
1www.spirent.com

Case Study

VNF Benchmarking

The Move to Virtualization
Network functionality is moving to virtualized deployments, with some Tier-1
carriers already claiming to be over one-third virtualized. Formerly, network
functions were implemented as dedicated appliances or chassis-based
devices which were essentially self-contained and had clear boundaries
at the physical interface. In such a context, performance problems could
be more easily characterized and isolated. With virtualization, however,
network functionality is embodied in virtual network functions, or VNFs,
which can be deployed on top of a common network infrastructure.
Virtualization adds value by optimizing the use of resources via on demand
capacity management, but it also increases risk, since resources are drawn
from a shared environment. Consequently, VNFs must be benchmarked
differently from dedicated devices.

In this case study, we:

•	 Explain the NFV ecosystem

•	 Specify how VNFs should be benchmarked differently from dedicated
devices

•	 Introduce the concept of “white box testing”

•	 Provide a concrete example, including takeaway insights

Customer Profile
Customer: Large Network
Equipment Manufacturer

Industry: Networking
Equipment

Employees: 180,000 (2016)

The Challenges
How to test the performance
of VNFs?

How to isolate infrastructure
bottlenecks?

How to ensure performance
in the context of a common,
shared infrastructure?

2www.spirent.com

VNF Benchmarking

NFV Ecosystem
At a very high level, ETSI has defined the major components of NFV
ecosystems, and standardized interfaces between those components - see
Figure 1 below. Since the ETSI architecture has been described at length in
other documents we will only give a brief review here. Please see Figure 1
and glossary for a quick review of the ETSI components and interfaces.

NFVI

VNF 1

EM 2

Virtualization Layer

OSS/BSS

VNF 2

EM 3

Orchestration

VIM Virtualized
Infrastructure

Manager

VNF 3

Virtual
Compute

Virtual
Memory

Virtual
Network

Compute Memory Network

VNF
Manager

EM 1

Nf-Vi

Vi-Ha

Vn-Nf

Ve-Vnfm

Or-Vnfm

Vi-Vnfm

Or-Vi

Se-Ma

Os-Ma

NFV Management
and Orchestration

 Service, VNF and
Infrastructure Description

Figure 1: ETSI NFV Architecture

3www.spirent.com

VNF Benchmarking

ETSI NFV Glossary
OSS/BSS

Operation Support System/Business Support System.
OSS deals with management of configurations, faults,
and the network. BSS deals with management of
customers, products and orders.

EM

Element Management—responsible for managing the
configuration, performance, security, etc., of VNFs.

VNF

Virtual Network Function—a virtualized network element
such as a router, base station, firewall, load balancer,
etc.

NFVi

Network Function Virtualization infrastructure—the
environment in which VNFs run, including physical
resources, virtual resources, and a virtualization layer

•	 Physical Compute, Memory and Networking
Resources: Physical CPUs, memory, disk storage, and
networking resources such as switches

•	 Virtual Compute, Memory and Networking
Resources: Virtualized CPUs, memory, disk storage,
and networking resources such as switches

•	 Virtualization Layer: Responsible for abstracting
physical resources into virtual resources, e.g. CPUs
into vCPUs. In practice this is the hypervisor

NFV MANO

Management and Orchestration: responsible for setting
up/tearing down services, their component VNFs and
managing infrastructure resources

•	 NFVO NFV Orchestrator: Generates, maintains and
tears down network services, which are comprised of
VNFs

•	 VNFM VNF Manager: Responsible for setting up,
maintaining, and tearing down VNFs

•	 VIM Virtualized Infrastructure Manager:
Responsible for controlling and managing
compute, network and storage resources as well as
performance measurements

4www.spirent.com

VNF Benchmarking

OS: The operating system of the virtual machine. The
OS is typically some flavor of Linux or Windows.

App: The software application which performs the
network function.

Virtual Switch: A piece of software which provides
connectivity to virtual and physical interfaces

vNIC: Virtual network interface controller, which
provides connectivity to a virtual interface on a network

pNIC: Physical network interface controller, which
provides connectivity to a physical interface on a
network

Hypervisor: A piece of software which allows running
one or more virtual machines on a guest machines

VM: A virtual machine—a software version of a computer
with its own dedicated operating system

Container: A software version of a computer running
on an operating system which may be shared by other
containers.

From Abstraction to Real Deployments
While the ETSI definition provides a high-level
conceptual abstraction of the NFV world, in practice,
real-world NFV deployments must be defined in more
concrete terms, for example as shown in Figure 2
below. Note that the elements in Figure 2 are not the
hypothetical sub-parts of the ETSI NFV architecture, but
rather real components, either software or hardware.
Let’s examine each of those components in more detail:

In practice, VNFs have been mostly deployed as one or
more VMs. In the future, VNFs will also be implemented
as one or more containers, which can be automatically
deployed and managed by cluster-managers such as
Kubernetes. Each VM is typically running an instance
of an operating system (OS), which is usually some form
of Linux or Windows. Finally, the VNF functionality is
implemented as a software application running on that
operating system.

Hypervisor2 Hypervisor3Hypervisor1

External vSwitch

VM1

Physical SWITCH

Physical Layer Physical Layer Physical Layer

App

OS

VM2

App

OS

pNIC pNIC pNIC

VLAN 1

VLAN 1

VLAN 1

vNIC vNIC

Internal vSwitch

VM3

App

OS

VM4

App

OS

vNIC vNIC

Internal vSwitch

VM5

App

OS

VM6

App

OS

vNIC vNIC

Internal vSwitch

Figure 2: Example of Virtual Deployment

5www.spirent.com

VNF Benchmarking

Benchmarking VNFs
Traditional Benchmarking

In some ways, benchmarking a VNF should be the
same as benchmarking a traditional device. For
example, a virtualized router should be benchmarked
similarly to a traditional router, by measuring its
forwarding performance using RFC 2544, as well as by
measuring the scale and performance of key routing
protocols such as BGP, IS-IS and OSPF. Traditional
benchmarking should also be applied to virtual BNGs,
virtual CPEs, and virtual firewalls/IPSs. For a (virtual)
load balancer, which is the example for this case
study, benchmarking typically means assessing the
maximum rate of HTTP requests the load balancer can
sustain. Such benchmarking has been well-defined for
several years, and is now embodied in products such
as Spirent MethodologyCenter, which offers scenario-
based methodologies for rapid benchmarking of both
traditional and virtualized devices.

Challenges Unique to VNF Benchmarking

Beyond traditional benchmarking, VNF benchmarking is
different from traditional benchmarking in three distinct
ways: complexity, abstraction, and concurrency.

Complexity Virtual environments are more complex
since they include more components, such as
hypervisors, virtual switches, etc. These additional
components introduce potential areas of weakness and
must be considered while benchmarking VNFs.

Abstraction Virtualization means that the data plane
and control plane have been abstracted from the
executing hardware. Abstraction introduces three
challenges when benchmarking VNFs:

•	 The impact of the quantity and type of resources
which have been allocated to the VNF. The variety of
virtual resources continues to expand, for example,
with virtual FPGAs and virtual GPUs now being
available.

•	 The impact of certain technologies, such as DPDK,
SR-IOV and CPU pinning, which are meant to address
performance concerns associated with virtualization

•	 The time to spin up, or instantiate, a VNF (in a
traditional network element, the device simply exists
and does not need to be created)

Concurrency In real-world deployments, VNFs will
often co-exist and possibly interact with other VNFs.
Other VNFs will have their own performance constraints,
and furthermore may also be competing for the same
resources.

6www.spirent.com

VNF Benchmarking

How to Test
Conquering Complexity: Testing components
in isolation

Virtual switches can be benchmarked according
to the methodologies described in the IETF draft
document “Benchmarking Virtual Switches in OPNFV”
(https://tools.ietf.org/html/draft-vsperf-bmwg-
vswitch-opnfv-00). This same set of methodologies
has been implemented as a suite of tests in Spirent
MethodologyCenter.

In this case study (see below), we performed a basic
form of isolation by evaluating the performance of the
virtual environment before introducing the VNF.

Conquering Abstraction: White box testing

Historically, performance measurement of network
devices could be described as “black box testing”,
meaning that the testing was conducted at the external
interfaces of the devices, without much thought into
the inner workings of the device itself, other than some
basic statistics and configuration issues. In the virtual
world, the boundaries are much blurrier: VNFs are
not standalone devices, but rather components in a
complex ecosystem where resources can be shared
across multiple consumers. Consequently, performance
testing in virtual environments should best be thought
of as “white box testing”, where measurements are
made for each component in the ecosystem.

The challenge of abstraction really means performing
benchmarking with different quantities and types
of resources allocated to the VNF. For example,
does doubling the amount of virtual memory double
the scale of a routing protocol in a virtual router?
Abstraction challenges include the benefits and pitfalls
of technologies such as DPDK, which can accelerate
forwarding performance, but may also increase packet
delay, especially for long packets.

•	 We can retrieve useful and informative metrics from
multiple places in the virtual infrastructure.

•	 From the hypervisor: CPU Utilization

•	 From the virtual switch: System stats, virtual NIC
stats, physical NIC stats

From the VNF or Operating System instance: CPU
Utilization, Memory Utilization, Disk I/O Rate, Memory
access Latency, Cache read/write latency, Instructions
processed per second, Throughput for memory access
to enable such white-box visibility while performing
VNF benchmarking, Spirent MethodologyCenter now
includes a unique “NFVi Statistics” feature that provides
OpenStack metrics on the underlying hypervisor, virtual
switch and VNF or operating system.

Fault Isolation—identifying bottlenecks

While gaining visibility into resource utilization is
helpful, the volume of metrics can also be overwhelming
—there is a myriad of statistics available from the virtual
infrastructure. Furthermore, since packets pass through
many components on their virtual journey, identifying
the location of a bottleneck can be like looking for a
needle in a haystack.

Fortunately, the process of correlating large quantities
of results can be automated through analytics.
Analytics can be used to:

•	 Isolate correlations across a broad range of stimuli
and responses

•	 Determine whether any resources are operating on
“the edge” of over-utilization

Again, Spirent MethodologyCenter implements fault
isolation by analyzing the OpenStack metrics specified
above and identifying correlations which may assist with
localizing root causes to poor performance.

Conquering Concurrency: Testing with concurrency
means that additional VNFs should be deployed while
the primary VNF is benchmarked. The additional VNFs
should also be presented with realistic workloads so
as to model actual deployments as closely as possible.
This scenario is referred to as Noisy Neighbor Testing.
In practice, the effect of additional VNFs can be
simulated with Spirent CloudStress, which generates
synthetic workloads on CPU, memory, storage and
network.

https://tools.ietf.org/html/draft-vsperf-bmwg-vswitch-opnfv-00
https://tools.ietf.org/html/draft-vsperf-bmwg-vswitch-opnfv-00

7www.spirent.com

VNF Benchmarking

Case Study: DUT Profile and Test Scenarios
For this case study, our test environment included the
following elements:

•	 A commercial VNF implementation

•	 OpenStack distributions from Wind River and
Canonical

•	 OS (Ubuntu) and Hypervisor from Canonical

•	 Instantiation via libvirt from RedHat

•	 Underlying hardware from HPE

•	 Orchestration using Rift.io and OpenStack Tacker

Testing the Virtual Environment in Isolation

Before we tested the VNF, it was important to determine
the performance of the virtual environment. Since, as
explained above, the environment itself can be a cause
of poor performance, this step is critical. To do this, we
conducted two experiments:

Workload was input to the system via physical interfaces
using a physical traffic generator (Spirent TestCenter).

Workload was input to the system via virtual interfaces
using a virtual traffic generator (Spirent TestCenter
virtual). For this scenario, we used Spirent TestCenter
virtual in two separate modes: with DPDK turned off,
and with DPDK turned on. The resources allocated to
the Spirent TestCenter virtual ports were isolated by
pinning CPUs.

Testing the VNF in the Virtual Environment

We loaded the VNF using simulated traffic, generated
by the Spirent TestCenter traffic generator. Traffic was
both (fully stateful) SIP and HTTP. As in the isolation
experiments above, tests were performed with physical
Spirent TestCenter ports, and with virtual Spirent Test
DPDK turned off and turned on.

Testing with Concurrency

We also evaluated the performance of the VNF with
concurrent VNFs, we used the Spirent CloudStress
product to generate synthetic workloads to stress
compute, memory and networking resources. This is
sometimes referred to as the “noisy neighbor” scenario.
In this case, the VNF under test was loaded using
stateful traffic simulated by Spirent TestCenter virtual
ports.

Key Takeaways

Our experiments revealed multiple interesting findings:

•	 For the baseline experiment, the performance of
Spirent TestCenter Virtual ports was approximately
ten times greater with DPDK turned on versus with
DPDK turned off

•	 The Wind River OpenStack distribution proved to be
reliable, scalable, and in general high quality.

•	 Closed systems (such as Wind River) in general had
far fewer issues compared with open-source systems

•	 In spite of existing ETSI draft standards for
MANO (available here: https://docbox.etsi.org/
ISG%2FNFV%2FOpen%2FDrafts%2F), instantiation
using orchestration tools is challenging and
inconsistent across implementations

https://docbox.etsi.org/ISG%2FNFV%2FOpen%2FDrafts%2F
https://docbox.etsi.org/ISG%2FNFV%2FOpen%2FDrafts%2F

VNF Benchmarking

© 2018 Spirent Communications, Inc. All of the company names and/or brand names and/or product names and/or logos
referred to in this document, in particular the name “Spirent” and its logo device, are either registered trademarks or
trademarks pending registration in accordance with relevant national laws. All rights reserved. Specifications subject to
change without notice.� Rev B | 08/18

AMERICAS 1-800-SPIRENT
+1-800-774-7368
sales@spirent.com

US Government & Defense
info@spirentfederal.com
spirentfederal.com

EUROPE AND THE MIDDLE EAST
+44 (0) 1293 767979
emeainfo@spirent.com

ASIA AND THE PACIFIC
+86-10-8518-2539
salesasia@spirent.com

About Spirent
Communications

Spirent Communications
(LSE: SPT) is a global leader
with deep expertise and
decades of experience
in testing, assurance,
analytics and security,
serving developers, service
providers, and enterprise
networks.

We help bring clarity to
increasingly complex
technological and business
challenges.

Spirent’s customers have
made a promise to their
customers to deliver superior
performance. Spirent assures
that those promises are
fulfilled.

For more information, visit:
www.spirent.com

Spirent Test Services for VNF Benchmarking

Spirent Communications offers a full range of testing services and products
to ensure that your transition to virtual networking is successful. Our
industry experts are fully capable and will accelerate your VNF journey. As
your trusted partner, Spirent can own the entire VNF benchmarking process,
from defining the test plan, test creation, test execution, and report writing.
Alternatively, if you prefer to work more independently or a more flexible
arrangement, we can set up and train your team with the correct Spirent test
products to efficiently perform any or all of these steps on your own.

