
White Paper

A Solution Blueprint for DevOps
This white paper prescribes a DevOps solution blueprint that incorporates the following capabilities:

• Integrated architecture for optimum CI, CT, CD
and CCM operations

• Hierarchical test execution model to automate all
lifecycle test phases

• Tools framework including Restful APIs to
orchestrate all DevOps operations

• Expert services that support a logical phased
implementation plan and a smooth transition
from the existing infrastructure minimizing
disturbances of the existing development, test
and release process

• Key Performance Indicators (KPIs) and a
dashboard that provides the requisite visible
measures necessary for Continuous Change
Management (CCM) and monitoring operational
performance of the DevOps system itself to guide
operations and continuous improvements.

Without continuous control, the code development
complexity curve becomes unstable, creating a “big
bang process” that results in process failures such as
late deliveries, poor quality release content and cost
overruns. CT together with CCM delivers progress
monitoring and control features required to reduce
complexity by ensuring corrective actions are taken
early and often before problems build up into a big
bang.

The DevOps solution blueprint applies whether an
organization is just getting started with Agile or
currently employs Agile, waterfall or waterfall-scrum
processes. It also applies whether the environment
is hosted on physical systems, virtual systems or a
combination of the two.

Readers!

Please take note: acronyms, abbreviations and definitions
used in this document are listed at the end of this document.

www.spirent.com

A Solution Blueprint for DevOps

While the implementation of a best practices DevOps
infrastructure is not easy, the benefits are compelling:

• Catch product defects as early as possible in the
development cycle

• Perform CI, CT and CD in frequent and short
cycles

• CapEx and OpEx expenses saved due to efficient
resource monitoring

• Accelerates product delivery velocity, innovation
and time-to-market

• Improves infrastructure administration

• Improves process controls with data-based
dashboard decision tools

• Reduces down time by ensuring effective backup,
archival and recovery

• Improves Intellectual property protection and
security

The implementation of a best practices DevOps
solution requires an array of capabilities including test
orchestration tools, assessment services, third-party
integration services, KPI/dashboards, and resource
utilization optimizations that may include virtualization
of DevOps components within private and hybrid cloud
deployments. Case studies based on real deployments
by experienced DevOps experts have proven that a
DevOps solution, when implemented according to
 best practices, quickly delivers powerful and
compelling ROI.

Problem and Historical Context
Problems Context

Software development best practices are trending
toward ever more rapid and frequent release
deployments to customers. The Agile software
development methodology is typically employed. An
effective Agile environment dictates that software
development work be done in small steps within
continuous cycles and that new software feature and fix
releases be fast-and-frequent-to-market so customers
get new features and fixes quickly, and suppliers get
revenue and customer feedback quickly. The efficiency
of releases is a competitive advantage for a business
because it can have a major impact on business
performance.

In environments where best practices are invoked,
the Agile software development process is supported
by a highly automated and controlled DevOps
infrastructure. At the heart of a DevOps system,
which is implemented according to best practices,
are efficient continuous operations that automatically
orchestrate all the tools and process components
needed to realize a rapid cycle including source code
changes, merging of code changes, host system
initialization, build process execution, automated
release packaging, multiple levels of automated
testing, and automated results reporting and analysis.
The end-to-end integration cycle, from code change
commit, to reporting of results, must be extremely fast,
usually in the order of minutes or hours compared to
older software development practices that typically
take days to complete the equivalent steps. The speed
and frequency of the DevOps cycles necessitates
automated orchestration of all CI, CT, CD and CCM
operations.

Executive Summary

Industry surveys and reports describe the highest
achieving companies as those turning to a DevOps
infrastructure implemented in accordance with best
practices to support rapid-paced Agile and non-Agile
based product development processes with ever more
frequent release deployments to customers. But many
organizations are challenged by the migration to these
new processes.

The DevOps solution blueprint encompasses
Continuous Integration (CI), Continuous Test (CT),
Continuous Delivery (CD) and Continuous Change
Management (CCM) capabilities with automated
orchestration of all operations necessary for the rapid-
paced product development essential for business
performance.

3

When the DevOps infrastructure is not implemented
according to best practices, then the following
problems typically result:

• Large, complex software merges bottle-neck
integration because large merges require longer
build and test times which violate the best
practice that prescribes frequent, quick change
cycles.

• Excessively long software build and test cycles
caused by lack adequate resources in the build
and test environment.

• Proliferation of costly dedicated equipment to
ensure there are sufficient resources to meet peak
demands of the DevOps system.

• High rate of defects found by Quality Assurance
(QA) or customers causes by rapid but inadequate
test coverage.

• Time-consuming defect troubleshooting and fixes
if there are too many changes or failed tests per
cycle.

• Integration problems found late in the release
may occur if the test coverage is not continuously
checked during the development period.

• Missed delivery dates due to efficiency and quality
problems.

• Inadequate process control in which problems
persist across multiple code commit cycles
without being noticed until later, necessitating
costly reverts to earlier versions in order to fix the
cumulative effects of the problems which crept in
over time.

• Fault -intolerance, backup problems, and recovery
problems are very costly and prevalent in poorly
designed DevOps systems that fail to consider the
need to have redundancy, and frequent back-ups
for all the build, test, and tool data.

• Security and Intellectual Property protection
problems occur when access restrictions to ALL of
the components are overlooked. This may occur
when the various DevOps system components
do not follow a consistent security model for
access controls and don’t take care to obfuscate
credentials or source code IP within orchestration
scripts.

In a DevOps environment implemented in accordance
with best practices, elastic on-demand build and test
resources accomplish fast, frequent cycles, without
sacrificing test coverage or dedicating costly under-
utilized equipment. DevOps environments may demand
multiple copies of systems which is expensive if those
resources are dedicated physical systems. The solution
to control the cost of multiple on-demand computing
resources needed for parallel building and testing is
to virtualize the components of the system being built
and tested and also virtualize the test systems whenever
possible. In this way a test system/system under test
combination can be deployed on-demand as virtualized
resources. The use of virtualized resources allows the
host equipment to be deployed on-demand and re-
used for other code lines or other purposes when not
needed for a particular product or code line build or
test job.

www.spirent.com

A Solution Blueprint for DevOps

Historical Context

Prior to Agile, the most prevalent software
development methodology was the sequential
“Waterfall model”. Figure 1 compares the sequential
nature of waterfall with the iterative, cyclic nature of
Agile. Agile process typically would iterate many times
to achieve the same results as one waterfall cycle, but
with much less effort and higher quality.

In the waterfall model it is assumed each step in the
process is completed for the entire system being
developed prior to completing the next step. This
resulted in a long time between requirement definition
and release to customers. Each step is dependent
on the prior step so problems in any one step would
cause delays for the entire project. All too often the
long development period and the stepwise delays
causes projects to miss their deadlines. In many cases,
the customer requirements change by the time the
project is completed. The problems associated with
the Waterfall Model ultimately drove the creation of the
Agile Development Model.

According to http://agilemethodology.org/ “It’s easy to
see the problems with the waterfall method. It assumes
that every requirement can be identified before any
design or coding occurs. Could you tell a team of
developers everything that needed to be in a software
product before any of it was up and running? Or would
it be easier to describe your vision to the team if you
could react to functional software? Many software
developers have learned the answer to that question
the hard way: At the end of a project, a team might
have built the software it was asked to build, but, in the
time it took to create, business realities have changed
so dramatically that the product is irrelevant. Your
company has spent time and money to create software
that no one wants. Couldn’t it have been possible to
ensure the end product would still be relevant before it
was actually finished?”

Agile Model

Analyze

Test

Package

Build

Merge

Software
Change

Design

Waterfall Model

Release

Analyze

Test

Package

Build

Merge

SW Change

Design

Requirement

Figure 1: Waterfall and Agile Software Development Models.

5

According to http://en.wikipedia.org/wiki/Agile_
software_development “Agile software development
is a group of software development methods in
which requirements and solutions evolve through
collaboration between self-organizing, cross-functional
teams. It promotes adaptive planning, evolutionary
development, early delivery, continuous improvement
and encourages rapid and flexible response to change.
It is a conceptual framework that focuses on delivering
working software with the minimum amount of work.
The Agile Manifesto introduced the term in 2001. Since
then, the Agile Movement, with all its values, principles,
methods, practices, tools, champions and practitioners,
philosophies and cultures, has significantly changed
the landscape of the modern software engineering
and commercial software development in the Internet
era.” Figure 1 shows the relevant concepts of the Agile
Software Development Model.

Agile software development involves continuous
integration (CI) cycles and each CI employs automated
continuous testing (CT) to verify the result before the
next change cycle is started. In this way the software
changes are controlled continuously.

An efficient DevOps infrastructure consisting of
automated processes, tools and methodologies
is essential to fully realize the goals of Agile and
rapid product development. According to http://
en.wikipedia.org/wiki/DevOps, DevOps “aims to help
an organization rapidly produce software products and
services. Simple processes become clearly articulated
using a DevOps approach. The goal is to maximize the
predictability, efficiency, security and maintainability
of operational processes. This objective is very often
supported by automation.”

Figure 2 illustrates the DevOps Model and shows how
Continuous Testing is at the heart of system.

Figure 2: Continuous Testing is the heart of the DevOps System.

Agile Infrastructure

Continuous Control

Continuous TestingContinuous Integration Continuous Delivery

Continuous Configuration

DevOps

DevOps Context

Shorter release cycles, predictable dates & higher quality
CI = Continuous Integration, CT = Continuous Testing,

CD = Continuous Delivery, CCM = Continuous Change Management

CI CT CD

Engineering / QA IT Operations

Automated
CT

Continuous Testing

www.spirent.com

A Solution Blueprint for DevOps

DevOPs Solution Blueprint Architecture

The DEVOPS Solution Blueprint architecture, presented
in Figure 3, addresses the problems described in
section 2.1 by implementing Continuous Integration
(CI), Continuous Testing (CT), Continuous Deployment
(CD) and Continuous Change Management (CCM)
sub-systems within a modern DevOps infrastructure
context described in section 2.2. The DevOps solution
blueprint architecture addresses these problems
regardless of whether they occur in Agile or non-Agile
development environments. The DevOps blueprint
supports physical, virtualized, and mixed physical/
virtualized host and lab network environments. The
DevOps blueprint architecture supports configuration
and control across multiple product boundaries,
service layers, and software versions, even in cases
where systems must be verified in parallel, on-demand,
and in real time.

CI / CT dashboard

Orchestration automation

(Build and Test) infrastructure

Source &
artifact control

Continuous
integration

Test
management

Physical
testbedVirtualizaton

Figure 3: DevOps Solution Blueprint Architecture.

The DevOps Solution Blueprint architecture is
composed of the following modules:

1. Dashboard: At the highest level of the architecture
a dashboard provides information for continuous
change management. The actual dashboard
implementation varies according the Key
Performance Indicators (KPIs) that are most
relevant to a particular customer. Therefore
the Dashboard is typically customized for each
installation.

2. Continuous Integration: Automation framework
that provides centralized orchestration of the
entire DevOps system.

3. Source and Artifact Control: Database of source
code and software packages that are used by CI
system build processes.

4. Test Management: Database of test scripts and
artifacts needed for testing

5. Orchestration Automation: Automates tests and
test topologies

6. Build and Test Infrastructure: Virtual and/or
physical test beds.

7

DevOps Tools Framework

The DevOps Solution Blueprint framework presented in
Figure 4 consists of the following elements:

1. A Software Version Management (SVM) system
supports software development by providing
software configuration control and identification,
visibility into the status of software changes, and
management of versions of the tools needed to
implement the build process. In a best practices
DevOps system the SVM includes a well-designed,
flexible repository structure and supports effective
software branching and merging capabilities.
This capability is critically important for Agile
development processes, as developers merge
changes back into the repository frequently.
Effective Software Change Management (SVM)
systems often include a mix of open-source and
commercial software with small, custom modules
tailored to the specific development organization.
Examples of SVM Systems are: Subversion, Git,
Mercurial, Perforce, and ClearCase.

2. A CI/CD Orchestration Tool is a programmable
system that executes scheduled and event-driven,
jobs. The most popular CI/CD orchestration tool is
Jenkins.

3. A Build System compiles and packages build
artifacts. CI provides rapid feedback to the entire
team about the current state of the software. This
feedback improves quality, lowers costs, and
enables management to make informed decisions
on how to most effectively allocate resources to
meet mission objectives. DevOps leverages this
practice by automating the build process and then
triggering the start of a quality cycle when a set of
conditions is met. A trigger is typically a commit
into a monitored branch, though multiple commits
can be cached and generate a single trigger event.
DevOps orchestration tools manage the build
servers, physical and/or virtual, spinning them up
as needed. This feature allows the organization
to efficiently make use of private, hybrid or public
cloud computing resources.

SVM
Source Code

P4, Git, SVN, etc.

Build(s) SUT
Dev, CI, QA, Labs

Test and lab
management

CI / CD
Orchestration Tool Deliver

Analytics
Dashboards

Artifact repository
Images, tests, deliverables, logs, results

Commit
trigger

push / pull
checkout

not ready

ready

results

logsimages

test response infotest info

Test I/P

Test O/P

images
commands

and
responses

Virtual and / or physical environments

Continuous Change Management (CCM)

C
ontinuous D

elivery (C
D

)C
on

tin
uo

us
 In

te
gr

at
io

n
(C

I)

Continuous Test (CT)

Development

Figure 4: DevOps Solution Blueprint Tools Framework.

www.spirent.com

A Solution Blueprint for DevOps

4. An Artifacts Repository contains completed
build packages and information required to
test the packaged builds. The repository is an
organized store of artifacts related to the product.
In addition to source and build artifacts the
repository may include, test artifacts such as test
scripts, logs and test results data related to issue
and ticket tracking, compliance and regulatory
artifacts, development and user documentation,
and configuration data. Examples of Artifacts
Repositories include an NFS file share, Zephyr and
HPQC. The repository may be implemented as a
single database or multiple databases.

5. The software for the System Under Test (SUT)
or device under test (DUT) may be hosted by
a physical or virtualized device, or network of
devices. As shown in Figure 5, when the SUT is
virtualized the CI cycle includes steps to create
virtual machines to host the SUT software and
when the tests are completed the DevOps system
destroys the SUTs so the host resources are
available for other purposes.

6. Test and Lab Management Systems may also be
hosted on physical or virtualized platforms. In a
DevOps system implemented according to best
practices, functional and system level QA testing
are fully automated. Many organizations are
reluctant to perform automated QA testing as part
of CI due to increased cycle times and unreliable
automation. A DevOps system implemented
according to best practices, is able execute stable
QA regression runs while dynamically managing
virtualized and physical hardware resources and
scale the tests dynamically according to resource
availability for the allotted test time. Examples of
Test and Lab Management Orchestrations Systems
are Spirent’s iTest and Velocity.

7. A Delivery system packages release artifacts such
as software packages in formats consumable by
customers and provides controls to determine
when to promote a packaged product version to
customer release status.

CD

Commit

TriggerNotify &
Report

BuildRelease
SUTs

Create
SUTs

L1 Test

Deploy

Figure 5: DevOps Cycle with Virtualized SUT.

9

8. Analytics collect and analyze reports and logs from
the CI, CT and CD systems to determine whether
any additional changes are required to complete
a quality cycle. For example, tests that result in
failures may automatically determine that a change
in the SVM system must be reverted and may
automatically trigger the revert process.

9. A DevOps host environment may be private, public
or hybrid cloud services (e.g., AWS, Rackspace).
The cloud is an abstract term used to generalize
various types of remote storage, computation
and user access services. While cloud-computing
infrastructures may consist of many types of
services, most implementations provide one or
more of the following service models:

a. Infrastructure as a Service (IaaS)—This service model
provides basic computing functionality, typically
in the form of a Virtual Desktop Infrastructure
consisting of virtual machines and support
resources. The users typically access their desktops
from a software client running on low-cost terminal
hardware.

b. Platform as a Service (PaaS)—This service model
provides platform specific services, typically in the
form of virtualized servers such as Software Defined
Networking (SDN), domain controllers, web,
database, and development servers.

c. Software as a Service (SaaS)—This service model
provides access to virtualized software application
running in the cloud. This feature provides platform
independence and does not require the user to
install or maintain the application locally.

The increasing number of organizations adopting
the cloud model indicates the value they are finding
in the cloud. Cloud computing is an extremely cost-
effective method of deploying, maintaining and
securing desktop and server applications. Rather
than purchase hardware and software licenses for
each member, an organization can serve them up
based on demand, not only reducing costs but also
enhancing scalability. This applies to DevOps CI,
CT, CD and CCM services also.

By virtualizing DevOps applications, an organization
can centralize and streamline management
processes. Tasks such as backup, recovery, and
installing updates and security patches can be
performed quickly. Cloud computing relieves
IT departments of a great deal of the logistical
burden of maintaining a desktop environment.
Installs, updates, and other maintenance items
are accomplished at a central location rather than
having to travel to the user’s site.

The Virtual Machine environment (e.g., VMware
VSphere) may be a variety of hypervisors and
containers depending on the specific environments
that each tool supports. The DevOps blueprint is
agnostic regarding specific hardware or cloud-
based virtualization technologies. Delivering build,
test, and assessment services on these platforms
allows the CI, CT, CD and CCM process to be
extremely stable and elastic. The ability to perform
DevOps at scale in a private or public cloud is a
key driver for reducing CapEx and OpEx costs
associated with software development. In a fully
virtualized DevOps environment both the test
system and SUTs use VMs that are deployed on-
demand.

10. The DevOps blueprint solution includes back-up,
and recovery of build and test artifacts such that
in the case of system failure the entire system can
be recovered from archived or backed up artifacts
quickly.

11. The DevOps blueprint solution obfuscates system
credentials and provides access controls to ensure
unauthorized access to sensitive source code and
Intellectual Property.

www.spirent.com

A Solution Blueprint for DevOps

Hierarchical DevOps Solution Blueprint Test Execution Model

To fully integrate QA testing, a hierarchical model for
test execution is recommended. This model consists of
three levels of testing:

• Test Level 1 (L1)—QA regression run as part of
CI cycle

 — Software static analysis

• Compiler warnings

• Coding standards compliance (Format and

metrics)

• Security assessment (Unsafe coding practices,

implementation vulnerability detection)

 — Software dynamic analysis

• Memory re-use and/or leaks

• Thread contention/deadlock, multi-core scaling,

cache access

• Undefined behavior

 — Unit test and code coverage

• Test Level 2 (L2)—Nightly Integration and
regression

 — End-to-end feature testing

 — Hardware/software integration test

• Test Level 3 (L3)—Weekly or release

 — Interoperability compliance
(3GPP, IETF, ITU)

 — Regulatory compliance
(FCC, HIPAA, FISMA)

 — Product/system development security
assessment
(HIPAA, PCI, NIST)

 — Performance assessment
(Bandwidth, error rate, signal to noise ratio)

 — Operational security assessment
(HIPAA, PCI, NIST)

The levels listed above provide different types of QA
coverage and are executed at different intervals. L1
testing is a breadth-first test cycle focused on testing
the entire system with each quality cycle. L1 regression
runs are kept short and typically include strategic test
points across the system. These test points focus on
the integration of major components and detecting
integration defects. L2 and L3 test are typically
scheduled rather than being run as part of CI. The L2
regression is typically run each night and includes tests
focused on system components that are changing in
the current release. The L3 regression is a full battery
of tests focused on detecting low-level defects. L3
is typically scheduled on a weekly basis or as part of
release acceptance.

11

DevOps Solution Blueprint Services

No two organizations are the same. Many organizations
have some level of automation, CI, test and virtualization
but may not be operating at best practices levels for all
parts of their DevOps CI, CT, CD and CCM sub-systems.
It is important to engage experienced experts to assess
an organization’s current DevOps status, goals and
implementation plans. Figure 6 defines DevOps Solution
Blueprint Services that need to be considered.

Through the capability assessment, a strategic plan
is developed that will migrate the team’s existing
infrastructure, with minimal impact to current operations.

KPI and Dashboards

Metrics or Key Performance Indicators (KPI) are
frequently generated and updated to provide timely
status reporting to organizational leadership. The
specific KPI and presentation will vary depending on
organization preferences.

The following are examples of measureable KPI’s that are
relevant and can be derived from DevOps deployments:

• Percent of tests automated

• Percent availability of CI, CT, CD infrastructures

• Execution times for builds and tests

• Product Velocity: release frequency

• Test efficiency (e.g., number of acknowledged
bugs divided by the total number of potential bugs
reported)

• Total Capex and Opex cost reduction compared to
other approaches (e.g., ROI case study)

Capability
assessment

Virtualization

Continuous
integration

Continuous
testing

Automate
orchestration

Dashboard and
data visualization

• Analyze existing build, test and deployment environment
• Assess the existing virtualization, CI and automation capabilities

• Implement new CI capability
• Enhance existing virtualization capability

• Implement new CI capability
• Enhance existing CI capability

• Integrate testing into the Continuous Quality cycle
• Automate QA testing and determine automation platform

• Test automated VM control, build, test and deployment workflows
• Update source control and artifact management

• Realization based on customer environment and
 organizational processes

Training

D
ocum

entation

Figure 6: DevOps Blueprint Solution Services.

www.spirent.com

A Solution Blueprint for DevOps

Benefits of the DevOps Solution Blueprint

Figure 7 illustrates the primary benefit of a DevOps
system implemented according to a best practices
solution blueprint:

To provide automated continuous control of the entire
development-test-release cycle in the context of Agile
and non-Agile rapid continuous integration complexity.

Without continuous control, the complexity curve
becomes unstable, creating a “big-bang” process
that results in failures such as late deliveries and poor
quality release content. CT and CCM bring the control
required to reduce complexity.

The DevOps Solution Blueprint benefits include:

• Catch issues as early as possible

 — Perform CI (build) and CT (test) in short,
frequent cycles.

• Save on CapEx

 — Achieve efficient utilization of virtualization
environment in combination with physical test
beds.

• Save on OpEx

 — Create control sequences quickly. Use
Orchestration Automation to enforce change
management and consistency in reporting,
build environments, and test-bed interactions.
Achieve a consistent, reliable, repeatable
development process with a consistently
managed environment.

• Focus on your business and accelerate time to
market

 — Follow best practices delivered in professional
services and tooling to focus on your products
and not the supporting infrastructure.

• Make evidence-based decisions

 — Promote data-based decision by keeping
everyone on the same page all the time with
a CI/CT dashboard customized around your
internal processes and existing systems.

Development time

Big Bang

Reduced
complexityC

om
pl

ex
ity

Figure 7: DevOps controls increasing complexity.

13

Summary

Whether an organization is just getting started with
Agile or similar fast paced product development, or
currently employs Agile or DevOps processes but
wants to improve the efficiency of their environment the
DevOps solution blueprint described in this document
provides a comprehensive framework and a step-wise
approach towards implementing a solution.

Anyone considering installing or updating their
Continuous Integration environment can utilize the
DevOps Solution Blueprint to accomplish:

• Solution architecture suitable for optimum
Continuous Integration

• Hierarchical Test Execution Model

• Tools framework including orchestration of
CI, CT, CD cycles

• Virtualized CI, CT setups

• Services that support the strategic improvement
plan

• A logical phased implementation plan that
minimizes disturbances of the current system

• KPIs and Dashboard to measure performance of
the CCM solution

www.spirent.com

A Solution Blueprint for DevOps

Spirent’s Capabilities For Devops

Spirent has expertise and experience implementing
successful DevOps deployments consistent with best
practices and in accordance with the DevOps Solution
Blueprint described in this white paper.

Spirent, through its test tool products and professional
services capabilities, brings together open source
software, third-party commercial software, and unique
test automation capabilities to enable customers to
improve quality and productivity in a scalable and cost-
effective DevOps solution.

The Spirent iTest and Velocity products are perfectly
suited to provide test orchestration for best practices
DevOps deployments. At the heart of Spirent’s DevOps
solution is an integration of Spirent CT tools with CI
called the Efficient Virtualized Continuous Integration
(EVCI).

To support virtualized and cloud-based DevOps
deployments Spirent has developed plug-ins.
Additionally, Spirent has native session types that allow
direct communications with enterprise virtualization
management platforms.

Spirent professional services support DevOps
upgrades or entire DevOps implementations
depending on the customer goals and assessments.
Project management, integration of iTest orchestration,
implementation of virtualization and DevOps
dashboards are examples of project components that
Spirent offers.

Figure 8 presents an overview of the phased approach
Spirent developed for DevOps.

Case studies are available that demonstrate the
benefits accomplished by Spirent implemented
DevOps (powered by EVCI).

Operational system

• Transition
• Monitor
• Advanced training
• Continued support

Cleanroom implementation

• No impact to production
• Customer product under CI
• Customize
• Stabilize
• Scale
• Basic training

1-2 weeks 4-8 weeks 2+ months

Reference implementation

• Customer product agnostic
• Simple EVCI instance
• Assess current capabilities
• Customer evaluates EVCI

Phase IIIPhase IIPhase I

Figure 8: DevOps Phased Implementation Approach.

15

Reference Links

Agile: software development methodology:
http://www.agilealliance.org/the-alliance/the-agile-
manifesto/

DevOps: software development method:
http://en.wikipedia.org/wiki/DevOps

Jenkins: An extendable open source continuous
integration server: http://jenkins-ci.org

Jira: proprietary issue tracking product, developed by
Atlassian. It provides bug tracking, issue tracking, and
project management functions: https://www.atlassian.
com/software/jira

Open source software for building private and public
clouds: http://www.openstack.org/

Spirent iTest: http://www.spirent.com/Products/iTest

VMware: http://www.vmware.com/

Zephyr: Real Time Test Management System:
http://www.getzephyr.com/

Acronyms, Abbreviations, and Definitions

API Application Programming Interface

BDD Behavior Driven Design

CapEx Capital Expense

CD Continuous Delivery

CI Continuous Integration

CT Continuous Test

DevOps Development Operations

DUT Device Under Test

EC2 Amazon Cloud Service

EVCI Efficient Virtualized Continuous
Integration

IaaS Infrastructure as a Service

ILO iTest Lab Optimizer

iTest Spirent Capture Execute Report
test tool

ITO Infrastructure Test Optimization

Jenkins extendable open source
continuous integration server

Jira issue tracking product

KPI Key Performance Indicator

KVM Hypervisor

OpEx Operating Expense

PaaS Platform as a Service

QA Quality Assurance

QEMU Hypervisor

SCM Software Change Management

STC Spirent Test Center

SUT System Under Test

SVN Subversion

TaaS Testing as a Service

TDD Test Driven Design

VM Virtual Machine

VMware Company which produces VSphere

VSphere Server virtualization platform

Xen Hypervisor

About Spirent
Communications

Spirent Communications
(LSE: SPT) is a global leader
with deep expertise and
decades of experience
in testing, assurance,
analytics and security,
serving developers, service
providers, and enterprise
networks.

We help bring clarity to
increasingly complex
technological and business
challenges.

Spirent’s customers have
made a promise to their
customers to deliver superior
performance. Spirent assures
that those promises are
fulfilled.

For more information, visit:
www.spirent.com

Contact Us

For more information, call your Spirent sales representative or
visit us on the web at www.spirent.com/ContactSpirent.

www.spirent.com

© 2018 Spirent Communications, Inc. All of the company names and/or brand names
and/or product names and/or logos referred to in this document, in particular the
name “Spirent” and its logo device, are either registered trademarks or trademarks
pending registration in accordance with relevant national laws. All rights reserved.
Specifications subject to change without notice.

Americas 1-800-SPIRENT
+1-800-774-7368 | sales@spirent.com

US Government & Defense
info@spirentfederal.com | spirentfederal.com

Europe and the Middle East
+44 (0) 1293 767979 | emeainfo@spirent.com

Asia and the Pacific
+86-10-8518-2539 | salesasia@spirent.com

Rev C | 08/18

A Solution Blueprint for DevOps

