
The enterprise architect’s guide to DevSecOps

The enterprise
architect’s guide
to DevSecOps

The enterprise architect’s guide to DevSecOps

Introduction
Enterprise DevOps is here to stay. But enterprise
architects have long understood what DevOps leaders
are just discovering—security, not only shipping, is a
shared responsibility.

Today, operations teams use collaboration, automation,
and containers to speed up software delivery. While
these DevOps best practices have helped them find new
ways to build faster, old security practices still slow many
organizations down.

Enter DevSecOps. DevSecOps brings IT security into
development and operations teams to ensure that
security is a priority at every step of the software
development lifecycle. With a few changes, your
organization can ship better, more secure software—
without delays or increased costs.

Why DevSecOps?
Lower security costs
DevSecOps includes all the DevOps best practices
high-performing teams live by, with the security large
organizations require. By building security into your
DevOps pipeline, it’s possible to find vulnerabilities before
they’re ever released—and easier and less expensive to
remediate them.

More effective teamwork
Just as developers and operations are both responsible for
reliability and quality in DevOps, DevSecOps makes security
a team effort, not a final step. Developers, operations, and
security teams work together to keep applications secure
from the first line of code to final production.

Policy-driven automation
A good DevSecOps program also increases confidence
in your organization’s entire software delivery process.
Automated checks implement security in a policy-driven
way, rather than as a set of confusing manual tools that
slow development down for everyone.

The enterprise architect’s guide to DevSecOps

THEN:

Siloed security
Testing just before deployment

Static testing and dynamic testing
happened at the end of the delivery cycle,

right before release.

Separate security expertise
Development, IT operations, and security

teams worked independently.

Manual security testing
Organizations deployed less often and ran

security checks individually, as needed.

NOW:

DevSecOps
Testing from idea to production
Static and dynamic testing happens alongside

secure coding practices, quality gate checks, and
security vulnerability fixes.

Shared security expertise
Developers, IT operations, and security teams all

follow shared security guidelines in their work.

Automated security testing
Organizations deploy more frequently
and add automated security checks to

their CI/CD pipeline.

The enterprise architect’s guide to DevSecOps

Use a shared, safe platform
for collaboration

Like DevOps, DevSecOps depends on and ends with
collaboration. A shared platform helps development,
IT operations, and security teams build together and
standardize how they work. Prioritize platforms with
built-in security so your entire organization can share
best practices, find and reuse code, and collaborate
from the start.

GITHUB TIP
Good security begins at sign in. When you find the right
collaboration platform, it should also support identity management
features like two-factor authentication, single sign-on, automatic
organization syncs, and more.

1Three DevSecOps
tips to get started

The enterprise architect’s guide to DevSecOps

Track security
after production

Security doesn’t end once code is committed—and
neither does your DevSecOps pipeline. After deployment,
keep code and customers safe by continuously
monitoring for vulnerabilities. Look for tools that can
track and update vulnerable dependencies post-launch,
before would-be hackers can take advantage.

Secure your SDLC
from end to end

Up to 99 percent of recently released applications
contain open source code—meaning open source
dependencies are already part of your codebase.*
Integrate code security tools into your CI/CD pipeline
that can proactively identify security vulnerabilities in
both open and internal source code.
*2019 Open Source Security and Risk Analysis Report

32

GITHUB TIP
While security vulnerability alerts make projects safer, industry
data shows that more than 70 percent of vulnerabilities
remain unpatched after 30 days—and many up to a year. Use
integrations that don’t just identify vulnerable dependencies,
but fix them automatically.

GITHUB TIP
Open source software is everywhere. Automated security tools
like LGTM variant analysis, WhiteSource, and Snyk can make it
easy to find and eliminate bugs and vulnerabilities your team
can’t track by hand.

The enterprise architect’s guide to DevSecOps

Questions about secure software development?

We can help.

Learn more at
github.com/enterprise

