
T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1

The complete guide to
developer-first application
security for government
agencies

W R I T T E N B Y G I T H U B W I T H ❤

Contents

10

16

34

24

Part one: State of application
security today

Part two: Traditional vs. new
approach to application security

Conclusion

Part three: Developer-
first application security
with GitHub

3

5

Introduction

Executive summary

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 3

Introduction

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 4

The key to the government’s ability to innovate at speed
is access to secure, high-quality software. For agencies
at every level, advancing your mission depends on the
power of digital transformation—the ability to deliver digital
experiences to constituents quickly and effectively.

Since applications fuel these digital experiences, developing
applications needed to deliver business processes has
become a core competency for organizations of all sizes; every
company is now a technology company. At the same time,
enterprise applications’ increasing use and importance create
a prime target for malicious actors—resulting in devastating
data breaches. While it can be difficult to pinpoint the initial
attack vector for breaches, in retrospect, many of the biggest
recent breaches are known to have leveraged vulnerabilities at
the application layer1.

Given how critical applications are to many businesses—
both in terms of the functions they provide and the data they
process—why do we keep experiencing application security
breaches? Despite an emphasis on application development
and improved application security, application vulnerabilities
continue to grow linearly with lines of code. How can we break
this relationship, in order to deliver more secure applications?
In this ebook, we’ll take a look at the current state of
application security and recommend sustainable solutions.
We’ll also share GitHub’s responsibility in securing the world’s
software, and how GitHub helps organizations deliver more
secure applications and empower innovation.

I N T R O D U C T I O N

1: 2020 Open Source Security and Risk Analysis Report by Synopsys

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 5

Executive
summary

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 6

Part one: The current state
of application security

Application security leverages a system of tools, processes,
and best practices to manage application-related business risk.
Depending on risk appetite and the criticality of applications, as well
as security program maturity, application security can range from
simple risk awareness to a well-established pipeline that quickly
identifies and remediates vulnerabilities, ideally pre-production.
Modern software is built on open source, but as the adoption of
open source components increases, so can security risks for both
developers and security teams.

For the average organization today, application security consists of
a small set of testing tools integrated with the software development
cycle. Common current concepts include static application
security testing (SAST), dynamic application security testing
(DAST), passive and active integrated application security testing
(IAST), runtime application security protection (RASP), fuzzing,
software composition analysis (SCA), penetration testing, and bug
bounties. Depending on an organization’s maturity level, tooling, and
capabilities, application security is either treated as the final gate
before deploying an application, or as a series of tests integrated
with the development cycle.

E X E C U T I V E S U M M A R Y

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 7

Part two: Traditional vs.
end-to-end

Traditional approach: Security as a gate
Having security as a gate prior to deployment is the most traditional
approach, and often the first step for organizations just starting with
application security. This approach consists of security tests that
run during the quality assurance phase. These tests are provided
by security teams or third-party vendors, and the outcomes are
delivered in bulk to developers for remediation, with the expectation
that everything will be fixed prior to deploying to production.

In this traditional gate approach, SAST, DAST, IAST, and SCA are the
most commonly observed security evaluation tools. Although having
security as a gate is better than having no application security at
all, this approach causes developer friction and delays in delivering
secure applications. Late security feedback causes confusion,
manual reviews lead to bottlenecks, and scan results have a high
noise-to-signal ratio—all of which lead to developer frustration and
disrupt developer velocity.

End-to-end approach: Security integrated
into every step of the development cycle

Organizations that are more mature in application security employ
an end-to-end approach. This delivers superior results to the
traditional approach by providing developers with feedback on
their application’s security earlier (“shifting security left”), and

E X E C U T I V E S U M M A R Y

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 8

leveraging integration and automation capabilities throughout
the development lifecycle. However, like the shortcomings of the
traditional approach, the end-to-end approach has four main
friction points:

1. Integrations require constant upkeep and frequently break due
with version updates.

2. Security teams and development teams still work in silos.

3. Automated tools don't solve the problem of false positives.

4. Traditional tools fail to keep up with the pace of the
software ecosystem.

Relatively newer approaches to application security—including
security in the DevOps lifecycle (sometimes referred to as
DevSecOps) and shifting security left—have suggested significant
improvements to the above approaches, but drove little change
since the tools and processes themselves remained stagnant.

Part three: Developer-first
application security with GitHub

To actually drive down the number of vulnerabilities in production
code, security teams need to partner with developers in their
preferred environment and leverage their existing workflows. Putting
developers front and center for application security is the most
effective way to shift security left and succeed against the mounting
technical debt that can overwhelm even the best teams.

E X E C U T I V E S U M M A R Y

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 9

Using GitHub, your teams can create secure applications with a
developer-first approach, empowering your developers to share
lessons learned and easily tackle today’s application security
issues. Instead of relying on multiple tools that cause friction,
GitHub offers a unified, native, and automated solution already
in your developer workflow, and additional security code reviews
during every step of the development process. Developers get
security feedback within the development workflow with supply
chain and code security features—including code scanning,
Dependabot alerts for vulnerable dependencies and Dependabot
security updates, secret scanning, and more. You can address
security risks earlier to automate vulnerability fixes and ship more
secure applications, faster.

E X E C U T I V E S U M M A R Y

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 0

Part one: State
of application
security today

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 1

Application security leverages a system of tools, processes, and
best practices to manage application-related business risk.
Depending on the level of risk you’re willing to accept and how
critical your applications are, application security ranges from solely
being aware of the risks to having well-established processes for
quickly identifying and remediating vulnerabilities, ideally before
they make it into a production environment.

Modern software is built on open source. Ninety-nine percent
of enterprise codebases contain open source code according to
Synopsys’ 2020 Open Source Security and Risk Analysis Report1.
But as the adoption of open source components increases, so
can security risks for both your developers and security teams due
to increased exposure. For example, projects frequently inherit
vulnerabilities from unpatched open source components used
as dependencies. And the likelihood of these risks is rising, with
the 2019 State of the Software Supply Chain Report by Sonatype
reporting a “71 percent increase in confirmed or suspected open
source related breachesuspected open source related breaches in
the last five years.”2

Before we dive into different approaches to application security, let’s
review some common application security concepts:

• Static application security testing (SAST)

 SAST uses application source code or binary code as input, and
scans this code for known vulnerable code patterns to generate
results that identify potential vulnerabilities. SAST tools are
commonly used in early to late stages of software development,
especially prior to shipping the code to production.

P A R T O N E : S T A T E O F A P P L I C A T I O N S E C U R I T Y T O D A Y

1: 2020 Open Source Security and Risk Analysis Report by Synopsys
2: 2019 State of the Software Supply Chain Report, Sonatype

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf
https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 2

P A R T O N E : S T A T E O F A P P L I C A T I O N S E C U R I T Y T O D A Y

 SAST tools run multiple analyzers to find potential vulnerabilities
across the code, but the inability to validate context and
exploitability may lead to “noisy” results. Since scan results are
based on known vulnerability patterns, these results are not highly
accurate, with many SAST tools generating false positives. Not
only are scans time-intensive, taking anywhere from hours to
weeks, but reviewing raw scan results is a labor-intensive task.
Your security team or development leads need to validate and
prioritize true positives while removing false positives. This ends
up becoming the bottleneck for traditional SAST tools.

• Dynamic application security testing (DAST)

 DAST examines a target application’s code to identify its attack
surface, or application tree, and deploys the application in
a test environment to run simulated attacks. DAST tools are
commonly used during QA prior to shipping the code, as well as
on production applications.

 The process generates raw scan results which point out
potentially exploitable vulnerabilities, such as those made
available via the user interface. As a result, DAST tools identify a
subset of the application layer vulnerabilities reported by a SAST
tool, which are known to be exploitable. DAST tools can also find
vulnerabilities SAST tools miss, like those related to the running
environment of the application (server, frameworks, network).
This is why SAST and DAST are used as complementary methods
to comprehensively understand the risk posture of applications.
DAST tools validate attack results with server responses they
receive, so scan results need to be manually reviewed before fixes
are planned.

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 3

P A R T O N E : S T A T E O F A P P L I C A T I O N S E C U R I T Y T O D A Y

• Integrated application security testing (IAST)

 IAST finds security vulnerabilities by installing an agent which runs
alongside the target application. IAST is commonly used during
continuous integration (CI) and quality assurance (QA) phases.

 There are two variants of IAST:

 • Passive IAST is used for applications running in testing
environments. When the application goes through use
case-based QA tests, the agent identifies potential security
vulnerabilities. This approach finds a subset of vulnerabilities
that can also be found using SAST or DAST.

 • Active IAST is used for applications running in live environments
and acts as an enhancement for DAST tools. The agent is
installed on the running application and performs DAST
tests against the application. The agent can view stack trace
information and can do detailed behavior analysis on the server
side, so the DAST process and results can be improved. Active
IAST helps reduce the scanning time and validate attack results
for DAST.

• Runtime application security protection (RASP)

 RASP involves installing an active agent on a running
application and using this agent to protect the application at
runtime. In contrast to other AST tools, RASP tools are used
against active vulnerability exploits on applications running in
production environments. RASP agents can detect and prevent
predefined sets of vulnerabilities, but these agents may degrade
application performance, especially under heavy usage, DoS, or
DDoS attacks.

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 4

• Fuzzing

 Fuzzing (or fuzz testing) uses automated or manual methods to
provide invalid, unexpected, or random data as inputs to running
applications in a test environment. As these inputs are sent, the
target application is continuously monitored for exceptions which
may include crashes, abnormal behavior, or potential memory
leaks. Fuzzing can provide additional information about a target
application and serves as a complementary method for DAST.

• Software composition analysis (SCA)

 SCA analyzes an application to determine its third-party
components, frequently focused on open source software (OSS)
security issues and license compliance. SCA is often used in early
phases of software development.

 Today’s SCA tools create an inventory of third-party components
and check these components for known vulnerabilities or other
operational risks such as license compliance. In some cases,
they also offer a library of verified and compliant components for
developers to use.

• Penetration testing

 Penetration testing involves automated and manual tests that
aim to test the security controls of running applications. In
most cases penetration tests only cover applications running in
production, but they can also be scoped to cover pre-production
environments.

 Penetration tests can be conducted by internal or external teams,
and are typically summarized in reports. The results of these

P A R T O N E : S T A T E O F A P P L I C A T I O N S E C U R I T Y T O D A Y

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 5

tests are already validated by the testing team, but penetration
tests require planning and take longer than automated scanning
methods. In addition to technical vulnerabilities, penetration tests
can discover faults in the logical flow or user experience of the
applications in scope.

• Bug bounties

 Bug bounties are crowd-sourced security testing programs which
leverage individual security researchers who get paid based on
the vulnerabilities that they discover. Bug bounties serve as a
complementary solution to all of the methods noted above, but
don’t typically provide comprehensive coverage for the security
posture of applications.

For the average organization today, application security consists of
a small set of testing tools integrated with the software development
cycle. Depending on your organization’s maturity level, tools, and
capabilities, application security may either be treated as the final
gate before deploying an application, or alternatively as a series of
integrated tests as part of the development cycle.

Let’s take a look at these two approaches and what they mean for
your developers.

P A R T O N E : S T A T E O F A P P L I C A T I O N S E C U R I T Y T O D A Y

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 6

Part two: Traditional
vs. new approach to
application security

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 7

The traditional approach
Having security as a gate prior to deployment is a common
approach, and often the first step for organizations just starting
with application security. This “traditional” approach consists of
a single security test or a series of security tests that take place
during the quality assurance phase. These security tests are run by
security teams or third parties, and the outcomes of the security
results are delivered in bulk to developers for remediation. The tests’
findings are then expected to be fixed before the application goes
into production.

Application security as a gate

P A R T T W O : T R A D I T I O N A L V S . N E W A P P R O A C H T O A P P L I C A T I O N S E C U R I T Y

Project
configura�on

Ship

Project
incep�on

SAST
SCA
DAST
IAST

SAST
DAST
SCA
IAST

PR

Merge

Code review

Commit

CI / Tes�ng

Code / Test

CD

QA &
Integra�on

tes�ng

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 8

In this traditional gate approach, teams most commonly use SAST,
DAST, IAST and SCA tools.

Although having security as a gate is better than having no
application security at all, it causes developer friction and delays
delivering secure applications. This is due to three main reasons:

1. Late security feedback causes confusion. Security feedback
that comes at a later stage in development (often weeks after
the code’s creation) means that developers have already moved
on to the following sprint or the next project, so the vulnerable
code in question is no longer top of mind. It can take a while
for developers to refamiliarize with the code and context, and
the fixes often require additional sprint planning, potentially
delaying current projects. “More than 70 percent of all flaws
remain one month after discovery and nearly 55 percent remain
three months after discovery” per the State Of Software Security
Report Volume 9 by Veracode3.

2. Scan results have a high noise-to-signal ratio. Traditional
application security tools generate multiple false positives for
every true positive, so reviewing scan results is a challenging
task. These reviews are generally done by security teams who
have limited knowledge about the scanned projects, which
makes auditing scan results difficult and labor-intensive. Another
approach is to push raw scan results to developers without
reviews, but this puts the burden of evaluation onto developers,
deprioritizing their effort to actually fix the issue.

In both cases, a considerable amount of false positives make
their way to developers as items to be fixed, causing confusion
and frustration.

P A R T T W O : T R A D I T I O N A L V S . N E W A P P R O A C H T O A P P L I C A T I O N S E C U R I T Y

3: Veracode State of Software Security Report Volume 10

https://www.veracode.com/state-of-software-security-report

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 1 9

P A R T T W O : T R A D I T I O N A L V S . N E W A P P R O A C H T O A P P L I C A T I O N S E C U R I T Y

3. Manual reviews cause bottlenecks. When scan results are
generated by automated tools, they still require manual review
to identify true positives and eliminate false positives. Security
teams are greatly outnumbered by developers and they simply
can’t keep up with the sheer volume of raw scan results that need
their attention. Manual reviews can take days and even weeks for
the average project, creating a bottleneck and delays in project
timelines. Delays can be even more frustrating in cases where
manual review results don’t meet expectations. In most cases,
delayed security results mean teams have to ship releases with
known vulnerabilities, with no time to fix these issues to meet
project timelines.

Another downside of traditional security is that if a project isn’t
a priority, it won’t get manual reviews. “Raw” scan results may
also be shared directly with developers, which are non-validated
scan results with a high false positive (non-finding) ratio. Since
these results can quickly become frustrating and developers
can become desensitized to so many false positives, raw scans
are either turned off or their results get ignored. Either option
adds more risk to your organization. If security issues aren’t
addressed in time, they can become a legal liability—like if a
security issue is found to be a source of a data breach, or if not
remediating a known issue is a breach of one (or more) of your
customer contracts.

The end-to-end approach
Organizations that are more mature in application security
employ an end-to-end approach, which starts in earlier stages of
development and has more points of interaction throughout the
development lifecycle.

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 0

End-to-end approach

P A R T T W O : T R A D I T I O N A L V S . N E W A P P R O A C H T O A P P L I C A T I O N S E C U R I T Y

The end-to-end approach provides earlier security feedback to
developers and leverages integration and automation capabilities
of tools. But like traditional security, end-to-end security still has
several friction points:

1. Integrations require a lot of upkeep and frequently break
because of version updates. Although security tools are
integrated with the development process, these integrations
break often. Developers have to drop their current tasks to
address a security issue and log into another portal to deal with
a different tool or system. Security feedback lacks context and
context-switching remains a challenge. The user experience
becomes problematic and inefficient for developers.

2. Security teams and development teams continue to
work in silos. Changing your tooling isn’t enough to change

Project
configura�on

IDE plugins
IAST
SCA

Ship

Project
incep�on

SAST
SCA

SAST
SCA
DAST
IAST

SAST
DAST
SCA

Penetra�on
tes�ng
Bug bounty

DAST

PR

Merge

Code review

Commit

CI / Tes�ng

Code / Test

CD

QA &
Integra�on

tes�ng

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 1

your processes. Silos between the security and application
development teams still have to be addressed for end-to-
end security to work. Integrating tools streamlines part of the
application security process, but this approach again falls
short of nurturing more collaboration between security and
development teams.

Security teams also still act as reviewers for testing results. For
example, every commit on the main branch gets scanned and
new alerts are sent to the security team for review. The security
team still has to triage and send issues back to developers to
fix, and the team likely still has a gating process on release. This
is a better approach than having security tests as a gate since
some things get caught early, but these teams still lack common
processes and platforms to collaborate. With silos and poor
communication, issues are pushed back and forth between
teams, often leading to delays and sometimes conflict.

3. Automating traditional tools doesn’t solve the false positive
problem. It’s exciting to think about automated application
security tools. But in reality, automating scans and pushing
results to an issue tracker leads to a flood of non-actionable
issues. Here the problem is false positives and developers
becoming desensitized to noise. With too many alerts, developers
ignore test results (and mark them all as “false positives” or
“won’t fix”). Traditional security tools lack the customizability to
adjust sensitivity or improve results over time, so when results are
pushed into developer flows, developers switch these tools off.

4. Traditional tools fail to keep pace with the software ecosystem.
Today’s software ecosystem consists of open source, new
programming languages, new frameworks, and emerging tools
that evolve at a breakneck pace. Since traditional commercial
tools are created, updated, and supported by small vendor teams,

P A R T T W O : T R A D I T I O N A L V S . N E W A P P R O A C H T O A P P L I C A T I O N S E C U R I T Y

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 2

they struggle to keep up. There’s also very limited communication
between these vendors and the developer community, requiring
research teams to proactively look for OSS vulnerabilities—an
unscalable task with 100 million-plus public repositories. As
a result, most commercial tools do well in a few aspects of
application security or limit their support to a small part of the
software ecosystem. This means your developers and security
teams either have to work with multiple tools and vendors for a
single use case, or invest in home-grown solutions to fill the gaps
that your commercial tools create.

DevSecOps and shifting left
Relatively newer approaches to application security—including
DevSecOps and shifting security left—have suggested significant
improvements to both traditional and end-to-end security. However,
they’ve driven little change since the tools and processes remain
mostly the same.

Even with DevSecOps, traditional and end-to-end security
approaches still share common problems:

1. High friction between developers and security teams,

2. Applications frequently shipped with known vulnerabilities (83
percent of applications have one security flaw on initial scan and
two out of three applications fail to pass tests based on OWASP
Top 10 and SANS 253),

3. Low fix rates for discovered vulnerabilities (only 56 percent of

P A R T T W O : T R A D I T I O N A L V S . N E W A P P R O A C H T O A P P L I C A T I O N S E C U R I T Y

3: Veracode State of Software Security Report Volume 10

https://resources.github.com/whitepapers/Architects-guide-to-DevOps/
https://resources.github.com/whitepapers/Architects-guide-to-DevOps/
https://www.veracode.com/state-of-software-security-report

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 3

security flaws are fixed, with 24 percent of high-severity flaws left
unfixed by developers3), and

4. Long exposure periods for detected issues (the median time to
fix security flaws is 59 days3).

With all of these challenges combined, it’s little surprise that web
applications have been reported as the main cause of security
breaches over the last five years.4

P A R T T W O : T R A D I T I O N A L V S . N E W A P P R O A C H T O A P P L I C A T I O N S E C U R I T Y

3: Veracode State of Software Security Report Volume 10
4: Verizon Data Breach Investigations reports 2016, 2017, 2018, 2019 and 2020.

https://www.veracode.com/state-of-software-security-report
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 4

Part three:
Developer-first
application security
with GitHub

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 5

Developer-first, community-powered security
with GitHub

Unless security issues can be identified and fixed by your
developers early in the development lifecycle, technical debt will
continue to be a challenge for your software ecosystem. And like
many other challenges, application security problems are easiest
and most cost-effective to solve at the source. To actually drive
down the number of vulnerabilities in production code, we need to
partner with developers in their preferred environment and use their
existing workflows. There’s only one way to shift security left and
succeed against overwhelming technical debt: Putting developers
front and center for application security.

By prioritizing developers and giving them the tools to work in
the most efficient way, GitHub takes responsibility for making
the software we all rely on more secure. GitHub creates secure
applications with a community-powered approach that addresses
feedback early and often from developers; empowers researchers
to enhance and embellish search capabilities; and crowd-sources
bug bounty testing programs. Instead of relying on multiple tools
that cause friction in the process, GitHub offers a unified, native,
and automated solution within the developer workflow. You can
address security risks earlier, automate vulnerability fixes, and have
better security governance to build and protect applications.

P A R T T H R E E : D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y W I T H G I T H U B

https://github.com/features/security
https://github.com/features/security

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 6

How to improve your project’s security
with GitHub

1. Start with security in mind
Reviewing security requirements and identifying potential risks with
your project prior to implementation are critical steps for preventing
expensive vulnerability fixes. Here are a few ways to put them
into practice:

Apply security best practices for project configuration

Configuring your project to match security best practices can
prevent a lot of problems. Reviewing accounts and access settings
(including roles and responsibilities, two-factor authentication, git
over SSH, managing teams, integrations and projects) along with
setting a SECURITY.md vulnerability disclosure and reporting policy
can go a long way.

Model threats for the project

Software threat modeling is the set of activities that helps identify
the potential threats, threat actors, and vulnerable components in
a project. Threat modeling requires analyzing the business logic
and flow of sensitive data through library APIs like source and sink.
Source is the part of code where data is ingested, and sink is the
part of code where data flow is completed.

CodeQL is the industry-leading semantic code analysis engine
that lets you query code as though it were data—making it easy to
discover a bad pattern and then find similar occurrences across

P A R T T H R E E : D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y W I T H G I T H U B

https://docs.github.com/en/enterprise/2.19/admin/user-management/best-practices-for-user-security
https://securitylab.github.com/tools/codeql

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 7

your entire codebase. Behind the scenes, CodeQL adaptive threat
modeling semi-automatically boosts your JavaScript security
queries with machine learning to find more security vulnerabilities
and improve taint specifications. Taint specifications capture the
role of library APIs—source and sink—and are a critical component
of any taint analyzer that aims to detect security violations based
on information flow. A boosted query then produces a ranked list of
additional results for you to review. With adaptive threat modeling,
your JavaScript and TypeScript queries will identify more security
problems. For example, GitHub Security Lab was able to find 118
new NoSQL injection vulnerabilities across 50 JavaScript projects.

Customize static scans

Custom queries provide a powerful way for static application
security testing solutions to detect security issues that may not be
covered by the standard rule and/or query sets. These issues can be
specific to your codebase or to patterns that are considered issues
within context. CodeQL lets you add custom rules easily with a SQL-
like query language to focus on issues that matter for your project.
You can also configure the CodeQL engine to run the standard
query set and custom queries for static scans for the lifetime of
your project.

2. Secure every step of the development
process
Traditional security approaches have shown that if solutions don’t
empower developers to find and fix issues early, they’re likely to fail.
We can also tell that scanning projects for vulnerabilities periodically

P A R T T H R E E : D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y W I T H G I T H U B

https://securitylab.github.com/tools/codeql/atm
https://securitylab.github.com/tools/codeql/atm
https://securitylab.github.com/tools/codeql/atm
https://securitylab.github.com/tools/codeql/atm

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 8

doesn’t stop technical debt from mounting up. As a result, technical
debt continues to grow and cause security defects, along with other
problems for your team.

GitHub delivers additional security code reviews for every step of
the development process with native solutions. Developers get
security feedback within the development workflow with supply
chain and code security features—including Dependabot alerts for
vulnerable dependencies, secret scanning, and more.

Secure the supply chain

A software supply chain is anything that goes into—or affects—your
codebase, from development to your CI/CD pipeline to production.
Within your supply chain, software dependencies are everywhere.
It’s normal for your projects to use open source dependencies that
you didn’t write yourself. The 2019 State of the Software Supply
Chain Report by Sonatype reports that anywhere from 85 to 97
percent of enterprise codebases use open source.2

If any of your dependencies has a vulnerability, chances are your
application has a vulnerability as well. Being able to leverage
the work of thousands of open source developers means that
thousands of strangers effectively could have control over your
production code. Both an innocent mistake or malicious attack
to your supply chain can have a widespread impact on your
codebase—making security both proactive and reactive. Securing
your software supply chain is an ongoing process of knowing what’s
in your environment, managing your dependencies, and monitoring
your supply chain.

P A R T T H R E E : D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y W I T H G I T H U B

2: 2019 State of the Software Supply Chain Report, Sonatype

https://docs.github.com/en/github/managing-security-vulnerabilities/configuring-github-dependabot-security-updates#about-github-dependabot-security-updates
https://docs.github.com/en/github/managing-security-vulnerabilities/configuring-github-dependabot-security-updates#about-github-dependabot-security-updates
https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 2 9

Dependency graph, insights, and Dependabot

With features like the dependency graph, dependency insights,
Dependabot alerts and Dependabot security updates, developers
can easily see which dependencies they use and open pull
requests with fixes to resolve them automatically. Once you’re
aware of your dependencies, Dependabot alerts notify you of
repositories affected by a newly discovered vulnerability. To do this,
GitHub compares the information in the dependency graph to
the information in GitHub Advisory Database. A Dependabot alert
can be sent when you’ve added a new dependency (we check for
vulnerabilities in that dependency), or when a new vulnerability is
discovered (we alert any repositories that are vulnerable). The alert is
sent to repository owners by default.

Dependabot security updates will send you a pull request to update
a dependency to the minimum version that resolves a known
vulnerability—that is, the first version with the patch. This suggested
change to the lock file happens automatically based on alerts.

Secure code

Custom code delivers application logic and unique capabilities for
projects. It’s developed by the developers or vendors on your project
team. Securing custom code within projects is another critical step
in shipping secure applications and preventing potential zero day
vulnerabilities.

Code scanning

Code scanning is a developer-first SAST product that’s built into
GitHub. After it’s configured, it scans every code change in your

P A R T T H R E E : D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y W I T H G I T H U B

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 3 0

repository for security vulnerabilities and flags them in the developer
workflow. This makes it easy to find security vulnerabilities in your
code before they ever reach production.

With code scanning enabled, every g̀it push` is scanned for new
potential security vulnerabilities, and results are displayed directly
in your pull request. By default, code scanning uses CodeQL,
which has an unmatched record finding real vulnerabilities. It
includes 2,000-plus CodeQL queries written and open sourced by
the GitHub Security Lab and leading security researchers to find
potential vulnerabilities in your code with minimal configuration.

Code scanning can also be augmented and expanded to
incorporate other commercial and open source scanning
technologies like Anchore Container Scan, RuboCop Linting,
ShiftLeft Scan, Open Source Static Analysis Runner (OSSAR)—
which allows running multiple open source security static analysis
tools—and others.

Secret scanning

GitHub has provided secret scanning for public repositories,
including API keys and authentication tokens, since 2018. Secret
scanning protects our partners and community from unauthorized
use of the services protected by those secrets.

As part of GitHub Advanced Security, we’re bringing the same
lightning-fast scanning engine and broad set of 27 partners (a
growing list including all the major cloud providers and many
common SaaS providers) to private repositories, so you can catch
secrets as soon as they’re checked in. Repository administrators
will be notified about any commit that contains a secret, and can

P A R T T H R E E : D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y W I T H G I T H U B

https://github.com/marketplace/actions/anchore-container-scan
https://github.com/marketplace/actions/rubocop-checks
https://github.com/marketplace/actions/shiftleft-scan
https://github.com/github/ossar-action

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 3 1

quickly view all detected secrets in the repository’s Security tab.

Third-party security capabilities through
GitHub Actions

GitHub Actions makes it possible to automate, customize, and
execute your software development workflows in the same place
you code. You can discover, create, and share actions to perform
any job you’d like, including CI/CD, and combine actions into a
completely customized workflow. Since individual actions are
reusable as code, it’s easy to take advantage of the collective
knowledge of millions of other developers and security teams, just
as you do in your applications.

Actions serves as an open platform to easily integrate with third-
party security tools. Some of the current integrations include
OWASP ZAP, which supports both baseline and full DAST scans,
SonarCloud Scan, Snyk, and many others.

GitHub Policies (Coming soon)

GitHub Policies enable teams and organizations to continuously
enforce rules and best practices that help secure and improve their
development processes. It also helps ensure organizations are
properly meeting necessary business, regulatory, and compliance
requirements. And because GitHub Policies is built into the GitHub
platform, policies can be enforced immediately, instead of after the
fact. This eliminates enforcement gaps and avoids problems from
surfacing later in your software development lifecycle.

P A R T T H R E E : D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y W I T H G I T H U B

https://github.com/features/actions
https://github.com/marketplace/actions/owasp-zap-baseline-scan
https://github.com/marketplace/actions/owasp-zap-full-scan
https://github.com/marketplace/actions/sonarcloud-scan
https://github.com/marketplace/actions/snyk
https://github.com/marketplace?before=Y3Vyc29yOjIx&category=security&type=actions

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 3 2

3. Improve collaboration and get continuous
security feedback
Making security an integral part of the developer workflow on
GitHub opens up secure collaboration for all: within individual
teams, across your organization, and within the community.

Collaborate with security during all stages
of development

Getting security input at the pull request level allows developers to
have early feedback with the right context at the right time, so they
can fix security issues while they’re still working on the same portion
of the code. Having this enriched view of the security issues also
empowers security teams to become a part of the triage and fix
process by providing their input on GitHub where and when code
is created. When your development and security teams are aligned,
they can prioritize issues more efficiently, discuss optimal fixes, and
validate results together.

Collaborate between developers, security teams, and
the community

Increased collaboration between development and security
teams—plus the customizable nature of CodeQL—helps teams
make the most of existing CodeQL queries and create new queries
to address their projects’ needs. Development teams can identify
specific needs for queries, while security champions within
development teams or security teams can customize existing
CodeQL queries or create new ones. Once you create customized
queries, you can then share them across your organization. Your

P A R T T H R E E : D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y W I T H G I T H U B

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 3 3

teams can also opt to contribute the queries they’ve made to the
open sourced query set for the community to use.

Alerting the community about security vulnerabilities in your
projects is another way security teams, security researchers,
developers and the community can collaborate. You can publish
security advisories natively on GitHub to quickly notify everyone
using the project, and initiate the process to fix these issues. We’ll
review each published security advisory, add it to the Advisory
Database, and may use the security advisory to send Dependabot
alerts to affected repositories.

Collaborate within the community:
A community-driven approach

The standard CodeQL libraries and queries that power GitHub
code scanning are open source and available for anyone to review
and contribute—just open a pull request. Since GitHub’s security
capabilities are open source, when you contribute or review a query,
you’re also helping secure the software we all rely on.

P A R T T H R E E : D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y W I T H G I T H U B

https://docs.github.com/en/github/managing-security-vulnerabilities/publishing-a-security-advisory
https://docs.github.com/en/github/managing-security-vulnerabilities/publishing-a-security-advisory
https://github.com/github/codeql

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 3 4

Conclusion

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 3 5

It’s no exaggeration: Open source software has changed the
world. Many of today’s most innovative applications are built
on code anyone can freely access and contribute to. Just
like open source teams collaborate on shared projects, the
only way to combat technical debt with today’s increasing
code volume and velocity is to solve security issues together.
Community-powered security can help security experts share
lessons learned and provide better ways to solve today’s
application security issues.

Developer-focused, community-centric security also makes
it possible to find and fix issues earlier, while improving
collaboration with both your own organization and the greater
open source community. Whether you want to stay up to
date with the larger software ecosystem or aware of the latest
threats, GitHub allows you to contribute to the development of
security best practices that benefit and empower everyone.

C O N C L U S I O N

T H E C O M P L E T E G U I D E T O D E V E L O P E R - F I R S T A P P L I C A T I O N S E C U R I T Y 3 6W R I T T E N B Y G I T H U B W I T H ❤

Learn more about GitHub Advanced Security
Check out GitHub Security Lab
Have questions? Let's talk

https://github.com/learn/security
https://securitylab.github.com/
https://enterprise.github.com/contact

