
 Study Guide
GitHub Advanced Security

Get exam-ready for the GitHub Advanced Security Certification
with our comprehensive study guide. We’ve curated the essential
resources and learning activities to better prepare you for the
exam and boost your chances of success.

Objective Domains

An objective domain for a certification exam, often referred to as a “domain” or “exam domain,” is a
structured outline or framework that defines the specific knowledge, skills, and topics that the certification
exam will cover. It provides a clear roadmap for what candidates should expect to encounter on the exam
and what they need to study and prepare for.

The domains provided in this study guide are intended to provide insight into the topic categories covered in
the GitHub Advanced Security exam, along with the learning objective within each domain.

Domain Breakdown

Domain 1: Describe the GHAS security features and functionality

Domain 2: Configure and use secret scanning

Domain 3: Configure and use dependency management

Domain 4: Configure and use code scanning

Domain 5: Use code scanning with CodeQL

Domain 6: Describe GitHub Advanced Security best practices

Domain 7: Configure GitHub Advanced Security tools in GitHub Enterprise

Audience Profile

This exam is designed for experienced professionals in the field of software development and security. This
certification is designed for individuals who have a deep understanding of GitHub and its security features,
as well as hands-on experience in securing software development workflows.

Recommendations and Best Practices for Success

To increase your chances of success in passing the GitHub Advanced Security exam, candidates should
have a deep understanding of GitHub and its security features, as well as hands-on experience in securing
software development workflows. The recommended learning paths for this exam provide you with an in-
depth study of the learning content, followed by hands-on exercises and preparation assessment questions
that were created to enable you to fine-tune your knowledge and readiness for the certification exam.

 

 Study Guide GitHub Advanced Security

Content Resources

The following resources have been created in collaboration with GitHub as recommended content that
covers the learning objectives in each domain for the GitHub Advanced Security exam. Both Microsoft
Learn and LinkedIn Learning provide a complete learning path for the exam, but offer a different learning
experience.

Microsoft Learn

The GitHub Advanced Security learning path on MS Learn provides a robust
collection of learning modules designed to prepare you for the GitHub Advanced
Security exam. Learn how to secure your code with advanced security features at
every stage of your development lifecycle. GitHub Advanced Security is an add-on
to GitHub Enterprise that allows you to use security features, such as secret
scanning, code scanning, and dependency management on your private

repositories. The following modules will walk you through GitHub's advanced security features and provide
you with the skills needed to recognize, apply, and evaluate these features within your own GitHub
environment. (This learning path is currently being updated and a revised version is coming February
2024)

LinkedIn Learning

Discover the art of safeguarding your code using advanced security techniques
throughout the entire software development process by going through the
Prepare for the GitHub Advanced Security Certification learning path on
LinkedIn Learning. With GitHub Advanced Security, you gain access to a suite of
robust security tools, including secret scanning, code scanning, and dependency

management, tailor-made for your private repositories. This video-based learning path comprises a series
of engaging courses that will guide you through the intricacies of GitHub’s advanced security capabilities.
By the end of this learning path, you’ll be well-equipped with the knowledge and expertise to seamlessly
apply, assess, and maximize these security features within your GitHub environment. (This learning path
will be available in December, 2023)

https://learn.microsoft.com/en-us/users/githubtraining/collections/rqymc6yw8q5rey

 
Contrast GHAS features and their role in the security ecosystem

Differentiate the security features that come automatically for open source projects, and what features are available
when GHAS is paired with GHEC or GHES

Describe the features and benefits of Security Overview

Describe the differences between secret scanning and code scanning

Describe how secret scanning, code scanning, and Dependabot create a more secure software development life cycle

Contrast a security scenario with isolated security review and an advanced scenario, with security integrated into each
step of the software development life cycle

Explain and use specific GHAS features

Describe how vulnerable dependencies are identified (by looking at the manifest files and comparing with databases of
known vulnerabilities)

Explain how to act on alerts from GHAS

Explain the implications of ignoring an alert

Explain the role of a developer when they discover a security alert

Describe the differences in access management to view alerts for different security features

Describe a security policy in a GitHub repository

Identify where to use Dependabot alerts in the software development lifecycle

Domain 1: Describe the GHAS security features and functionality

 Study Guide GitHub Advanced Security

Domain 2: Configure and use secret scanning

Enable and use secret scanning

Describe secret scanning

Choose when secret scanning occurs

Contrast secret scanning availability for public and private repositories

Enable secret scanning for private repositories

Enable secret scanning for an organization

Explain how to pick an appropriate response to a secret scanning alert

Determine if an alert is generated for a given secret, pattern, or service provider

Determine if a given user role will see secret scanning alerts

 

Customize default secret scanning behavior

Configure the recipients of a secret scanning alert (also includes how to provide access to members and teams other
than admins)

Describe how to exclude certain files from being scanned for secrets

Explain how to enable custom secret scanning for a repository

Explain how to enable custom secret scanning for an organization

Describe tools for managing vulnerabilities in dependencies

Define a vulnerability

Describe Dependabot alerts

Describe Dependabot security updates

Define the dependency graph

Describe how the dependency graph is generated

Describe how alerts are generated for vulnerable dependencies (driven from the dependency graph, sourced from the
Github Advisory Database and from WhiteSource)

Domain 3: Configure and use dependency management

Enable and configure tools for managing vulnerable dependencies

Identify the default settings for Dependabot alerts in public and private repositories

Identify the permissions and roles required to enable Dependabot alerts

Identify the permissions and roles required to view Dependabot alerts

Enable Dependabot alerts for private repositories

Enable Dependabot alerts for organizations

Create a valid Dependabot configuration file

Configure notifications for vulnerable dependencies

 Study Guide GitHub Advanced Security

 

Identify and remediate vulnerable dependencies

Identify a vulnerable dependency from a Dependabot alert

Identify vulnerable dependencies from a pull request

Enable Dependabot security updates

Remedy a vulnerability from a Dependabot alert in the Security tab (could include updating or removing the dependency)

Remedy a vulnerability from a Dependabot alert in the context of a pull request (could include updating or removing the
dependency)

Take action on any Dependabot alerts by testing and merging pull requests

Use code scanning with third-party tools

Enable code scanning for use with a third-party analysis

Contrast the steps for using CodeQL versus third party analysis when enabling code scanning

Contrast how to implement CodeQL analysis in a GitHub Actions workflow versus a third-party CI tool

Domain 4: Configure and use code scanning

Describe and enable code scanning

Describe code scanning

List the steps for enabling code scanning in a repository using GitHub Actions (i.e. Security tab and click on “set up
code scanning”, set up the GitHub Actions workflow, make any necessary modifications to the workflow)

Enable code scanning for use with a CodeQL analysis workflow

Describe how code scanning relates to GitHub Actions consumption

 Study Guide GitHub Advanced Security

Configure code scanning

Describe how code scanning fits in the software development life cycle

Contrast the frequency of code scanning workflows (scheduled versus triggered by events)

Choose a triggering event for a given development pattern (for example, in a pull request and for specific files)

Edit the default template for Actions workflow to fit an active, open source, production repository

 
Explain how CodeQL enables code scanning

Describe CodeQL

Define a QL pack, code query, code suite

Describe the default CodeQL query suites

Describe how CodeQL analyzes code and produces results, including differences between compiled and interpreted
language

 Study Guide GitHub Advanced Security

Domain 5: Use code scanning with CodeQL

Use CodeQL for code scanning

Introduce a CodeQL analysis workflow to a repository

List the locations in which CodeQL queries can be specified for use with code scanning

Configure the language matrix in a CodeQL workflow

Reference a CodeQL query from a public repository within a code scanning workflow

Reference a CodeQL query from a private repository within a code scanning workflow

Reference a CodeQL query from a local directory within a code scanning workflow

Reference a configuration file within the same repository

Reference a configuration file in a remote public repository

Execute code scanning with the CodeQL command-line interface (CLI), including creating the CodeQL database,
analyzing that database, and posting the SARIF results to GitHub

Contrast the steps to execute code scanning in GitHub Actions vs the CodeQL CLI

Describe how to triage code scanning results from CodeQL analysis

Describe how to view code scanning results from CodeQL analysis

Troubleshoot a failing code scanning workflow using CodeQL, including creating or changing a custom configuration in
the CodeQL workflow

Follow the data flow through code using the show paths experience

Explain the reason for a code scanning alert given documentation linked from the alert

Determine if and why a code scanning alert needs to be dismissed

Describe potential shortfalls in CodeQL via model of compilation and language support

Optimize CodeQL analysis runtimes

 Study Guide GitHub Advanced Security

Domain 6: Describe GitHub Advanced Security best practices, results, and
how to take corrective measures

Use third-party tools with code scanning

Explain how to upload 3rd party SARIF results via the SARIF endpoint

Explain the purpose of defining a SARIF category

Describe GitHub Advanced Security best practices, results, and how to take corrective measures

Use a Common Vulnerabilities and Exposures (CVE) and Common Weakness Enumeration (CWE) to describe a GitHub
Advanced Security alert and list potential remediation

Describe the decision-making process for closing and dismissing security alerts (documenting the dismissal, making a
decision based on data)

Determine the roles and responsibilities of development and security teams on a software development workflow

Explain how to set a review cadence with security teams, when appropriate

Use security policies to instruct all contributors to better secure their repositories

Compare the code scanning alert against the repository’s security policy (i.e. should we block merges with unfixed
security vulnerabilities?)

Align repository branch protection configuration with written security policies

GitHub Advanced Security Administration

Explain how GitHub Advanced Security features are enabled on GitHub Enterprise Server

Explain how GitHub Advanced Security features are enabled for an organization

Set security policies for a repository

Set security policies for an organization

Describe how permissions are interpreted throughout security workflow

Locate API endpoints for GHAS features, like secret scanning, code scanning, and dependabot

List stakeholders that need to be involved in the security workflows enabled by GHAS, including their role in the
workflow

Configure code scanning within a repository or organization using the default CodeQL workflow

Identify the custom build steps necessary in a CodeQL workflow

Domain 7: GitHub Advanced Security Administration

