
Action

Workflow

Continuous integration (CI)

YAML

Workflow file

1. Click the “Actions” tab in your repository

2. Choose the workflow that’s best for your type of project

3. Customize your workflow

4. Once you’ve chosen your workflow, press the “start
commit” button

Helpful terms to know

A program that becomes a reusable component to be used in
workflows. Actions can install software for the environment, set up
authentication,, or automate complex sets of tasks. You can find
actions in the GitHub Marketplace, or create your own and share
them with your community.

A configurable, automated process that you can use in your
repository to build, test, package, release, or deploy your project.
Workflows are made up of one or more “jobs” and can be triggered
by GitHub events.

The software development practice of frequently committing small
code changes to a shared repository. With GitHub Actions, you can
create custom CI workflows that automatically build and test your

YAML stands for “Yet Another Markup Language”. It’s a human-
readable markup language commonly used for configuration files,
especially by CI- and DevOps-focused software tools. GitHub
Actions uses YAML as the basis of its configuration workflows.

The configuration file that defines your GitHub Actions workflow.
This is written in YAML, and lives inside your GitHub repository in
the .github/workflows directory. Each file in that directory that is
named with a .yaml extension will define a unique workflow.

GitHub Actions is tightly integrated with your code and with the rest
of the experiences on GitHub.

GitHub Actions offers helpful workflow templates to get you started,
including templates for Node.js, Rust, .NET Core, and more.

You can start with the workflow templates that we provide, and then
you can customize them to your project’s exact requirements.

Your workflow configuration lives in your repository, so the build
definition is versioned alongside the finished code.

Cheat Sheet

Actions

GitHub Actions help you automate your software development workflows in the same
place you store and collaborate on code. Individual actions are reusable pieces of
code that let you build, test, package, or deploy projects on GitHub. But you can also
use them to automate any step of your workflow.

Available exclusively through GitHub One

How to get started in
four simple steps

code. From your repository, you can view the status of your code
changes and detailed logs for each action in your workflow. CI saves
developers time by providing immediate feedback on code changes
to detect and resolve bugs faster.

Cheat Sheet

Actions

Available exclusively through GitHub One

Questions about GitHub Actions?
We’re here to help.

name

on

jobs.<job-id>.runs-on

jobs.<job-id>.steps

The name of your workflow will be displayed on your
repository’s actions page.

A list of the jobs that run as part of the workflow. Each job
will run independently of the others, and will run on a different
virtual environment. Jobs may have a name to make them easily

The type of runner to use to run the given job on, either a runner
provided by GitHub or a self-hosted runner that you configure.
GitHub provides three main types of runners: Linux (named
ubuntu-latest), Windows (named windows-latest) and macOS
(named macos-latest).

A list of the steps that will run as part of the job. Each step will run
one after another, all on the same virtual environment. By default,
if any step fails then the entire job will stop. In this workflow, the
build job contains three steps:

In this case, a Node.js continuous integration build will be
performed by running npm ci to download and install packages
from the npm registry, then running npm run build to run the build
script specified by the project, and finally running npm test to run
any unit tests in the project.

1. The first step uses an action named actions/checkout@v2.
This is an action provided by GitHub that will check out your
repository onto the runner, so that it can be built and tested.

2. The second step uses an action named actions/setup-node@
v1. This is an action provided by GitHub that will set up a
particular version of Node.js on the runner. Arguments can be
provided to the action in the with section; in this example, the
node-version argument is set to 12, which instructs the action
to put Node.js version 12 in the PATH for subsequent steps.

3. The final step runs programs on the command-line. By
default, these programs will be run with bash (on Linux and
macOS) or PowerShell (on Windows). A single command
may be specified, or multiple commands can be specified by
starting them with a leading pipe (|) symbol.

An explanation of this example workflow:

Actions guide: https://help.github.com/en/actions
Questions and answers on Actions: github.community

name: CI for Node.js Project
on:
 push:
 branches: [master]
 pull_request:
 branches: [master]
jobs:
 build:
 runs-on: ubuntu-latest
 name: Build and Test
 steps:
 - uses: actions/checkout@v2
 name: Check out repository
 - uses: actions/setup-node@v1
 name: Set up Node.js
 with:
 node-version: 12
 - run: |
 npm ci
 npm run build
 npm test
 name: Build and Test

identifiable in the UI or in logs. Jobs contain a set of steps that will
be executed, in order. This workflow has a single job, the build job.

