
www.spirent.com

Data Sheet

Technical Benefits

• Build end-to-end
automated workflows—
from software
development to
integration testing to
deployment—in a CI/CT
model, with highly efficient
resource utilization

• Use the ‘Deferred’
reservation option to
allow just-in-time resource
reservation– reserve and
acquire the resource when
it is needed and release
immediately after use.

• Automatically queue
topologies on reservation
conflict; resolve and run on
resource availability

• Get notified on the
reservation status by
registering callbacks via
REST API

Challenge

Test campaigns often involve expensive resources such as high precision
measuring instruments or high-end network equipment. These instruments
are a scarce resource for an organization because it cannot afford to have
multiple instruments, enough to satisfy the needs of development, testing,
manufacturing and other teams. More importantly, resources are not used
efficiently. Normally, all the required devices are ‘locked’ to a test run
(topology) for that entire duration. As a result, other tests that need these
resources are blocked, waiting to run. In a test run that takes a few minutes
to several hours, these resources are actually required for a very short
duration—a few seconds to few minutes. Idling away resources by confining
them to a test run is very inefficient. Resources, scarce or not, expensive or
not, need to be utilized more efficiently!

The Solution

Efficient reservation and resource sharing is the only way to meet the
demands across teams, test campaigns and topologies.

Spirent Velocity 8.1 introduces Intelligent Resource Queuing feature that
provides a highly efficient just-in-time resource reservation functionality.
Using this feature, users can reserve resources at the time of need, and
release them once done. This reserve-use-release sequence can be
repeated many times, all in a single test run! This maximizes resource usage
and promotes efficient resource sharing across teams, topologies and test
campaigns. Resource contention and conflicts are handled seamlessly
by queuing reservation requests in a FIFO order, with optional priority
overrides.

Business Benefits

• Reduce CapEx significantly by completely removing resource idling and
efficiently utilizing the resources

• Improve time-to-market by streamlining testing, service delivery and
leveraging the new ability to run more test cases in parallel

TEST #1

TEST #2
RESERVE

RESERVE

EFFICIENT SHARING—Reserve-Use-Release a
resource multiple times, within the same test runRELEASE

RELEASE

START END
‘R’ IN USE

CRITICAL
RESOURCE ‘R’

‘R’ IN USERESOURCE IDLE RESOURCE IDLE

RESOURCE IDLERESOURCE
IDLE

Velocity Intelligent Resource Queuing
A Just-In-Time reservation system for Velocity

Spirent Velocity
Intelligent Resource Queuing

Functionality

Velocity’s Intelligent Resource Queuing allows sharing of limited resources among overlapping topology
reservations. It provides two important functionalities:

• The ability to defer resources in a topology (not activated when a reservation becomes active), but manually
activate them when actually required

• The ability to address resource conflicts by queueing reservations and automatically activate reservations as and
when conflicts get resolved

This feature enables the creation and reservation of multiple topologies that require the same resource (e.g.,
expensive measuring equipment). That is, shared resources are required to be reserved only when they are actually
needed and for the duration they are needed, and not for the entire duration of the topology reservation (test run).

Use Cases

#1: Time Slicing: Share scarce resources across multiple testcases

Resource
reserved

Resource
reserved

Resource
released

Resource
released

TEST
#2

TEST
#1

START END

START END

RESOURCE
IDLE

RESOURCE
IDLE

RESOURCE
IDLE

WAITING TO RUN,
BLOCKED ON RESOURCE

INEFFICIENT
RESOURCE USAGE

RESOURCE
IDLE

Resource
released

Resource
reserved

Resource
released

Resource
reserved

TEST
#2

TEST
#1

START END

START END

EFFICIENT
RESOURCE USAGE

RESOURCE
IN USE

RESOURCE
IN USE

RESOURCE
IN USE

RESOURCE
IN USE

RESOURCE
IDLE

RESOURCE
IDLE

RESOURCE
IDLE

RESOURCE
IDLE

• Two users, User1 and User2 need to reserve the same ‘scarce’ resource, a 5G test equipment for their
testcases. Both build their respective topologies and reserve this equipment as a ‘deferred’ reservation.

• The topologies are processed by the ‘resolver’, the reservation compiler inside Velocity. It prioritizes and
assigns this scarce resource to the testcase that needs it earlier. It then informs User1 that the reservation
requirements are satisfied, and that the testcase is ready to run. Optionally, it can start the execution.

• Once the resource is ‘done’ and no longer needed for that testcase, it is released and allocated to the other
topology. User2’s testcase is now ready to run. Note that User1’s testcase can still be running when the 5G
test equipment is released. Velocity’s intelligent resource queuing feature time-slices to efficiently share
resources to maximize their usage.

• Take-Aways:

 — Time slicing creates efficient resource sharing, independent of the testcase execution duration

 — Enables parallel testcase execution, even with resource scarcity and contention

 — Velocity can execute reserve-use-release sequence several times, often within the same testcase to achieve
maximum resource usage

BEFORE AFTER (with Intelligent Resource Queuing)

#2: Conflict Resolution: Addressing reservation conflicts by queuing

Resource released and
allocated to Test #2

Resource
reserved

Resource
released

Request
queued

TEST
#2

TEST
#1

START END

START END

RESERVATION
REQUEST

RESERVATION
REQUEST

RESOURCE
IN USE

RESOURCE
IN USE

RESOURCE
IDLE

RESOURCE
IDLE

RESOURCE
IDLE

RESOURCE
IDLE

Conflict Resolution using Queuing

• A mobile equipment manufacturer has a scheduled software upgrade test at 2:00PM every Friday. 50
testcases need to run before and after the upgrade.

• Each testcase triggers a reservation request to Velocity, i.e. 50 requests in all.

• A pool of 20 radios are available for testing, even though the requirement demands 60 (some testcases need
more than one radio)

• Scarcity of radios allows only some requests (less than 20) to activate immediately. The corresponding
testcases (scripts) are informed of the activation status via callbacks.

• The remaining (30) requests are queued. As tests complete and radios become available, queued
reservation requests are activated and their test scripts informed.

• Take-Aways:

 — Velocity queues corresponding topologies when resources are unavailable, and automatically executes
testcases when resources become available.

 — Saves the user from manually resolving resource reservation conflicts and creating workarounds by
building sub-optimal testing environments that lead to test escapes and support cases.

Spirent Velocity
Intelligent Resource Queuing

Contact Us

For more information, call your Spirent sales representative or
visit us on the web at www.spirent.com/ContactSpirent.

www.spirent.com

© 2019 Spirent Communications, Inc. All of the company names and/or brand names
and/or product names and/or logos referred to in this document, in particular the
name “Spirent” and its logo device, are either registered trademarks or trademarks
pending registration in accordance with relevant national laws. All rights reserved.
Specifications subject to change without notice.

Americas 1-800-SPIRENT
+1-800-774-7368 | sales@spirent.com

Europe and the Middle East
+44 (0) 1293 767979 | emeainfo@spirent.com

Asia and the Pacific
+86-10-8518-2539 | salesasia@spirent.com

Rev A | 12/19

#3: Replicating a Customer Found Defect (CFD) for troubleshooting and RCA

• A network device manufacturer and a semiconductor manufacturer are collaborating to root-cause a serious
network issue in a recently released network device. An in-depth analysis has led the engineering team to
suspect a multi-service switch chip in the device. The teams need to replicate the issue before starting the
debug session.

• To facilitate debugging, the chip vendor has mounted the chip on In-Circuit Emulator (ICE) pod and and
exposed the relevant signals using mictor and JTAG cables, and ready to be hooked to the troubleshooting
equipment. Logic analyzers and oscilloscopes, the equipment needed are in high demand. Multiple
engineers on the hardware team need it in their projects.

• This issue appears after around 30 days of running continuously, that too inconsistently, making it hard to
reproduce. It is dependent on the network traffic (a mix of voice, video and data). To help in troubleshooting,
the device manufacturer has obtained traffic captures (PCAP files) from the customer, and is being replayed
using tcpreplay. Spirent TrafficCenter (traffic generator) with a specific mix of traffic flows has also been
added to mimic the production network.

• Spirent’s Velocity’s built-in network topology editor is used to build the network topology. It manages the
entire test setup. Automation engineers have hooked the API callbacks to Velocity to pause (freeze) the
DUT (network device with the chip on ICE), the Spirent TrafficCenter and other devices when certain pre-
conditions that lead to this issue are met. When that event occurs, engineers will hook up the instruments,
‘un-pause’ the test and single-step through the event sequence that puts this chip into the ‘bad’ state.

• Using Velocity’s intelligent resource queuing feature, the ‘Resolver’ processes the topology and reserves the
resources accordingly. Because the logic analyzers and oscilloscopes are in high demand, they cannot be
‘locked’ to this issue replication effort. Hence, these are marked as ’deferred’. The resolver identifies when
these scarce resources are needed and sets the right triggers to pause the test. Then the engineers to hook
up these scarce resources, un-pause and single-step through the trouble-shooting process.

• By not tying-up the logic analyzers and oscilloscopes to this harness and idle them for most of the 30 day
period, they can be used efficiently by the hardware team.

• Take-Away:

 — Critical resources that are in high demand can be very efficiently shared using Intelligent resource
queuing.

References

• Spirent’s Velocity Datasheet

• Spirent’s Lab as a Service Platform, please visit www.spirent.com/solutions/lab-as-a-service

https://www.spirent.com/-/media/datasheets/broadband/pab/clear/spirent_velocity_datasheet.pdf
https://www.spirent.com/solutions/lab-as-a-service-laas-network-validation-service-testing

