is an inhibitor of the kinases MET, ALK, ROS1,
and RON. It is FDA approved to treat patients with
metastatic non-small cell lung cancer (NSCLC) whose
tumors are positive for ALK rearrangements or ROS1
rearrangements.

GENE AGENE ASSSOCIASOCIATIONTION
Alterations that activate NTRK1 may predict sensitivity to
crizotinib. Clinical benefit with crizotinib treatment has
been achieved in patients NTRK1-fusion-positive tumors
including infantile fibrosarcoma60-61, lung
adenocarcinoma57, and undifferentiated pleomorphic
sarcoma571. As it is unclear if the rearrangement seen here

results in expression of an oncogenic protein, it is not
known whether this therapeutic approach would be
relevant.

SUPPORTING DSUPPORTING DAATTAA
A patient with primary undifferentiated pleomorphic
sarcoma harboring an LMNA-NTRK1 fusion was treated
with crizotinib and exhibited a near complete response
that was ongoing at 18 months571. Several small studies
have reported clinical response to crizotinib in patients
with inflammatory myofibroblastic tumors (IMTs)572-573

574-575, smooth muscle tumor of uncertain malignant
potential (STUMP)576, alveolar soft parts sarcoma and
alveolar rhabdomyosarcoma577.

DDacacomitinibomitinib
Assay findings association

EEGFRGFR
amplification - equivocal

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Dacomitinib is a second generation irreversible tyrosine
kinase inhibitor that targets the kinase domains of EGFR,
ERBB2/HER2, and ERBB4/HER4. It is FDA approved for
the first-line treatment of patients with metastatic non-
small cell lung cancer (NSCLC) with EGFR exon 19
deletion or exon 21 L858R substitution mutations.

GENE AGENE ASSSOCIASOCIATIONTION
On the basis of clinical578-579 580 and preclinical581-582 data,
EGFR amplification or activating mutation may indicate
sensitivity to dacomitinib.

SUPPORTING DSUPPORTING DAATTAA
Clinical data on the efficacy of dacomitinib for the
treatment of sarcoma are limited (PubMed, Oct 2018).
Investigations into the efficacy of dacomitinib have
primarily been in the context of non-small cell lung
cancer (NSCLC). Patients with EGFR-mutant NSCLC

treated with dacomitinib exhibited significant
improvement in OS compared with gefitinib treatment
(median OS, 34.1 vs. 26.8 months)128,578. A Phase 2 study
of dacomitinib in patients with advanced penile
squamous cell carcinoma (SCC) reported an ORR of 32%
(1 CR, 8 PR), including a 100% DCR (1 CR, 1 PR, 2 SD) in
four patients with EGFR amplification580,583. A Phase 2
study of dacomitinib in patients with recurrent or
metastatic head and neck SCC reported clinical benefit
(defined as PFS>4 months) in 13/31 (42%) of patients584.
Studies of dacomitinib in esophageal585 and cutaneous586

SCC reported RRs of 12.5% (6/48) and 28.6% (12/42),
respectively, but high DCRs of 73% and 86%, respectively.
On the other hand, trials of dacomitinib in heavily
pretreated patients with HER2+ gastric cancer587 and
patients with EGFR-amplified glioblastoma588 found RRs
of fewer than 10% and DCRs of fewer than 50%: 11/27
(41%) DCR in HER2+ gastric cancer587 and 15/49 (31%) in
EGFR-amplified glioblastoma588.
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DurvDurvalumabalumab
Assay findings association

CD2CD2774 (PD-L1)4 (PD-L1)
amplification

MicrMicrosatosatellitellite ste statusatus
MSI-High

PDCD1LPDCD1LG2 (PD-L2)G2 (PD-L2)
amplification

TTumor Mutumor Mutational Burational Burdenden
TMB-High (40 Muts/Mb)

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Durvalumab is a monoclonal antibody that binds to PD-
L1 and blocks its interaction with PD-1 to enhance
antitumor immune responses. It is FDA approved to treat
patients with advanced urothelial carcinoma that has
progressed on or after platinum chemotherapy or within
12 months of neoadjuvant or adjuvant platinum
chemotherapy. Durvalumab is also approved to treat
patients with unresectable, Stage 3 non-small cell lung
cancer that has not progressed following concurrent
platinum-based chemotherapy and radiation.

GENE AGENE ASSSOCIASOCIATIONTION
CD274 alterations, such as amplification or rearrangement,
may lead to overexpression of PD-L1 and predict
sensitivity to PD-L1-blocking antibodies such as
durvalumab based on clinical evidence in multiple solid
tumor types171,547 548-549 94,550 98-99 96-9792,535 95. On the
basis of emerging clinical data in patients with MSI-H
colorectal cancer3, endometrial cancer4, or gastric/
gastroesophageal junction cancer5, MSI-H status may
predict sensitivity to anti-PD-L1 therapies such as
durvalumab. Amplification of PDCD1LG2, which is often
co-amplified with CD274, may lead to PD-L2
overexpression and predict sensitivity to PD-L1-blocking
antibodies such as durvalumab. Although durvalumab
does not block the interaction between PD-L2 and PD-1,
clinical evidence in multiple solid tumor types suggests
that PD-L2 expression may correlate with improved
overall survival and response to the similar PD-
L1-blocking antibody atezolizumab171,535 92. On the basis of
emerging clinical data in patients with urothelial
carcinoma33, non-small cell lung cancer526,536, or
melanoma34, high tumor mutational burden (TMB) may

predict sensitivity to immune checkpoint inhibitors
targeting PD-1/PD-L1 signaling such as durvalumab.

SUPPORTING DSUPPORTING DAATTAA
Single-agent durvalumab has demonstrated efficacy in
urothelial carcinoma94-95, non-small cell lung cancer96-97,
and head and neck squamous cell carcinoma98,589. In
patients with advanced solid tumors, durvalumab
monotherapy has elicited disease control rates (DCRs) of
36–46% (7/19 to 12/26) in Phase 1/2 studies590-591.
Durvalumab is also under investigation in combination
with other agents in Phase 1/2 trials. In advanced
melanoma, durvalumab in combination with trametinib
and dabrafenib elicited objective response rates (ORRs)
and DCRs of 76% (16/21) and 100% (21/21) in patients
with BRAF-mutant tumors, and durvalumab with
trametinib elicited ORRs and DCRs of 21% (3/14) and
64% (9/14) in patients whose tumors were BRAF wild-
type523. Durvalumab in combination with the PARP
inhibitor olaparib has shown activity in patients with
metastatic castration-resistant prostate cancer and
progression on enzalutamide and/or abiraterone592 and in
patients with BRCA-wild-type breast or gynecological
cancer593. Durvalumab in combination with the anti-
CTLA4 antibody tremelimumab, but not durvalumab as a
single-agent, has shown activity in patients with
previously treated advanced germ cell tumors594.
Responses have also been reported for patients with solid
tumors treated with durvalumab in combination with the
anti-PD-1 antibody MEDI0680595, the CXCR2 antagonist
AZD5069596, or the ATR inhibitor AZD6738597. In
patients with treatment-refractory solid tumors,
concurrent durvalumab and radiotherapy achieved an
ORR of 60% (6/10) for in-field evaluable lesions,
including 2 complete and 4 partial responses598.
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ErlotinibErlotinib
Assay findings association

EEGFRGFR
amplification - equivocal

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Erlotinib is a small-molecule inhibitor of EGFR. It is FDA
approved both as first-line and maintenance therapy, as
well as second or greater line of treatment after
chemotherapy failure, for patients with metastatic non-
small cell lung cancer (NSCLC) harboring EGFR exon 19
deletions or exon 21 (L858R) mutations. Erlotinib is also
FDA approved in combination with gemcitabine as a first-
line treatment for advanced pancreatic cancer.

GENE AGENE ASSSOCIASOCIATIONTION
Amplification or activation of EGFR may predict
sensitivity to therapies such as erlotinib. For patients with
advanced NSCLC receiving single-agent erlotinib or
gefitinib, increased EGFR copy number associated with
improved overall survival (hazard ratio [HR] = 0.77) in a
meta-analysis, although the survival benefit was not
observed for East Asian populations (HR = 1.11)599-600 601.

SUPPORTING DSUPPORTING DAATTAA
The approval of erlotinib in NSCLC is based on a Phase 3
randomized trial demonstrating prolonged overall
survival for unselected NSCLC patients treated with
erlotinib compared to standard chemotherapy602.
Furthermore, several randomized Phase 3 trials have
shown a significant improvement in response and
progression-free survival for this class of medications
compared with combination chemotherapy in patients
with known EGFR mutations, including the EURTAC
trial of erlotinib vs. platinum-based chemotherapy123. A

Phase 3 clinical trial comparing erlotinib to gemcitabine
in patients with unresectable, locally advanced, or
metastatic pancreatic cancer reported improved overall
survival when compared to patients treated with
gemcitabine alone (6.24 vs. 5.91 months)603. In breast
cancer, erlotinib as a single therapy has been reported to
have minimal efficacy604. A Phase 1 study of the
combination therapy of erlotinib with capecitabine and
docetaxel in patients with metastatic breast cancer
reported an overall 67% response rate; however, the
authors suggested that these results will require
confirmation in larger, randomized studies605. A Phase 2
clinical trial of erlotinib in gastric adenocarcinoma
reported no clinical responses, although there were no
instances of EGFR mutation or amplification in this study
group606. A Phase 2 study in patients with metastatic
esophageal or gastroesophageal junction (GEJ) cancer
reported partial responses in 8% (2/24) of patients with
EGFR-positive tumors, but responses were only observed
in patients with squamous cell carcinoma and not in
patients with adenocarcinoma607-608. Erlotinib in
combination with modified FOLFOX6 has shown activity
in patients with metastatic or advanced esophageal or GEJ
cancer, with 6.1% (2/33) and 45.5% (15/33) of evaluable
patients exhibiting complete responses and partial
responses, respectively609. A study of elderly patients
with esophageal or GEJ carcinoma treated with erlotinib
and radiation therapy reported an overall survival of 7.3
months610.

GefitinibGefitinib
Assay findings association

EEGFRGFR
amplification - equivocal

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Gefitinib targets the tyrosine kinase EGFR and is FDA
approved to treat non-small cell lung cancer (NSCLC)
harboring exon 19 deletions or exon 21 (L858R)
substitution mutations in EGFR.

GENE AGENE ASSSOCIASOCIATIONTION
Amplification or activation of EGFR may predict
sensitivity to therapies such as gefitinib. Clinical studies
have consistently shown significant improvement in
response rates and progression-free survival for patients
with EGFR-mutated NSCLC treated with gefitinib,
compared to chemotherapy611-612 613-614 615-616 617. For
patients with advanced NSCLC receiving single-agent
erlotinib or gefitinib, increased EGFR copy number
associated with improved overall survival (hazard ratio
[HR] = 0.77) in a meta-analysis, although the survival
benefit was not observed for East Asian populations (HR
= 1.11)599-600 601. Patients with refractory advanced
esophageal carcinoma and EGFR amplification derived

significant overall survival benefit from gefitinib
compared to placebo (HR = 0.21)618-619.

SUPPORTING DSUPPORTING DAATTAA
A Phase 1 study of the combination of gefitinib with the
VEGFR-2 inhibitor cediranib reported partial responses
for 9% (8/90) of patients, including 1 with osteosarcoma,
and stable disease for 42% (38/90) of others620. A Phase 2
trial of gefitinib in patients with synovial sarcomas
expressing EGFR and refractory to doxorubicin did not
find significant clinical activity associated with
gefitinib621. A Phase 1 trial of 29 pediatric patients with
refractory solid tumors treated with gefitinib and
irinotecan found that the combination was well tolerated
and that gefitinib increased the bioavailability of
irinotecan; this study recorded a partial response in one
patient with Ewing sarcoma622. Case reports describe that
gefitinib combined with the anti-EGFR antibody
cetuximab achieved a durable partial response and tumor
regression in two patients with recurrent
chordomas567-568.
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LapatinibLapatinib
Assay findings association

EEGFRGFR
amplification - equivocal

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Lapatinib is a tyrosine kinase inhibitor that targets EGFR,
ERBB2/HER2, and to a lesser degree, ERBB4. It is FDA
approved in combination with capecitabine or letrozole
for the treatment of HER2-overexpressing (HER2+)
metastatic breast cancer.

GENE AGENE ASSSOCIASOCIATIONTION
EGFR amplification or activation may confer sensitivity to
EGFR/multi-tyrosine kinase inhibitors, such as lapatinib.
A Phase 2 study of lapatinib in non-small cell lung cancer
did not observe any responses for five patients with
EGFR amplification623.

SUPPORTING DSUPPORTING DAATTAA
Clinical data on the efficacy of lapatinib for the treatment
of sarcoma are limited (PubMed, Feb 2018). Investigations
into the efficacy of lapatinib have primarily been in the
context of breast cancer624-625 626-627 628-629. As first-line
therapy for HER2+ metastatic breast cancer, lapatinib plus

taxane resulted in shorter median progression-free
survival (PFS) compared with trastuzumab plus taxane
(9.0 vs. 11.3 months, hazard ratio of 1.37)630. For patients
who have progressed on trastuzumab plus taxane, ado-
trastuzumab emtansine (T-DM1) was superior to lapatinib
plus capecitabine (overall survival (OS) of 30.9 vs. 25.1
months)631. In postmenopausal patients with hormone
receptor-positive (HR+) HER2+ metastatic breast cancer,
lapatinib combined with letrozole increased median PFS
compared to letrozole alone (8.2 vs. 3.0 months)632. A
Phase 2 study selecting patients with ERBB2-amplified
solid tumors reported one complete response in a patient
with esophageal adenocarcinoma633. Phase 1 studies
evaluating lapatinib alone or in combination with
chemotherapy agents reported partial responses in
patients with various solid tumors and one complete
response in a patient with EGFR-overexpressing head and
neck squamous cell carcinoma634-635 636-637. In a Phase 1
trial of lapatinib plus pazopanib, one patient with a
salivary gland tumor experienced a partial response638.

NivNivolumabolumab
Assay findings association

CD2CD2774 (PD-L1)4 (PD-L1)
amplification

MicrMicrosatosatellitellite ste statusatus
MSI-High

PDCD1LPDCD1LG2 (PD-L2)G2 (PD-L2)
amplification

TTumor Mutumor Mutational Burational Burdenden
TMB-High (40 Muts/Mb)

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Nivolumab is a monoclonal antibody that binds to the
PD-1 receptor and blocks its interaction with PD-L1 and
PD-L2, thereby reducing inhibition of the antitumor
immune response. It is FDA approved as adjuvant
treatment for completely resected advanced melanoma
and as treatment for unresectable or metastatic melanoma
as both a single agent and in combination with the
immunotherapy ipilimumab. Nivolumab is also approved
in combination with ipilimumab to treat intermediate- or
poor-risk, previously untreated advanced renal cell
carcinoma (RCC) and as monotherapy to treat advanced
RCC after prior antiangiogenic therapy. Nivolumab is also
approved to treat metastatic non-small cell lung cancer
(NSCLC) after progression on prior treatments, recurrent
or metastatic head and neck squamous cell carcinoma
(HNSCC) after progression on or after platinum-based
therapy, advanced urothelial carcinoma after progression
on or after platinum chemotherapy or within 12 months
of neoadjuvant or adjuvant platinum chemotherapy,
hepatocellular carcinoma (HCC) previously treated with
sorafenib, classical Hodgkin lymphoma (cHL) that has
relapsed or progressed after autologous hematopoietic
stem cell transplantation (HSCT) and posttransplantation
brentuximab vedotin, and metastatic small cell lung
cancer (SCLC) after progression on platinum-based
chemotherapy and at least one other line of therapy.
Furthermore, nivolumab is approved as both a single agent
and in combination with ipilimumab to treat patients 12
years and older with mismatch repair-deficient (dMMR)
or microsatellite instability-high (MSI-H) metastatic
colorectal cancer (CRC) that has progressed on
fluoropyrimidine, oxaliplatin, and irinotecan.

GENE AGENE ASSSOCIASOCIATIONTION
Amplification of CD274 or PDCD1LG2 may lead to
overexpression of PD-1 ligand(s) and may predict
sensitivity to nivolumab. In various advanced solid
tumors, including melanoma, lung, kidney, prostate, and
colorectal cancer, PD-L1 expression correlated positively
with PD-1 (on lymphocytes) and PD-L2 expression as well
as with objective response to nivolumab104,559. On the
basis of prospective clinical data showing efficacy of
nivolumab for patients with MSI-H CRC8,560, MSI-H
status may predict sensitivity to nivolumab. On the basis
of emerging clinical data in patients with non-small cell
lung cancer10,526 561, colorectal cancer9, or melanoma34 and
case reports in endometrial cancer38-39 and glioblastoma41,
high tumor mutational burden (TMB) may predict
sensitivity to anti-PD-1 therapies such as nivolumab.

SUPPORTING DSUPPORTING DAATTAA
A retrospective analysis of nivolumab as a monotherapy
or in combination with pazopanib for patients with
previously treated metastatic sarcomas reported clinical
benefit for 39% (9/23) of the overall cohort; two patients
with dedifferentiated chondrosarcoma and intimal
sarcoma experienced partial responses to nivolumab, and
one case with epithelioid sarcoma responded to
nivolumab plus pazopanib639. Nivolumab did not show
antitumor activity for any of 12 genomically unselected
patients with uterine leiomyosarcoma in a Phase 2
trial640; however, 3/7 patients with leiomyosarcoma were
reported to benefit from regimens containing nivolumab
in one study639. In a case study, nivolumab treatment
elicited 6 months of regressive disease in a patient with
PD-L1-positive leiomyosarcoma641.
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PPanitumumabanitumumab
Assay findings association

EEGFRGFR
amplification - equivocal

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Panitumumab is a monoclonal antibody that targets
EGFR. It is FDA approved to treat KRAS wild-type and
NRAS wild-type metastatic colorectal cancer (CRC)
combined with chemotherapy or as monotherapy for
patients who have progressed on prior chemotherapy.

GENE AGENE ASSSOCIASOCIATIONTION
EGFR amplification or activating alteration may confer
sensitivity to EGFR inhibitory antibodies such as
panitumumab. For patients with metastatic CRC receiving
cetuximab or panitumumab as mono- or combination

therapy, increased EGFR copy number associated with
improved overall survival (hazard ratio = 0.62) in a meta-
analysis, although increased survival was not seen in
populations that received first-line treatment with EGFR
antibodies565.

SUPPORTING DSUPPORTING DAATTAA
A Phase 1 study of panitumumab in combination with the
anti-IGF-1R antibody ganitumab and the mTOR inhibitor
everolimus, which included 5 patients with sarcoma,
reported prolonged (>24 months) SD in one patient with
chondrosarcoma642.

PPembrembrolizumabolizumab
Assay findings association

CD2CD2774 (PD-L1)4 (PD-L1)
amplification

PDCD1LPDCD1LG2 (PD-L2)G2 (PD-L2)
amplification

TTumor Mutumor Mutational Burational Burdenden
TMB-High (40 Muts/Mb)

AREAAREAS OF THERAPEUTIC USES OF THERAPEUTIC USE
Pembrolizumab is a monoclonal antibody that binds to
the PD-1 receptor and blocks its interaction with the
ligands PD-L1 and PD-L2 to enhance antitumor immune
responses. It is FDA approved as second-line treatment
for adult and pediatric patients with unresectable or
metastatic microsatellite instability-high (MSI-H) or
mismatch repair deficient (dMMR) solid tumors or with
MSI-H or dMMR colorectal cancer that has progressed on
fluoropyrimidine, oxaliplatin, and irinotecan.
Pembrolizumab is also approved in unresectable or
metastatic melanoma, recurrent or metastatic head and
neck squamous cell carcinoma that has progressed on or
after platinum chemotherapy, hepatocellular carcinoma
previously treated with sorafenib, adult or pediatric
classical Hodgkin lymphoma that is refractory or
following relapse after 3 or more prior lines of therapy,
adult or pediatric primary mediastinal large B-cell
lymphoma (PMBCL) that is refractory or has relapsed
after 2 or more prior lines of therapy, PD-L1-positive
gastric or gastroesophageal junction (GEJ)
adenocarcinoma that has progressed on 2 or more lines of
therapy, PD-L1-positive recurrent or metastatic cervical
cancer that has progressed on or after chemotherapy, and
adult or pediatric recurrent locally advanced or metastatic
Merkel cell carcinoma (MCC). Pembrolizumab is also
approved in PD-L1-positive metastatic non-small cell lung
cancer (NSCLC) following progression on prior therapy, as
first-line treatment for metastatic NSCLC with high PD-
L1 expression and without EGFR or ALK genomic
alterations, as first-line treatment in combination with
pemetrexed and carboplatin for metastatic non-squamous
NSCLC without EGFR or ALK genomic alterations, and
as first-line treatment in combination with carboplatin
and paclitaxel or nab-paclitaxel for metastatic squamous
NSCLC. It is also approved to treat patients with
advanced urothelial carcinoma who are not eligible for
any platinum-containing chemotherapy, who have PD-L1
positive tumors and are not eligible for cisplatin-
containing chemotherapy, or who progress on or after
platinum chemotherapy or within 12 months of
neoadjuvant or adjuvant platinum chemotherapy.

GENE AGENE ASSSOCIASOCIATIONTION

Amplification of CD274 or PDCD1LG2 may lead to
overexpression of PD-1 ligand(s) and may predict
sensitivity to pembrolizumab. A patient with cancer of
unknown primary harboring CD274 amplification
experienced lasting partial remission upon treatment with
pembrolizumab100. PD-L1 expression in at least 50% of
tumor cells was associated with a higher response rate
and longer overall survival in patients with non-small cell
lung cancer (NSCLC)520-521. One trial in patients with
melanoma observed an improved objective response rate
(51% vs. 6%) and progression-free survival (12 vs. 3
months) for PD-L1 positive compared to PD-L1 negative
tumors103. Furthermore, PD-L1 expression correlated
positively with expression of PD-1 (on lymphocytes) and
PD-L2, as well as with objective response to the anti-PD-1
antibody nivolumab in various advanced solid tumors104.
On the basis of multiple prospective clinical studies
showing efficacy of pembrolizumab against various
microsatellite instability (MSI)-high or mismatch repair-
deficient solid tumors522-523 524-5259, MSI may predict
sensitivity to pembrolizumab. On the basis of emerging
clinical data in patients with non-small cell lung
cancer10,526 37, colorectal cancer9, or melanoma34 and case
reports in endometrial cancer38-39 and glioblastoma40-41,
high tumor mutational burden (TMB) may predict
sensitivity to anti-PD-1 therapies such as pembrolizumab.

SUPPORTING DSUPPORTING DAATTAA
A Phase 2 study of pembrolizumab for patients with
advanced soft tissue or bone sarcomas reported objective
responses for 22% (2/9) of undifferentiated pleomorphic
sarcoma (UPS) cases and 5% (1/19) of bone sarcoma
cases527. Although objective responses were not seen for
patients with leiomyosarcoma (LMS, 0/10), liposarcoma
(LPS, 0/9), synovial sarcoma (0/10), Ewing sarcoma (0/
13), or chondrosarcoma (CS, 0/6) at 8 weeks of therapy,
three additional partial responses were recorded for cases
with UPS, LPS, or CS after 20 weeks of
pembrolizumab527. In a Phase 1b trial of pembrolizumab
for PD-L1-positive advanced solid tumors, a patient with
resected uterine LMS had a complete pathological
response at all but one metastatic site528. Pembrolizumab
combined with liposomal doxorubicin achieved prolonged
stable disease for a patient with sarcoma529.
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NONOTETE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however the agents listed in this report may have little or
no evidence in the patient’s tumor type.

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
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IMPORTIMPORTANTANT Clinical trials are ordered by gene and
prioritized by: age range inclusion criteria for pediatric
patients, proximity to ordering medical facility, later trial
phase, and verification of trial information within the last
two months. While every effort is made to ensure the
accuracy of the information contained below, the
information available in the public domain is continually

updated and should be investigated by the physician or
research staff. This is not a comprehensive list of all
available clinical trials. Foundation Medicine displays a
subset of trial options and ranks them in this order of
descending priority: Qualification for pediatric trial →
Geographical proximity → Later trial phase. Clinical trials
listed here may have additional enrollment criteria that

may require medical screening to determine final
eligibility. For additional information about listed clinical
trials or to conduct a search for additional trials, please see
clinicaltrials.gov. Or visit
https://www.foundationmedicine.com/genomic-
testing#support-services.

BIOMARKERBIOMARKER

MicrMicrosatosatellitellite statuse status
CACATEGORTEGORYY

MSI-High

RARATIONALETIONALE
High microsatellite instability (MSI) and
mutational burden may predict response to anti-

PD-1 and anti-PD-L1 immune checkpoint
inhibitors.

NCT0NCT020911420911411 PHAPHASE 2SE 2

My Pathway: An Open Label Phase IIa Study Evaluating Trastuzumab/Pertuzumab, Erlotinib,
Vemurafenib/Cobimetinib, and Vismodegib in Patients Who Have Advanced Solid Tumors With
Mutations or Gene Expression Abnormalities Predictive of Response to One of These Agents

TTARGETARGETSS
ERBB3, ERBB2, EERBB3, ERBB2, EGFR, BRAFGFR, BRAF, MEK, SMO, MEK, SMO,,
ALK, RETALK, RET, PD-L1, PD-L1

LLOCAOCATIONS:TIONS: Arizona, Arkansas, California, Colorado, Florida, Georgia, Illinois, Maryland, Minnesota, Missouri, New York, North Carolina, North Dakota,
Ohio, Oklahoma, Oregon, Pennsylvania, South Dakota, Tennessee, Texas, Virginia, Washington, Wisconsin

NCT0NCT030930923232323 PHAPHASE 2SE 2

SU2C-SARC032: A Phase II Randomized Controlled Trial of Neoadjuvant Pembrolizumab With
Radiotherapy and Adjuvant Pembrolizumab in Patients With High-Risk, Localized Soft Tissue Sarcoma
of the Extremity

TTARGETARGETSS
PD-PD-11

LLOCAOCATIONS:TIONS: California, Florida, Iowa, Maryland, Massachusetts, Michigan, Missouri, Camperdown (Australia), New York, North Carolina, Ohio,
Pennsylvania, Montreal (Canada), Brisbane (Australia)

NCT0NCT030844308447711 PHAPHASE 3SE 3

An Open-Label, Multi-Centre, Safety Study of Fixed-Dose Durvalumab + Tremelimumab Combination
Therapy or Durvalumab Monotherapy in Advanced Solid Malignancies.

TTARGETARGETSS
PD-L1, CTLAPD-L1, CTLA-4-4

LLOCAOCATIONS:TIONS: Alaska, California, District of Columbia, Florida, Georgia, Iowa, Michigan, Montana, Nebraska, Moncton (Canada), New Jersey, New York,
Oklahoma, Brampton (Canada), Hamilton (Canada), Kingston (Canada), London (Canada), Newmarket (Canada), Toronto (Canada), Oregon, Greenfield
Park (Canada), South Carolina, Tennessee, Texas, Virginia, Washington, Quebec (Canada), Besançon Cedex (France), Bordeaux Cedex (France), Brest
(France), Dijon (France), Lille Cedex (France), Nice (France), Paris (France), Pierre Benite (France), Saint Herblain Cedex (France), Strasbourg Cedex
(France), Toulouse (France), Tours CEDEX (France), Villejuif (France), Berlin (Germany), Bielefeld (Germany), Dresden (Germany), Duisburg (Germany),
Erlangen (Germany), Essen (Germany), Guetersloh (Germany), Hamburg (Germany), Jena (Germany), Kiel (Germany), Lübeck (Germany), Muenster
(Germany), Münster (Germany), Rostock (Germany), Stuttgart (Germany), Wiesbaden (Germany), Würzburg (Germany), Ancona (Italy), Arezzo (Italy),
Avellino (Italy), Catania (Italy), Lecce (Italy), Meldola (Italy), Milano (Italy), Modena (Italy), Ravenna (Italy), Roma (Italy), Rozzano (Italy), Busan (Korea,
Republic of), Goyang-si (Korea, Republic of), Seoul (Korea, Republic of), Leiden (Netherlands), Basel (Switzerland), Genolier (Switzerland), London (United
Kingdom), Newcastle (United Kingdom), Plymouth (United Kingdom), Sheffield (United Kingdom)

NCT0NCT026462646774848 PHAPHASE 1SE 1

A Platform Study Exploring the Safety, Tolerability, Effect on the Tumor Microenvironment, and
Efficacy of Pembrolizumab + INCB Combinations in Advanced Solid Tumors

TTARGETARGETSS
JJAK1, PD-AK1, PD-1, PI3K1, PI3K-delta-delta

LLOCAOCATIONS:TIONS: California, District of Columbia, Florida, Maryland, Massachusetts, Michigan, New York, North Carolina, Pennsylvania, Texas, Utah
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NCT0NCT026269933553355 PHAPHASE 2SE 2

Targeted Agent and Profiling Utilization Registry (TAPUR) Study TTARGETARGETSS
VEVEGFRs, ABL, SRGFRs, ABL, SRC, ALK, AXL, METC, ALK, AXL, MET,,
RROOS1, TRKA, TRKS1, TRKA, TRKC, CDK4, CDK6,C, CDK4, CDK6,
CSF1R, FLCSF1R, FLT3, KITT3, KIT, PDGFRs, RET, PDGFRs, RET, mT, mTOR,OR,
EEGFR, ERBB3, ERBB2, BRAFGFR, ERBB3, ERBB2, BRAF, MEK, SMO, MEK, SMO,,
DDR2, RAF1, PDDR2, RAF1, PARPARP, PD-, PD-1, CTLA1, CTLA-4-4

LLOCAOCATIONS:TIONS: Alabama, Arizona, California, Florida, Georgia, Illinois, Michigan, Nebraska, North Carolina, North Dakota, Oklahoma, Oregon, Pennsylvania,
South Dakota, Texas, Utah, Virginia, Washington

NCT0NCT020990582099058 PHAPHASE 1SE 1

A Multicenter, Phase 1/1b, Open-Label, Dose-Escalation Study of ABBV-399, an Antibody Drug
Conjugate, in Subjects With Advanced Solid Tumors

TTARGETARGETSS
VEVEGFGFA, META, MET, E, EGFR, PD-GFR, PD-11

LLOCAOCATIONS:TIONS: California, Colorado, Meldola (Italy), Villejuif (France), Illinois, Massachusetts, Michigan, Missouri, North Carolina, Marseille CEDEX 05
(France), Tainan City (Taiwan), Taipei City (Taiwan), Tennessee, Texas, Virginia, Tampere (Finland)

NCT0NCT032640663264066 PHAPHASE 2SE 2

A Phase II, Open-Label, Multicenter, Multicohort Study to Investigate the Efficacy and Safety of
Cobimetinib Plus Atezolizumab in Patients With Solid Tumors

TTARGETARGETSS
PD-L1, MEKPD-L1, MEK

LLOCAOCATIONS:TIONS: Kansas, New York, Tennessee, Kortrijk (Belgium), Nyíregyháza (Hungary), Seoul (Korea, Republic of), London (United Kingdom)

NCT0NCT018187765116511 PHAPHASE 2SE 2

Phase 2 Study of MK-3475 in Patients With Microsatellite Unstable (MSI) Tumors TTARGETARGETSS
PD-PD-11

LLOCAOCATIONS:TIONS: California, Maryland, Ohio, Oregon, Pennsylvania

NCT0NCT030830896459645 PHAPHASE 1SE 1

A Phase 1 First Time in Human Study to Evaluate the Safety, Pharmacokinetics and Immunogenicity of
MEDI5083 Alone and in Combination With Durvalumab in Selected Advanced Solid Tumors

TTARGETARGETSS
PD-L1, CD40PD-L1, CD40

LLOCAOCATIONS:TIONS: New Jersey, Rhode Island, Tennessee, Clayton (Australia), Melbourne (Australia), Randwick (Australia)

NCT0NCT022484404484404 PHAPHASE 1/2SE 1/2

Phase I/II Study of the Anti-Programmed Death Ligand-1 Antibody MEDI4736 in Combination With
Olaparib and/or Cediranib for Advanced Solid Tumors and Advanced or Recurrent Ovarian, Triple
Negative Breast, Lung, Prostate and Colorectal Cancers

TTARGETARGETSS
PPARPARP, PD-L1, VE, PD-L1, VEGFRsGFRs

LLOCAOCATIONS:TIONS: Maryland
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BIOMARKERBIOMARKER

TTumor Mutational Burumor Mutational Burdenden
CACATEGORTEGORYY

TMB-High (40 Muts/Mb)

RARATIONALETIONALE
High tumor mutational burden may predict
response to anti-PD-1 and anti-PD-L1 immune
checkpoint inhibitors.

NCT0NCT020911420911411 PHAPHASE 2SE 2

My Pathway: An Open Label Phase IIa Study Evaluating Trastuzumab/Pertuzumab, Erlotinib,
Vemurafenib/Cobimetinib, and Vismodegib in Patients Who Have Advanced Solid Tumors With
Mutations or Gene Expression Abnormalities Predictive of Response to One of These Agents

TTARGETARGETSS
ERBB3, ERBB2, EERBB3, ERBB2, EGFR, BRAFGFR, BRAF, MEK, SMO, MEK, SMO,,
ALK, RETALK, RET, PD-L1, PD-L1

LLOCAOCATIONS:TIONS: Arizona, Arkansas, California, Colorado, Florida, Georgia, Illinois, Maryland, Minnesota, Missouri, New York, North Carolina, North Dakota,
Ohio, Oklahoma, Oregon, Pennsylvania, South Dakota, Tennessee, Texas, Virginia, Washington, Wisconsin

NCT0NCT030930923232323 PHAPHASE 2SE 2

SU2C-SARC032: A Phase II Randomized Controlled Trial of Neoadjuvant Pembrolizumab With
Radiotherapy and Adjuvant Pembrolizumab in Patients With High-Risk, Localized Soft Tissue Sarcoma
of the Extremity

TTARGETARGETSS
PD-PD-11

LLOCAOCATIONS:TIONS: California, Florida, Iowa, Maryland, Massachusetts, Michigan, Missouri, Camperdown (Australia), New York, North Carolina, Ohio,
Pennsylvania, Montreal (Canada), Brisbane (Australia)

NCT0NCT030844308447711 PHAPHASE 3SE 3

An Open-Label, Multi-Centre, Safety Study of Fixed-Dose Durvalumab + Tremelimumab Combination
Therapy or Durvalumab Monotherapy in Advanced Solid Malignancies.

TTARGETARGETSS
PD-L1, CTLAPD-L1, CTLA-4-4

LLOCAOCATIONS:TIONS: Alaska, California, District of Columbia, Florida, Georgia, Iowa, Michigan, Montana, Nebraska, Moncton (Canada), New Jersey, New York,
Oklahoma, Brampton (Canada), Hamilton (Canada), Kingston (Canada), London (Canada), Newmarket (Canada), Toronto (Canada), Oregon, Greenfield
Park (Canada), South Carolina, Tennessee, Texas, Virginia, Washington, Quebec (Canada), Besançon Cedex (France), Bordeaux Cedex (France), Brest
(France), Dijon (France), Lille Cedex (France), Nice (France), Paris (France), Pierre Benite (France), Saint Herblain Cedex (France), Strasbourg Cedex
(France), Toulouse (France), Tours CEDEX (France), Villejuif (France), Berlin (Germany), Bielefeld (Germany), Dresden (Germany), Duisburg (Germany),
Erlangen (Germany), Essen (Germany), Guetersloh (Germany), Hamburg (Germany), Jena (Germany), Kiel (Germany), Lübeck (Germany), Muenster
(Germany), Münster (Germany), Rostock (Germany), Stuttgart (Germany), Wiesbaden (Germany), Würzburg (Germany), Ancona (Italy), Arezzo (Italy),
Avellino (Italy), Catania (Italy), Lecce (Italy), Meldola (Italy), Milano (Italy), Modena (Italy), Ravenna (Italy), Roma (Italy), Rozzano (Italy), Busan (Korea,
Republic of), Goyang-si (Korea, Republic of), Seoul (Korea, Republic of), Leiden (Netherlands), Basel (Switzerland), Genolier (Switzerland), London (United
Kingdom), Newcastle (United Kingdom), Plymouth (United Kingdom), Sheffield (United Kingdom)

NCT0NCT026462646774848 PHAPHASE 1SE 1

A Platform Study Exploring the Safety, Tolerability, Effect on the Tumor Microenvironment, and
Efficacy of Pembrolizumab + INCB Combinations in Advanced Solid Tumors

TTARGETARGETSS
JJAK1, PD-AK1, PD-1, PI3K1, PI3K-delta-delta

LLOCAOCATIONS:TIONS: California, District of Columbia, Florida, Maryland, Massachusetts, Michigan, New York, North Carolina, Pennsylvania, Texas, Utah

NCT0NCT026269933553355 PHAPHASE 2SE 2

Targeted Agent and Profiling Utilization Registry (TAPUR) Study TTARGETARGETSS
VEVEGFRs, ABL, SRGFRs, ABL, SRC, ALK, AXL, METC, ALK, AXL, MET,,
RROOS1, TRKA, TRKS1, TRKA, TRKC, CDK4, CDK6,C, CDK4, CDK6,
CSF1R, FLCSF1R, FLT3, KITT3, KIT, PDGFRs, RET, PDGFRs, RET, mT, mTOR,OR,
EEGFR, ERBB3, ERBB2, BRAFGFR, ERBB3, ERBB2, BRAF, MEK, SMO, MEK, SMO,,
DDR2, RAF1, PDDR2, RAF1, PARPARP, PD-, PD-1, CTLA1, CTLA-4-4

LLOCAOCATIONS:TIONS: Alabama, Arizona, California, Florida, Georgia, Illinois, Michigan, Nebraska, North Carolina, North Dakota, Oklahoma, Oregon, Pennsylvania,
South Dakota, Texas, Utah, Virginia, Washington
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Soft tissue sarcoma (NOS)
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NCT0NCT020990582099058 PHAPHASE 1SE 1

A Multicenter, Phase 1/1b, Open-Label, Dose-Escalation Study of ABBV-399, an Antibody Drug
Conjugate, in Subjects With Advanced Solid Tumors

TTARGETARGETSS
VEVEGFGFA, META, MET, E, EGFR, PD-GFR, PD-11

LLOCAOCATIONS:TIONS: California, Colorado, Meldola (Italy), Villejuif (France), Illinois, Massachusetts, Michigan, Missouri, North Carolina, Marseille CEDEX 05
(France), Tainan City (Taiwan), Taipei City (Taiwan), Tennessee, Texas, Virginia, Tampere (Finland)

NCT0NCT032640663264066 PHAPHASE 2SE 2

A Phase II, Open-Label, Multicenter, Multicohort Study to Investigate the Efficacy and Safety of
Cobimetinib Plus Atezolizumab in Patients With Solid Tumors

TTARGETARGETSS
PD-L1, MEKPD-L1, MEK

LLOCAOCATIONS:TIONS: Kansas, New York, Tennessee, Kortrijk (Belgium), Nyíregyháza (Hungary), Seoul (Korea, Republic of), London (United Kingdom)

NCT0NCT030830896459645 PHAPHASE 1SE 1

A Phase 1 First Time in Human Study to Evaluate the Safety, Pharmacokinetics and Immunogenicity of
MEDI5083 Alone and in Combination With Durvalumab in Selected Advanced Solid Tumors

TTARGETARGETSS
PD-L1, CD40PD-L1, CD40

LLOCAOCATIONS:TIONS: New Jersey, Rhode Island, Tennessee, Clayton (Australia), Melbourne (Australia), Randwick (Australia)

NCT0NCT022484404484404 PHAPHASE 1/2SE 1/2

Phase I/II Study of the Anti-Programmed Death Ligand-1 Antibody MEDI4736 in Combination With
Olaparib and/or Cediranib for Advanced Solid Tumors and Advanced or Recurrent Ovarian, Triple
Negative Breast, Lung, Prostate and Colorectal Cancers

TTARGETARGETSS
PPARPARP, PD-L1, VE, PD-L1, VEGFRsGFRs

LLOCAOCATIONS:TIONS: Maryland

NCT0NCT031265312659191 PHAPHASE 1SE 1

An Open-Label, Multicenter, Phase 1a/1b Study of Olaratumab (LY3012207) Plus Pembrolizumab
(MK3475) in Patients With Unresectable Locally Advanced or Metastatic Soft Tissue Sarcoma (STS)
Who Have Failed Standard Treatments

TTARGETARGETSS
PD-PD-1, PDGFRA1, PDGFRA

LLOCAOCATIONS:TIONS: New York, Pennsylvania, Leuven (Belgium), Herlev (Denmark), Villejuif Cedex (France)
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GENEGENE

CD2CD2774 (PD-L1)4 (PD-L1)
ALALTERATERATIONTION

amplification

RARATIONALETIONALE
CD274 (PD-L1) amplification or rearrangements
that disrupt the 3' UTR may promote PD-1
signaling and inhibit the anti-tumor immune
response. Antibodies that block the interaction of

PD-L1 and PD-1 may therefore be beneficial to
release the anti-tumor immune response.
Furthermore, JAK2 inhibitors may be relevant,
because they may reduce PD-L1 expression.

NCT0NCT020911420911411 PHAPHASE 2SE 2

My Pathway: An Open Label Phase IIa Study Evaluating Trastuzumab/Pertuzumab, Erlotinib,
Vemurafenib/Cobimetinib, and Vismodegib in Patients Who Have Advanced Solid Tumors With
Mutations or Gene Expression Abnormalities Predictive of Response to One of These Agents

TTARGETARGETSS
ERBB3, ERBB2, EERBB3, ERBB2, EGFR, BRAFGFR, BRAF, MEK, SMO, MEK, SMO,,
ALK, RETALK, RET, PD-L1, PD-L1

LLOCAOCATIONS:TIONS: Arizona, Arkansas, California, Colorado, Florida, Georgia, Illinois, Maryland, Minnesota, Missouri, New York, North Carolina, North Dakota,
Ohio, Oklahoma, Oregon, Pennsylvania, South Dakota, Tennessee, Texas, Virginia, Washington, Wisconsin

NCT0NCT030930923232323 PHAPHASE 2SE 2

SU2C-SARC032: A Phase II Randomized Controlled Trial of Neoadjuvant Pembrolizumab With
Radiotherapy and Adjuvant Pembrolizumab in Patients With High-Risk, Localized Soft Tissue Sarcoma
of the Extremity

TTARGETARGETSS
PD-PD-11

LLOCAOCATIONS:TIONS: California, Florida, Iowa, Maryland, Massachusetts, Michigan, Missouri, Camperdown (Australia), New York, North Carolina, Ohio,
Pennsylvania, Montreal (Canada), Brisbane (Australia)

NCT0NCT030844308447711 PHAPHASE 3SE 3

An Open-Label, Multi-Centre, Safety Study of Fixed-Dose Durvalumab + Tremelimumab Combination
Therapy or Durvalumab Monotherapy in Advanced Solid Malignancies.

TTARGETARGETSS
PD-L1, CTLAPD-L1, CTLA-4-4

LLOCAOCATIONS:TIONS: Alaska, California, District of Columbia, Florida, Georgia, Iowa, Michigan, Montana, Nebraska, Moncton (Canada), New Jersey, New York,
Oklahoma, Brampton (Canada), Hamilton (Canada), Kingston (Canada), London (Canada), Newmarket (Canada), Toronto (Canada), Oregon, Greenfield
Park (Canada), South Carolina, Tennessee, Texas, Virginia, Washington, Quebec (Canada), Besançon Cedex (France), Bordeaux Cedex (France), Brest
(France), Dijon (France), Lille Cedex (France), Nice (France), Paris (France), Pierre Benite (France), Saint Herblain Cedex (France), Strasbourg Cedex
(France), Toulouse (France), Tours CEDEX (France), Villejuif (France), Berlin (Germany), Bielefeld (Germany), Dresden (Germany), Duisburg (Germany),
Erlangen (Germany), Essen (Germany), Guetersloh (Germany), Hamburg (Germany), Jena (Germany), Kiel (Germany), Lübeck (Germany), Muenster
(Germany), Münster (Germany), Rostock (Germany), Stuttgart (Germany), Wiesbaden (Germany), Würzburg (Germany), Ancona (Italy), Arezzo (Italy),
Avellino (Italy), Catania (Italy), Lecce (Italy), Meldola (Italy), Milano (Italy), Modena (Italy), Ravenna (Italy), Roma (Italy), Rozzano (Italy), Busan (Korea,
Republic of), Goyang-si (Korea, Republic of), Seoul (Korea, Republic of), Leiden (Netherlands), Basel (Switzerland), Genolier (Switzerland), London (United
Kingdom), Newcastle (United Kingdom), Plymouth (United Kingdom), Sheffield (United Kingdom)

NCT0NCT026462646774848 PHAPHASE 1SE 1

A Platform Study Exploring the Safety, Tolerability, Effect on the Tumor Microenvironment, and
Efficacy of Pembrolizumab + INCB Combinations in Advanced Solid Tumors

TTARGETARGETSS
JJAK1, PD-AK1, PD-1, PI3K1, PI3K-delta-delta

LLOCAOCATIONS:TIONS: California, District of Columbia, Florida, Maryland, Massachusetts, Michigan, New York, North Carolina, Pennsylvania, Texas, Utah

NCT0NCT020990582099058 PHAPHASE 1SE 1

A Multicenter, Phase 1/1b, Open-Label, Dose-Escalation Study of ABBV-399, an Antibody Drug
Conjugate, in Subjects With Advanced Solid Tumors

TTARGETARGETSS
VEVEGFGFA, META, MET, E, EGFR, PD-GFR, PD-11

LLOCAOCATIONS:TIONS: California, Colorado, Meldola (Italy), Villejuif (France), Illinois, Massachusetts, Michigan, Missouri, North Carolina, Marseille CEDEX 05
(France), Tainan City (Taiwan), Taipei City (Taiwan), Tennessee, Texas, Virginia, Tampere (Finland)

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE

TRF# CLINICCLINICAL TRIALSAL TRIALS
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NCT0NCT032640663264066 PHAPHASE 2SE 2

A Phase II, Open-Label, Multicenter, Multicohort Study to Investigate the Efficacy and Safety of
Cobimetinib Plus Atezolizumab in Patients With Solid Tumors

TTARGETARGETSS
PD-L1, MEKPD-L1, MEK

LLOCAOCATIONS:TIONS: Kansas, New York, Tennessee, Kortrijk (Belgium), Nyíregyháza (Hungary), Seoul (Korea, Republic of), London (United Kingdom)

NCT0NCT030830896459645 PHAPHASE 1SE 1

A Phase 1 First Time in Human Study to Evaluate the Safety, Pharmacokinetics and Immunogenicity of
MEDI5083 Alone and in Combination With Durvalumab in Selected Advanced Solid Tumors

TTARGETARGETSS
PD-L1, CD40PD-L1, CD40

LLOCAOCATIONS:TIONS: New Jersey, Rhode Island, Tennessee, Clayton (Australia), Melbourne (Australia), Randwick (Australia)

NCT0NCT022484404484404 PHAPHASE 1/2SE 1/2

Phase I/II Study of the Anti-Programmed Death Ligand-1 Antibody MEDI4736 in Combination With
Olaparib and/or Cediranib for Advanced Solid Tumors and Advanced or Recurrent Ovarian, Triple
Negative Breast, Lung, Prostate and Colorectal Cancers

TTARGETARGETSS
PPARPARP, PD-L1, VE, PD-L1, VEGFRsGFRs

LLOCAOCATIONS:TIONS: Maryland

NCT0NCT031265312659191 PHAPHASE 1SE 1

An Open-Label, Multicenter, Phase 1a/1b Study of Olaratumab (LY3012207) Plus Pembrolizumab
(MK3475) in Patients With Unresectable Locally Advanced or Metastatic Soft Tissue Sarcoma (STS)
Who Have Failed Standard Treatments

TTARGETARGETSS
PD-PD-1, PDGFRA1, PDGFRA

LLOCAOCATIONS:TIONS: New York, Pennsylvania, Leuven (Belgium), Herlev (Denmark), Villejuif Cedex (France)

NCT0NCT022441941949955 PHAPHASE 1SE 1

Phase IB Study to Evaluate the Safety of Selinexor (KPT-330) in Combination With Multiple Standard
Chemotherapy Agents in Patients With Advanced Malignancies

TTARGETARGETSS
PD-PD-1, XPO1, P1, XPO1, PARPARP

LLOCAOCATIONS:TIONS: Texas

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE
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GENEGENE

EEGFRGFR
ALALTERATERATIONTION

amplification - equivocal

RARATIONALETIONALE
EGFR amplification or activating mutations may
predict sensitivity to EGFR-targeted therapies.
Several strategies to circumvent resistance are

under investigation, including irreversible EGFR
tyrosine kinase inhibitors and the use of HSP90
inhibitors.

NCT0NCT026269933553355 PHAPHASE 2SE 2

Targeted Agent and Profiling Utilization Registry (TAPUR) Study TTARGETARGETSS
VEVEGFRs, ABL, SRGFRs, ABL, SRC, ALK, AXL, METC, ALK, AXL, MET,,
RROOS1, TRKA, TRKS1, TRKA, TRKC, CDK4, CDK6,C, CDK4, CDK6,
CSF1R, FLCSF1R, FLT3, KITT3, KIT, PDGFRs, RET, PDGFRs, RET, mT, mTOR,OR,
EEGFR, ERBB3, ERBB2, BRAFGFR, ERBB3, ERBB2, BRAF, MEK, SMO, MEK, SMO,,
DDR2, RAF1, PDDR2, RAF1, PARPARP, PD-, PD-1, CTLA1, CTLA-4-4

LLOCAOCATIONS:TIONS: Alabama, Arizona, California, Florida, Georgia, Illinois, Michigan, Nebraska, North Carolina, North Dakota, Oklahoma, Oregon, Pennsylvania,
South Dakota, Texas, Utah, Virginia, Washington

NCT0NCT020990582099058 PHAPHASE 1SE 1

A Multicenter, Phase 1/1b, Open-Label, Dose-Escalation Study of ABBV-399, an Antibody Drug
Conjugate, in Subjects With Advanced Solid Tumors

TTARGETARGETSS
VEVEGFGFA, META, MET, E, EGFR, PD-GFR, PD-11

LLOCAOCATIONS:TIONS: California, Colorado, Meldola (Italy), Villejuif (France), Illinois, Massachusetts, Michigan, Missouri, North Carolina, Marseille CEDEX 05
(France), Tainan City (Taiwan), Taipei City (Taiwan), Tennessee, Texas, Virginia, Tampere (Finland)

NCT0NCT022451554515533 PHAPHASE 1SE 1

Phase I/IB Multi-center Study of Irreversible EGFR/HER2 Tyrosine Kinase Inhibitor Afatinib (BIBW
2992) in Combination With Capecitabine for Advanced Solid Tumors and Pancretico-Biliary Cancers

TTARGETARGETSS
EEGFR, ERBB2, ERBB4GFR, ERBB2, ERBB4

LLOCAOCATIONS:TIONS: Indiana, Washington

NCT0NCT025065172506517 PHAPHASE 2SE 2

Molecular Basket Trial In Multiple Malignancies With Common Target Pathway Aberrancies TTARGETARGETSS
EEGFR, ERBB2, ERBB4GFR, ERBB2, ERBB4

LLOCAOCATIONS:TIONS: Toronto (Canada)

NCT0NCT015515522434434 PHAPHASE 1SE 1

A Phase I Trial of Bevacizumab, Temsirolimus Alone and in Combination With Valproic Acid or
Cetuximab in Patients With Advanced Malignancy and Other Indications

TTARGETARGETSS
VEVEGFGFA, HDA, HDAAC, mTC, mTOR, EOR, EGFRGFR

LLOCAOCATIONS:TIONS: Texas

NCT0NCT029420929420955 PHAPHASE 1SE 1

A Phase I Study of Ixazomib and Erlotinib in Advanced Solid Tumor Patients TTARGETARGETSS
EEGFR, 20S prGFR, 20S prototeasomeeasome

LLOCAOCATIONS:TIONS: Texas

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE

TRF# CLINICCLINICAL TRIALSAL TRIALS

Electronically signed by Jo-Anne Vergilio, M.D. | Jeffrey Ross, M.D., Medical Director, , M.D. | | 
Foundation Medicine, Inc. | 1.888.988.3639

Sample AnalySample Analysis:sis: 150 Second St., 1st Floor, Cambridge, MA 02141 ·· CLIA: 22D2027531
Sample PSample Prrepareparaation:tion: 7010 Kit Creek Road, Morrisville, NC 27560 ·· CLIA: 34D2044309

PAGE 33 of 56

SAMPLE



GENEGENE

NTRK1NTRK1
ALALTERATERATIONTION

A107V - subclonal, rearrangement intron
6

RARATIONALETIONALE
NTRK1 activating fusions may predict sensitivity
to TRK inhibitors or crizotinib. As it is unclear if
the rearrangement seen here results in expression

of an oncogenic protein, it is not known whether
these therapeutic approaches would be relevant.

NCT0NCT025682625682677 PHAPHASE 2SE 2

An Open-Label, Multicenter, Global Phase 2 Basket Study of Entrectinib for the Treatment of Patients
With Locally Advanced or Metastatic Solid Tumors That Harbor NTRK1/2/3, ROS1, or ALK Gene
Rearrangements

TTARGETARGETSS
ALK, RALK, ROOS1, TRKA, TRKB, TRKS1, TRKA, TRKB, TRKCC

LLOCAOCATIONS:TIONS: Arizona, California, Napoli (Italy), Colorado, Connecticut, District of Columbia, Florida, Georgia, Hawaii, Illinois, Roma (Italy), Genova (Italy),
Milano (Italy), Fuenlabrada (Spain), Maryland, Massachusetts, Michigan, Minnesota, Missouri, Nevada, New Hampshire, Albury (Australia), Liverpool
(Australia), New Lambton Heights (Australia), New York, North Carolina, Ohio, Oklahoma, Oregon, Candiolo (Italy), Orbassano (Italy), Torino (Italy),
Bedford Park (Australia), Texas, Pisa (Italy), Perugia (Italy), Utah, Padova (Italy), Heidelberg (Australia), Virginia, Washington, Wisconsin, Bordeaux
(France), Lille (France), Lyon (France), Marseille (France), Marseille cedex 5 (France), Montpellier cedex 5 (France), Paris (France), Paris cedex 15 (France),
Toulouse (France), Villejuif cedex (France), Berlin (Germany), Dresden (Germany), Göttingen (Germany), Köln (Germany), Hong Kong (Hong Kong),
Kowloon (Hong Kong), Shatin (Hong Kong), Aichi (Japan), Ehime (Japan), Fukuoka (Japan), Hyogo (Japan), Kashiwa-shi (Japan), Miyagi (Japan), Niigata
(Japan), Osaka (Japan), Shizuoka (Japan), Cheongju-si (Korea, Republic of), Seoul (Korea, Republic of), Amsterdam (Netherlands), Leiden (Netherlands),
Gdansk (Poland), Gliwice (Poland), Otwock (Poland), Poznań (Poland), Warszawa (Poland), Singapore (Singapore), Barcelona (Spain), Madrid (Spain),
Malaga (Spain), Sevilla (Spain), Chang Hua (Taiwan), Taichung (Taiwan), Tainan (Taiwan), Taipei (Taiwan), Taipei City (Taiwan), Cambridge (United
Kingdom), London (United Kingdom), Manchester (United Kingdom)

NCT0NCT026263377686877 PHAPHASE 1/2SE 1/2

A Phase 1/2 Study of the Oral TRK Inhibitor LOXO101 (Larotrectinib) in Pediatric Patients With
Advanced Solid or Primary Central Nervous System Tumors

TTARGETARGETSS
TRKA, TRKB, TRKTRKA, TRKB, TRKCC

LLOCAOCATIONS:TIONS: California, Florida, Massachusetts, New York, Ohio, Tennessee, Texas, Washington, Parkville (Australia), Sydney (Australia), Montréal
(Canada), Toronto (Canada), Copenhagen (Denmark), Paris (France), Villejuif (France), Berlin (Germany), Heidelberg (Germany), Stuttgart (Germany),
Dublin (Ireland), Milano (Italy), Seoul (Korea, Republic of), Utrecht (Netherlands), Barcelona (Spain), Stockholm (Sweden), Zürich (Switzerland), Sutton
(United Kingdom)

NCT0NCT025257764316431 PHAPHASE 2SE 2

A Phase II Basket Study of the Oral TRK Inhibitor LOXO-101 in Subjects With NTRK Fusion-Positive
Tumors

TTARGETARGETSS
TRKA, TRKB, TRKTRKA, TRKB, TRKCC

LLOCAOCATIONS:TIONS: California, Kashiwa (Japan), District of Columbia, Florida, Illinois, Massachusetts, New York, North Carolina, Ohio, Pennsylvania, South Dakota,
Tennessee, Texas, Virginia, Washington, West Virginia, Copenhagen (Denmark), Bordeaux Cedex (France), Dublin (Ireland), Seoul (Korea, Republic of),
Porto (Portugal), Outram (Singapore), Barcelona (Spain), Madrid (Spain), London (United Kingdom), Southampton (United Kingdom)

NCT0058519NCT005851955 PHAPHASE 1SE 1

Phase 1 Safety, Pharmacokinetic And Pharmacodynamic Study Of Pf-02341066, A C-met/Hgfr
Selective Tyrosine Kinase Inhibitor, Administered Orally To Patients With Advanced Cancer

TTARGETARGETSS
ALK, AXL, METALK, AXL, MET, R, ROOS1, TRKA, TRKS1, TRKA, TRKCC

LLOCAOCATIONS:TIONS: Nagoya (Japan), California, Kashiwa (Japan), Colorado, Sapporo (Japan), Akashi (Japan), Massachusetts, Michigan, New York, North Carolina,
Ohio, Osakasayama (Japan), Pennsylvania, Vermont, Melbourne (Australia), Seoul (Korea, Republic of)

NCT0NCT032155113215511 PHAPHASE 1/2SE 1/2

A Phase 1/ 2 Study of the TRK Inhibitor LOXO 195 in Adult Subjects With NTRK Fusion (Previously
Treated) or Non-Fusion NTRK Altered Cancers

TTARGETARGETSS
TRKA, TRKB, TRKTRKA, TRKB, TRKCC

LLOCAOCATIONS:TIONS: California, Colorado, Massachusetts, Randwick (Australia), New York, Oregon, Tennessee, Texas, Virginia, Washington, Copenhagen
(Denmark), Villejuif cedex (France), Seoul (Korea, Republic of), Singapore (Singapore), Barcelona (Spain), Madrid (Spain)

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE
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NCT0NCT030930931163116 PHAPHASE 1/2SE 1/2

A Phase 1/2, Open-Label, Multi-Center, First-in-Human Study of the Safety, Tolerability,
Pharmacokinetics, and Anti-Tumor Activity of TPX-0005 in Patients With Advanced Solid Tumors
Harboring ALK, ROS1, or NTRK1-3 Rearrangements (TRIDENT-1)

TTARGETARGETSS
ALK, RALK, ROOS1, TRKA, TRKB, TRKS1, TRKA, TRKB, TRKCC

LLOCAOCATIONS:TIONS: California, Colorado, Massachusetts, New York, Seoul (Korea, Republic of)

NCT0NCT021229132122913 PHAPHASE 1SE 1

A Phase 1 Study of the Oral TRK Inhibitor LOXO-101 in Adult Patients With Solid Tumors TTARGETARGETSS
TRKA, TRKB, TRKTRKA, TRKB, TRKCC

LLOCAOCATIONS:TIONS: Colorado, Massachusetts, Ohio, Oregon, Pennsylvania, Tennessee, Texas

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE
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GENEGENE

PDCD1LPDCD1LG2 (PD-L2)G2 (PD-L2)
ALALTERATERATIONTION

amplification

RARATIONALETIONALE
PDCD1LG2 (PD-L2) amplification may promote
PD-1 signaling and inhibit the anti-tumor
immune response. Antibodies that block the
interaction of PD-L2 and PD-1 may therefore be

beneficial to release the anti-tumor immune
response. Furthermore, JAK2 inhibitors may be
relevant, because they may reduce PD-L2
expression.

NCT0NCT030930923232323 PHAPHASE 2SE 2

SU2C-SARC032: A Phase II Randomized Controlled Trial of Neoadjuvant Pembrolizumab With
Radiotherapy and Adjuvant Pembrolizumab in Patients With High-Risk, Localized Soft Tissue Sarcoma
of the Extremity

TTARGETARGETSS
PD-PD-11

LLOCAOCATIONS:TIONS: California, Florida, Iowa, Maryland, Massachusetts, Michigan, Missouri, Camperdown (Australia), New York, North Carolina, Ohio,
Pennsylvania, Montreal (Canada), Brisbane (Australia)

NCT0NCT030844308447711 PHAPHASE 3SE 3

An Open-Label, Multi-Centre, Safety Study of Fixed-Dose Durvalumab + Tremelimumab Combination
Therapy or Durvalumab Monotherapy in Advanced Solid Malignancies.

TTARGETARGETSS
PD-L1, CTLAPD-L1, CTLA-4-4

LLOCAOCATIONS:TIONS: Alaska, California, District of Columbia, Florida, Georgia, Iowa, Michigan, Montana, Nebraska, Moncton (Canada), New Jersey, New York,
Oklahoma, Brampton (Canada), Hamilton (Canada), Kingston (Canada), London (Canada), Newmarket (Canada), Toronto (Canada), Oregon, Greenfield
Park (Canada), South Carolina, Tennessee, Texas, Virginia, Washington, Quebec (Canada), Besançon Cedex (France), Bordeaux Cedex (France), Brest
(France), Dijon (France), Lille Cedex (France), Nice (France), Paris (France), Pierre Benite (France), Saint Herblain Cedex (France), Strasbourg Cedex
(France), Toulouse (France), Tours CEDEX (France), Villejuif (France), Berlin (Germany), Bielefeld (Germany), Dresden (Germany), Duisburg (Germany),
Erlangen (Germany), Essen (Germany), Guetersloh (Germany), Hamburg (Germany), Jena (Germany), Kiel (Germany), Lübeck (Germany), Muenster
(Germany), Münster (Germany), Rostock (Germany), Stuttgart (Germany), Wiesbaden (Germany), Würzburg (Germany), Ancona (Italy), Arezzo (Italy),
Avellino (Italy), Catania (Italy), Lecce (Italy), Meldola (Italy), Milano (Italy), Modena (Italy), Ravenna (Italy), Roma (Italy), Rozzano (Italy), Busan (Korea,
Republic of), Goyang-si (Korea, Republic of), Seoul (Korea, Republic of), Leiden (Netherlands), Basel (Switzerland), Genolier (Switzerland), London (United
Kingdom), Newcastle (United Kingdom), Plymouth (United Kingdom), Sheffield (United Kingdom)

NCT0NCT026462646774848 PHAPHASE 1SE 1

A Platform Study Exploring the Safety, Tolerability, Effect on the Tumor Microenvironment, and
Efficacy of Pembrolizumab + INCB Combinations in Advanced Solid Tumors

TTARGETARGETSS
JJAK1, PD-AK1, PD-1, PI3K1, PI3K-delta-delta

LLOCAOCATIONS:TIONS: California, District of Columbia, Florida, Maryland, Massachusetts, Michigan, New York, North Carolina, Pennsylvania, Texas, Utah

NCT0NCT020990582099058 PHAPHASE 1SE 1

A Multicenter, Phase 1/1b, Open-Label, Dose-Escalation Study of ABBV-399, an Antibody Drug
Conjugate, in Subjects With Advanced Solid Tumors

TTARGETARGETSS
VEVEGFGFA, META, MET, E, EGFR, PD-GFR, PD-11

LLOCAOCATIONS:TIONS: California, Colorado, Meldola (Italy), Villejuif (France), Illinois, Massachusetts, Michigan, Missouri, North Carolina, Marseille CEDEX 05
(France), Tainan City (Taiwan), Taipei City (Taiwan), Tennessee, Texas, Virginia, Tampere (Finland)

NCT0NCT032640663264066 PHAPHASE 2SE 2

A Phase II, Open-Label, Multicenter, Multicohort Study to Investigate the Efficacy and Safety of
Cobimetinib Plus Atezolizumab in Patients With Solid Tumors

TTARGETARGETSS
PD-L1, MEKPD-L1, MEK

LLOCAOCATIONS:TIONS: Kansas, New York, Tennessee, Kortrijk (Belgium), Nyíregyháza (Hungary), Seoul (Korea, Republic of), London (United Kingdom)

NCT0NCT030830896459645 PHAPHASE 1SE 1

A Phase 1 First Time in Human Study to Evaluate the Safety, Pharmacokinetics and Immunogenicity of
MEDI5083 Alone and in Combination With Durvalumab in Selected Advanced Solid Tumors

TTARGETARGETSS
PD-L1, CD40PD-L1, CD40

LLOCAOCATIONS:TIONS: New Jersey, Rhode Island, Tennessee, Clayton (Australia), Melbourne (Australia), Randwick (Australia)

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE
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NCT0NCT022484404484404 PHAPHASE 1/2SE 1/2

Phase I/II Study of the Anti-Programmed Death Ligand-1 Antibody MEDI4736 in Combination With
Olaparib and/or Cediranib for Advanced Solid Tumors and Advanced or Recurrent Ovarian, Triple
Negative Breast, Lung, Prostate and Colorectal Cancers

TTARGETARGETSS
PPARPARP, PD-L1, VE, PD-L1, VEGFRsGFRs

LLOCAOCATIONS:TIONS: Maryland

NCT0NCT031265312659191 PHAPHASE 1SE 1

An Open-Label, Multicenter, Phase 1a/1b Study of Olaratumab (LY3012207) Plus Pembrolizumab
(MK3475) in Patients With Unresectable Locally Advanced or Metastatic Soft Tissue Sarcoma (STS)
Who Have Failed Standard Treatments

TTARGETARGETSS
PD-PD-1, PDGFRA1, PDGFRA

LLOCAOCATIONS:TIONS: New York, Pennsylvania, Leuven (Belgium), Herlev (Denmark), Villejuif Cedex (France)

NCT0NCT022441941949955 PHAPHASE 1SE 1

Phase IB Study to Evaluate the Safety of Selinexor (KPT-330) in Combination With Multiple Standard
Chemotherapy Agents in Patients With Advanced Malignancies

TTARGETARGETSS
PD-PD-1, XPO1, P1, XPO1, PARPARP

LLOCAOCATIONS:TIONS: Texas

NCT0NCT030301010171766 PHAPHASE 1SE 1

Phase 1 Open Label, Multicenter Study of MK-1454 Administered by Intratumoral Injection as
Monotherapy and in Combination With Pembrolizumab for Patients With Advanced/Metastatic Solid
Tumors or Lymphomas

TTARGETARGETSS
SSTING, PD-TING, PD-11

LLOCAOCATIONS:TIONS: California, New York, Texas, Villejuif (France), Ramat Gan (Israel), London (United Kingdom)

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE
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NONOTETE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in
the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to
include them here in the event that they become clinically meaningful in the future.

AKT1
K420del

AKT2
P115fs*33

ARAF
G245S

ATM
R2719H

BRIP1
V607G

CAD
K841N and R781H

CBL
T129fs*2

CCT6B
V367G

CIITA
Y34C

CREBBP
A1603T, T2434M, and V95M

DNM2
D215N

DNMT3A
R458Q

FBXO31
D347N

FGF3
R104*

FGFR2
R190Q

FGFR4
A229T

FHIT
amplification

GNA11
G208fs*16

HDAC7
A299T

HRAS
R73H

IKBKE
A410V

IRS2
R970Q

KDM5A
G8fs*58

KDM5C
K370N

KMT2C (MLL3)
R841W

LRP1B
M131I

LRRK2
N59K

MLL2
R2847H

NCOR2
A1010T and A832T

NF1
H389R

PBRM1
amplification

PC
A22T

PDGFRA
R764C

PTPRO
A11S

RARA
P440L

S1PR2
V195A

SETD2
N1733T

SF3B1
R397H

SGK1
V411I

SPEN
R1917H

STAG2
V1171A

U2AF1
V101A

VHL
amplification

WDR90
R218C

ZNF703
A500fs*43 and G439V

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE
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FoundationOne Heme is designed to include genes known to be somatically altered in human hematologic malignancies, sarcomas, and pediatric cancers that
are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The
current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA
sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

HEMAHEMATTOLOLOGICAL MALIGNANCOGICAL MALIGNANCY DNA GENE LISY DNA GENE LISTT: ENTIRE C: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BAODING SEQUENCE FOR THE DETECTION OF BASESE
SUBSSUBSTITUTIONS, INSERTION/DELETIONS, AND CTITUTIONS, INSERTION/DELETIONS, AND COPOPY NUMBER ALY NUMBER ALTERATERATIONSTIONS

ABL1 ACTB AKT1 AKT2 AKT3 ALK AMER1 (FAM123B or WTX) APC
APH1A AR ARAF ARFRP1 ARHGAP26 (GRAF) ARID1A ARID2 ASMTL
ASXL1 ATM ATR ATRX AURKA AURKB AXIN1 AXL B2M
BAP1 BARD1 BCL10 BCL11B BCL2 BCL2L2 BCL6 BCL7A BCOR
BCORL1 BIRC3 BLM BRAF BRCA1 BRCA2 BRD4 BRIP1 BRSK1
BTG2 BTK BTLA C11orf30 (EMSY) CAD CALR* CARD11 CBFB CBL
CCND1 CCND2 CCND3 CCNE1 CCT6B CD22 CD274 (PD-L1) CD36 CD58
CD70 CD79A CD79B CDC73 CDH1 CDK12 CDK4 CDK6 CDK8
CDKN1B CDKN2A CDKN2B CDKN2C CEBPA CHD2 CHEK1 CHEK2 CIC
CIITA CKS1B CPS1 CREBBP CRKL CRLF2 CSF1R CSF3R CTCF
CTNNA1 CTNNB1 CUX1 CXCR4 DAXX DDR2 DDX3X DNM2 DNMT3A
DOT1L DTX1 DUSP2 DUSP9 EBF1 ECT2L EED EGFR ELP2
EP300 EPHA3 EPHA5 EPHA7 EPHB1 ERBB2 ERBB3 ERBB4 ERG
ESR1 ETS1 ETV6 EXOSC6 EZH2 FAF1 FAM46C FANCA FANCC
FANCD2 FANCE FANCF FANCG FANCL FAS (TNFRSF6) FBXO11 FBXO31 FBXW7
FGF10 FGF14 FGF19 FGF23 FGF3 FGF4 FGF6 FGFR1 FGFR2
FGFR3 FGFR4 FHIT FLCN FLT1 FLT3 FLT4 FLYWCH1 FOXL2
FOXO1 FOXO3 FOXP1 FRS2 GADD45B GATA1 GATA2 GATA3 GID4 (C17orf39)
GNA11 GNA12 GNA13 GNAQ GNAS GPR124 GRIN2A GSK3B GTSE1
HDAC1 HDAC4 HDAC7 HGF HIST1H1C HIST1H1D HIST1H1E HIST1H2AC HIST1H2AG
HIST1H2AL HIST1H2AM HIST1H2BC HIST1H2BJ HIST1H2BK HIST1H2BO HIST1H3B HNF1A HRAS
HSP90AA1 ICK ID3 IDH1 IDH2 IGF1R IKBKE IKZF1 IKZF2
IKZF3 IL7R INHBA INPP4B INPP5D (SHIP) IRF1 IRF4 IRF8 IRS2
JAK1 JAK2 JAK3 JARID2 JUN KAT6A (MYST3) KDM2B KDM4C KDM5A
KDM5C KDM6A KDR KEAP1 KIT KLHL6 KMT2A (MLL) KMT2C (MLL3) KMT2D (MLL2)
KRAS LEF1 LRP1B LRRK2 MAF MAFB MAGED1 MALT1 MAP2K1
MAP2K2 MAP2K4 MAP3K1 MAP3K14 MAP3K6 MAP3K7 MAPK1 MCL1 MDM2
MDM4 MED12 MEF2B MEF2C MEN1 MET MIB1 MITF MKI67
MLH1 MPL MRE11A MSH2 MSH3 MSH6 MTOR MUTYH MYC
MYCL (MYCL1) MYCN MYD88 MYO18A NCOR2 NCSTN NF1 NF2 NFE2L2
NFKBIA NKX2-1 NOD1 NOTCH1 NOTCH2 NPM1 NRAS NT5C2 NTRK1
NTRK2 NTRK3 NUP93 NUP98 P2RY8 PAG1 PAK3 PALB2 PASK
PAX5 PBRM1 PC PCBP1 PCLO PDCD1 PDCD11 PDCD1LG2 (PD-L2) PDGFRA
PDGFRB PDK1 PHF6 PIK3CA PIK3CG PIK3R1 PIK3R2 PIM1 PLCG2
POT1 PPP2R1A PRDM1 PRKAR1A PRKDC PRSS8 PTCH1 PTEN PTPN11
PTPN2 PTPN6 (SHP-1) PTPRO RAD21 RAD50 RAD51 RAF1 RARA RASGEF1A
RB1 RELN RET RHOA RICTOR RNF43 ROS1 RPTOR RUNX1
S1PR2 SDHA SDHB SDHC SDHD SERP2 SETBP1 SETD2 SF3B1
SGK1 SMAD2 SMAD4 SMARCA1 SMARCA4 SMARCB1 SMC1A SMC3 SMO
SOCS1 SOCS2 SOCS3 SOX10 SOX2 SPEN SPOP SRC SRSF2
STAG2 STAT3 STAT4 STAT5A STAT5B STAT6 STK11 SUFU SUZ12
TAF1 TBL1XR1 TCF3 (E2A) TCL1A (TCL1) TET2 TGFBR2 TLL2 TMEM30A
TMSB4XP8 (TMSL3) TNFAIP3 TNFRSF11A TNFRSF14 TNFRSF17 TOP1 TP53 TP63
TRAF2 TRAF3 TRAF5 TSC1 TSC2 TSHR TUSC3 TYK2 U2AF1
U2AF2 VHL WDR90 WHSC1 (MMSET or NSD2) WISP3 WT1 XBP1 XPO1
YY1AP1 ZMYM3 ZNF217 ZNF24 (ZSCAN3) ZNF703 ZRSR2

*Note: the assay was updated on 11/8/2016 to include the detection of alterations in CALR

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE
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HEMAHEMATTOLOLOGICAL MALIGNANCOGICAL MALIGNANCY DNA GENE LISY DNA GENE LISTT: FOR THE DETECTION OF SELECT REARRANGEMENT: FOR THE DETECTION OF SELECT REARRANGEMENTSS

ALK BCL2 BCL6 BCR BRAF CCND1 CRLF2 EGFR EPOR
ETV1 ETV4 ETV5 ETV6 EWSR1 FGFR2 IGH IGK IGL
JAK1 JAK2 KMT2A (MLL) MYC NTRK1 PDGFRA PDGFRB RAF1 RARA
RET ROS1 TMPRSS2 TRG

HEMAHEMATTOLOLOGICAL MALIGNANCOGICAL MALIGNANCY RNA GENE LISY RNA GENE LISTT: FOR THE DETECTION OF SELECT REARRANGEMENT: FOR THE DETECTION OF SELECT REARRANGEMENTSS

ABI1 ABL1 ABL2 ACSL6 AFF1 AFF4 ALK ARHGAP26 (GRAF)
ARHGEF12 ARID1A ARNT ASXL1 ATF1 ATG5 ATIC BCL10 BCL11A
BCL11B BCL2 BCL3 BCL6 BCL7A BCL9 BCOR BCR BIRC3
BRAF BTG1 CAMTA1 CARS CBFA2T3 CBFB CBL CCND1 CCND2
CCND3 CD274 (PD-L1) CDK6 CDX2 CHIC2 CHN1 CIC CIITA CLP1
CLTC CLTCL1 CNTRL (CEP110) COL1A1 CREB3L1 CREB3L2 CREBBP CRLF2 CSF1
CTNNB1 DDIT3 DDX10 DDX6 DEK DUSP22 EGFR EIF4A2 ELF4
ELL ELN EML4 EP300 EPOR EPS15 ERBB2 ERG ETS1
ETV1 ETV4 ETV5 ETV6 EWSR1 FCGR2B FCRL4 FEV FGFR1
FGFR1OP FGFR2 FGFR3 FLI1 FNBP1 FOXO1 FOXO3 FOXO4 FOXP1
FSTL3 FUS GAS7 GLI1 GMPS GPHN HERPUD1 HEY1 HIP1
HIST1H4I HLF HMGA1 HMGA2 HOXA11 HOXA13 HOXA3 HOXA9 HOXC11
HOXC13 HOXD11 HOXD13 HSP90AA1 HSP90AB1 IGH IGK IGL IKZF1
IL21R IL3 IRF4 ITK JAK1 JAK2 JAK3 JAZF1 KAT6A (MYST3)
KDSR KIF5B KMT2A (MLL) LASP1 LCP1 LMO1 LMO2 LPP LYL1
MAF MAFB MALT1 MDS2 MECOM MKL1 MLF1 MLLT1 (ENL) MLLT10 (AF10)
MLLT3 MLLT4 (AF6) MLLT6 MN1 MNX1 MSI2 MSN MUC1 MYB
MYC MYH11 MYH9 NACA NBEAP1 (BCL8) NCOA2 NDRG1 NF1 NF2
NFKB2 NIN NOTCH1 NPM1 NR4A3 NSD1 NTRK1 NTRK2 NTRK3
NUMA1 NUP214 NUP98 NUTM2A OMD P2RY8 PAFAH1B2 PAX3 PAX5
PAX7 PBX1 PCM1 PCSK7 PDCD1LG2 (PD-L2) PDE4DIP PDGFB PDGFRA PDGFRB
PER1 PHF1 PICALM PIM1 PLAG1 PML POU2AF1 PPP1CB PRDM1
PRDM16 PRRX1 PSIP1 PTCH1 PTK7 RABEP1 RAF1 RALGDS RAP1GDS1
RARA RBM15 RET RHOH RNF213 ROS1 RPL22 RPN1 RUNX1
RUNX1T1 (ETO) RUNX2 SEC31A SEPT5 SEPT6 SEPT9 SET SH3GL1 SLC1A2
SNX29 (RUNDC2A) SRSF3 SS18 SSX1 SSX2 SSX4 STAT6 STL SYK
TAF15 TAL1 TAL2 TBL1XR1 TCF3 (E2A) TCL1A (TCL1) TEC TET1 TFE3
TFG TFPT TFRC TLX1 TLX3 TMPRSS2 TNFRSF11A TOP1 TP63
TPM3 TPM4 TRIM24 TRIP11 TTL TYK2 USP6 WHSC1 (MMSET or NSD2)
WHSC1L1 YPEL5 ZBTB16 ZMYM2 ZNF384 ZNF521

ADDITIONAL AADDITIONAL ASSSSAAYYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERSS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Microsatellite (MS) status
Tumor Mutational Burden (TMB)
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TThe median ehe median exxon con coovvereragage fe for this sample is 853xor this sample is 853x

AACCCURACURACCYY

Sensitivity: Base Substitutions At ≥5% Minor Allele Frequency >99.0%

Sensitivity: Insertions/Deletions (1-40bp) At ≥10% Minor Allele Frequency 98.0%

Sensitivity: Focal Copy Number Alterations
(Homozygous Deletions or Amplifications) At ≥8% copies >95.0%

Sensitivity: Microsatellite status At ≥20% tumor nuclei 97.0%

Sensitivity: Known Gene Fusions >95.0%

Specificity: Base Substitutions, Insertions/Deletions,
and Focal Copy Number Alterations Positive Predictive Value (PPV) >99.0%

Specificity: Known Gene Fusions Positive Predictive Value (PPV) >95.0%

Specificity: Microsatellite status Positive Predictive Value (PPV) >95.0%

Accuracy: Tumor Mutation Burden At ≥20% tumor nuclei >90.0%

Reproducibility (average concordance between replicates)

97.0% inter-batch precision
97.0% intra-batch precision
95.0% microsatellite status precision
96.0% tumor mutation burden precision

Assay specifications were determined for pical median exon coverage of
approximately 500X. For additional information regarding the validation of
FoundationOne, please refer to the article, Frampton, GM. et al. Development
and validation of a clinical cancer genomic profiling test based on massively
parallel DNA sequencing, Nat Biotechnol (2013 Oct. 20).

Microsatellite status, which is a measure of microsatellite instability (MSI), is
determined by assessing indel characteristics at 114 homopolymer repeat loci in
or near the targeted gene regions of the FoundationOne Heme test.
Microsatellite status is assayed for all FoundationOne Heme samples and may
be reported as "MSI-High", "MSI-Intermediate", "MS-Stable", or "Cannot Be
Determined". Microsatellite status is reported as "Cannot Be Determined" if the
sample is not of sufficient quality to be confidently determined.

Tumor Mutational Burden (TMB) is determined by measuring the number of
somatic mutations occurring in sequenced genes on the FoundationOne and
FoundationOne Heme tests and extrapolating to the genome as a whole. TMB is
assayed for all FoundationOne and FoundationOne Heme samples and may be
reported as “TMB-High”, “TMB-Intermediate”, “TMB-Low”, or “Cannot Be
Determined”. TMB results, which are rounded to the nearest integer, are
determined as follows: TMB-High corresponds to greater than or equal to 20
mutations per megabase (Muts/Mb); TMB-Intermediate corresponds to 6-19
Muts/Mb; TMB-Low corresponds to fewer than or equal to 5 Muts/Mb. Tumor
Mutational Burden is reported as “Cannot Be Determined” if the sample is not
of sufficient quality to confidently determine Tumor Mutational Burden.

For additional information specific to the performance of this specimen, please
contact Foundation Medicine, Inc. at 1-888-988-3639.

PATIENT TUMOR TYPE

Soft tissue sarcoma (NOS)
REPORT DATE

TRF# PPerferformancormance Specificationse SpecificationsAPPENDIXAPPENDIX

Electronically signed by Jo-Anne Vergilio, M.D. | Jeffrey Ross, M.D., Medical Director, , M.D. | | 
Foundation Medicine, Inc. | 1.888.988.3639

Sample AnalySample Analysis:sis: 150 Second St., 1st Floor, Cambridge, MA 02141 ·· CLIA: 22D2027531
Sample PSample Prrepareparaation:tion: 7010 Kit Creek Road, Morrisville, NC 27560 ·· CLIA: 34D2044309

APPENDIX - PAGE 41 of 56

SAMPLE



ABOUT FOUNDABOUT FOUNDAATIONONE HEMETIONONE HEME
FoundationOne Heme is a comprehensive genomic
profiling test for hematologic malignancies,
sarcomas and pediatric cancers. The test is designed
to provide physicians with clinically actionable
information to help with diagnostic sub-
classification, prognosis assessment, and targeted
therapeutic selection. Test results provide
information about clinically significant alterations,
potential targeted therapies, available clinical trials,
and quantitative markers that may support
immunotherapy clinical trial enrollment.
FoundationOne Heme is analytically validated to
detect all classes of genomic alterations in more
than 400 cancer-related genes. In addition to DNA
sequencing, FoundationOne Heme employs RNA
sequencing across more than 250 genes to capture a
broad range of gene fusions, common drivers of
hematologic malignancies and sarcomas, pediatric
cancers.

FoundationOne Heme was developed and its
performance characteristics determined by
Foundation Medicine, Inc. (Foundation Medicine).
FoundationOne Heme has not been cleared or
approved by the United States Food and Drug
Administration (FDA). The FDA has determined
that such clearance or approval is not necessary.
FoundationOne Heme may be used for clinical
purposes and should not be regarded as purely
investigational or for research only. Foundation
Medicine’s clinical reference laboratory is certified
under the Clinical Laboratory Improvement
Amendments of 1988 (CLIA) as qualified to perform
high-complexity clinical testing.

THE REPORTTHE REPORT
Incorporates analyses of peer-reviewed studies and
other publicly available information identified by
Foundation Medicine; these analyses and
information may include associations between a
molecular alteration (or lack of alteration) and one
or more drugs with potential clinical benefit (or
potential lack of clinical benefit), including drug
candidates that are being studied in clinical
research. Note: A finding of biomarker alteration
does not necessarily indicate pharmacologic
effectiveness (or lack thereof) of any drug or
treatment regimen; a finding of no biomarker
alteration does not necessarily indicate lack of
pharmacologic effectiveness (or effectiveness) of any
drug or treatment regimen.

Diagnostic Significance
FoundationOne Heme identifies alterations to select
cancer-associated genes or portions of genes
(biomarkers). In some cases, the Report also
highlights selected negative test results regarding
biomarkers of clinical significance.

Qualified Alteration Calls
(Equivocal and Subclonal)
An alteration denoted as “amplification – equivocal”
implies that FoundationOne Heme data provide
some, but not unambiguous, evidence that the copy
number of a gene exceeds the threshold for
identifying copy number amplification. The
threshold used in FoundationOne Heme for
identifying a copy number amplification is five (5)
for ERBB2 and six (6) for all other genes.
Conversely, an alteration denoted as “loss –
equivocal” implies that FoundationOne Heme data
provide some, but not unambiguous, evidence for
homozygous deletion of the gene in question. An
alteration denoted as “subclonal” is one that
FoundationOne Heme analytical methodology has
identified as being present in <10% of the assayed
tumor DNA.

Ranking of Alterations and Therapies
Biomarker Findings
Appear at the top of the report, but are not ranked
higher than Genomic Findings.

Genomic Findings
Therapies with Clinical Benefit In Patient’s Tumor
Type → Therapies with Clinical Benefit in Other
Tumor Type → Clinical Trial Options → No Known
Options (If multiple findings exist within any of
these categories, the results are listed alphabetically
by gene name.)

Therapies
Sensitizing therapies → Resistant therapies.
(If multiple therapies exist within any of these
categories, they are listed alphabetically by therapy
name.)

Clinical Trials
Pediatric trial qualification → Geographical
proximity → Later trial phase.

LEVEL OF EVIDENCE NOLEVEL OF EVIDENCE NOT PROT PROVIDEDVIDED
Drugs with potential clinical benefit (or potential
lack of clinical benefit) are not evaluated for source
or level of published evidence.

NO GUNO GUARANTEE OF CLINICAL BENEFITARANTEE OF CLINICAL BENEFIT
This Report makes no promises or guarantees that a
particular drug will be effective in the treatment of
disease in any patient. This Report also makes no
promises or guarantees that a drug with potential
lack of clinical benefit will in fact provide no
clinical benefit.

NO GUNO GUARANTEE OF REIMBURSEMENTARANTEE OF REIMBURSEMENT
Foundation Medicine makes no promises or
guarantees that a healthcare provider, insurer or
other third party payor, whether private or
governmental, will reimburse a patient for the cost
of FoundationOne Heme.

TREATREATMENT DECISIONS ARETMENT DECISIONS ARE
RESPONSIBILITY OF PHYRESPONSIBILITY OF PHYSICIANSICIAN
Drugs referenced in this Report may not be suitable
for a particular patient. The selection of any, all or
none of the drugs associated with potential clinical
benefit (or potential lack of clinical benefit) resides
entirely within the discretion of the treating
physician. Indeed, the information in this Report
must be considered in conjunction with all other
relevant information regarding a particular patient,
before the patient’s treating physician recommends
a course of treatment. Decisions on patient care and
treatment must be based on the independent
medical judgment of the treating physician, taking
into consideration all applicable information
concerning the patient’s condition, such as patient
and family history, physical examinations,
information from other diagnostic tests, and patient
preferences, in accordance with the standard of care
in a given community. A treating physician’s
decisions should not be based on a single test, such
as this Test, or the information contained in this
Report. Certain sample or variant characteristics
may result in reduced sensitivity. These include:
subclonal alterations in heterogeneous samples, low
sample quality or with homozygous losses of <3
exons; and deletions and insertions >40bp, or in
repetitive/high homology sequences.
FoundationOne Heme is performed using DNA and
RNA derived from tumor, and as such germline
events may not be reported.

The following targets typically have low coverage
resulting in a reduction in sensitivity: SDHD exon
4, TNFRSF11A exon1, and TP53 exon 1.

FoundationOne Heme complies with all European
Union (EU) requirements of the IVD Directive 98/
79EC. As such, the FoundationOne Heme Assay
has been registered for CE mark by our EU
Authorized Representative, Qarad b.v.b.a,
Cipalstraat 3, 2440 Geel, Belgium.
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SELECT ABBREVIASELECT ABBREVIATIONSTIONS

ABBREVIATION DEFINITION

CR Complete response

DCR Disease control rate

DNMT DNA methyltransferase

HR Hazard ratio

ITD Internal tandem duplication

MMR Mismatch repair

muts/Mb Mutations per megabase

NOS Not otherwise specified

ORR Objective response rate

OS Overall survival

PD Progressive disease

PFS Progression-free survival

PR Partial response

SD Stable disease

TKI Tyrosine kinase inhibitor
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