
GitHub’s
Engineering System
Success Playbook

Introduction: GitHub engineering
zones and metrics

What are GitHub engineering success zones?

How to calculate your 12 metrics

Three steps to engineering success

Step 1: Identify the current barriers to success

Step 2: Evaluate what needs to be done to
achieve your goals

Step 3: Implement your changes, monitor results,
and adjust

Beyond the steps: Make the playbook
work for you

Alternatives to the GitHub Engineering System
Success Playbook

Stepping into action and towards success

Appendix: Engineering success antipatterns

Contents

03

13

28

31

33

34

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

At GitHub, we know that better business outcomes aren’t driven just by good-quality code,
speed, or developer happiness in isolation. It’s actually when quality, velocity, and developer
happiness are working in unison that organizations see their best results. If you’re looking
for engineering to provide greater value to your business, it’s crucial to strengthen these —
let’s call them — foundational zones, and create better conditions for your teams to thrive.

This is the crux of GitHub’s Engineering System Success Playbook (ESSP) — a three-
step process that can help you drive meaningful, measurable improvements in your
organization, whether you’re looking to adopt a new AI tool like GitHub Copilot or identify
and unlock bottlenecks that have been hindering performance.

Inspired by multiple frameworks, including SPACE and DevEx, DX Core 4, and DORA, our
playbook offers a balanced and comprehensive approach, helping you assign metrics to
each “zone” that you can track over time and iterate as needed.

At the heart of our ESSP is a systems thinking1 approach that prioritizes long-term,
sustainable improvements. While quick wins can be a great way to get an initiative started,
they can produce negative downstream effects. For example, accelerating code review
turnaround time can speed up development, but without addressing the broader system –
like testing infrastructure and documentation practices – you may risk creating bottlenecks
downstream and compromising code quality.

This project was created in response to many customer requests for prescriptive guidance
on creating meaningful downstream impact from changes in their engineering systems—

C O NTINUED O N NE X T PAGE PAGE — 3

Introduction: GitHub
engineering zones and metrics

1:   A system is a group of interrelated, or interdependent parts that together serve a function or purpose (‘Thinking in Systems’ by Donalla Meadows). Systems thinking 
brings a focus to the relationship between the multiple parts in the system (The Systems Thinker), recognising that the whole has emergent properties that are different to 
the sum of its parts.

Here’s a quick breakdown of the process:

Step 1: Identify the current barriers to success
Step 2: Evaluate what needs to be done to achieve your goals
Step 3: Implement your changes, monitor results, and adjust

https://queue.acm.org/detail.cfm?id=3454124
https://queue.acm.org/detail.cfm?id=3595878
https://getdx.com/research/measuring-developer-productivity-with-the-dx-core-4/
https://dora.dev/
https://thesystemsthinker.com/the-vocabulary-of-systems-thinking-a-pocket-guide/

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 4

often with the introduction of GitHub Copilot. We also engaged with DevEx and DevOps
metrics vendors to understand both the challenges and successes they’ve experienced
while helping customers elevate engineering performance or to justify the investment
in GenerativeAI. So these steps were created to balance the inherent complexity of
engineering success with practical, achievable steps for teams, including those earlier in
their improvement journey.

In this playbook, we’ll outline suggested metrics to monitor as part of your improvement
efforts for each zone. Keep in mind that these metrics are downstream, or lagging
metrics, and in the majority of cases should be complemented with leading metrics.
Both leading and lagging metrics may be measured using telemetry and/or survey data,
depending on your context, and the way these metrics are calculated will depend on
your teams’ engineering workflows and the systems supporting them—for example, you
may use Jira or ServiceNow alongside GitHub.

As you dig into this playbook, we encourage you to keep a few concepts in mind:

• Always bring a team perspective to improvement
• Select and use metrics with care to avoid gamification
• Balance the cost of measurement with the benefits of measurement
• Focus on improvements over time rather than overindexing on benchmarks

Engineering teams have the potential to fuel incredible change and accelerate business
outcomes. With GitHub’s ESSP, you can unlock engineering’s potential through creating
a culture of excellence that inspires and supports engineers to do their best work.

GitHub’s zones can be understood as a layered system: business outcomes sit at the
top, supported by a foundation of quality, velocity, and developer happiness. Shaped
by leading DevEx and DevOps metrics frameworks like SPACE and DevEx, DX Core 4,
and DORA, together, they offer a practical and holistic view of your engineering system.

For each zone, GitHub suggests three downstream metrics that you can monitor to
improve your team’s engineering performance, as shown in the figure below.
While these metrics are from industry best practices and are appropriate for many
organizations, per SPACE, there can be reasons why an organization may prefer
different downstream metrics.

What are the GitHub engineering
success zones?

https://queue.acm.org/detail.cfm?id=3454124
https://queue.acm.org/detail.cfm?id=3595878
https://getdx.com/research/measuring-developer-productivity-with-the-dx-core-4/
https://dora.dev/

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 5

Sustainable improvement in any of these metrics will generally take months.
We recommend using leading indicators—metrics that are likely to change
faster—in addition to these downstream metrics. Need some help choosing
your leading metrics? We’ll give you more guidance below.

Fig 1: GitHub’s engineering system success metrics

ESSP: Building on SPACE for Engineering Excellence

The SPACE framework provides a comprehensive approach to measuring and
improving developer productivity. By capturing metrics across multiple dimensions,
teams can develop a holistic view of their engineering effectiveness. The framework
recommends measuring at least three of these key dimensions:

• Satisfaction: Measures developer satisfaction with tools, processes,
and work environment.

• Performance: Evaluates the outcomes and quality of development processes,
focusing on both individual and team-level achievements.

• Activity: Counts measurable development actions like pull requests, commits,
and code reviews.

GitHub’s engineering system success metrics

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 6

• Communication and collaboration: Assesses how effectively team members
and code work together, including cross-functional interactions, knowledge
sharing patterns, and API usage.

• Efficiency and flow: Tracks system throughput and developer time, measuring
both process efficiency and developers’ ability to maintain focus.

The ESSP builds upon SPACE by identifying 12 specific metrics that help teams
improve engineering system performance. While the ESSP organizes these metrics
along developer happiness, quality, velocity, and business outcomes, they map
directly to the SPACE framework’s holistic approach.

How to calculate your 12 metrics
Much of how to calculate the 12 metrics will depend on your engineering workflows and
ecosystem. For example, your tech stack will influence how to measure each of these
metrics. Perhaps you rely on tools beyond GitHub—like Jira or your incident management
system—to calculate metrics like lead time or failed deployment recovery time. It’s also
important to understand your teams’ workflows to determine which data to use from
GitHub or other data sources in your engineering system. For example, what do you
consider to be a production failure, and what data source in your engineering tools best
reflects this definition? Similarly, what is your definition of “in production?”

Some metrics, like satisfaction with tooling, are ideally suited for developer surveys.
Surveys can also be a practical choice for metrics like change failure rate—offering valuable
insights without the need for telemetry. Developers are well-equipped to provide such
information, and engineering leaders may decide that the benefit of calculating a metric
through telemetry doesn’t outweigh the cost and complexity. Organizations that don’t yet
have mature DevEx and/or DevOps metrics tooling may find surveying a particularly
useful option as they start their transformation journey. DevEx and DevOps metrics
vendors can assist with compilation of these metrics where an organization does not
have this capability.

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 7

In using the ESSP metrics it is important to consider these two ideas:

• There will be multiple factors (many outside GitHub) that will impact performance
improvement. Tooling, team processes and culture, and contributions to the software
development lifecycle beyond engineering (i.e. prioritization processes, incident
responses processes) may impact performance in some metrics.

• We believe that engineering is a team sport. User-level usage metrics can provide
insights into how individual developers are engaging with tools, helping organizations
to support engineers to make the most of available resources. However, it’s crucial
to approach user-level metrics with care, as misuse, unfair assumptions, or a one-
size-fits-all mindset can result in overlooking the diversity of roles and contributions
within a team. Depending on their specific job function, developers will face different
challenges, and it’s critical to account for these nuances. For engineering system
metrics we recommend that you focus on teams and organizations, rather than
scrutinizing individual developers. Using metrics to single out developers or enforce
rigid standards can erode trust and undermine the collaborative culture essential for
engineering success.

Leading versus lagging metrics
In the GitHub ESSP, balancing both leading and lagging indicators and using companion
metrics is essential to achieving engineering system performance improvements.

• Lagging indicators—often synonyms with downstream metrics—reflect outcomes, such
as deployment frequency and mean time to recovery, that are measured after work is
completed. These lagging metrics are key to understanding long-term results, since
gains often take time to be realized.

• Leading indicators—typically closer to the source of friction, provide early signals about
areas that may impact downstream metrics later on. For example, improvements in
code review time alongside developer confidence in the code review process can signal
potential improvements in deployment speed or quality. To truly measure progress,
it’s important to complement each of the 12 engineering success metrics with leading
indicators that reflect the team’s day-to-day coding activities and the points of friction
to be addressed, allowing for proactive adjustments. Depending on your friction points,
the SPACE Communication and Collaboration domain is important to consider as
part of leading indicators selection. This balanced approach helps teams anticipate
issues, validate progress, and ensure continuous improvement in alignment with the
playbook’s goals.

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 8

• Companion metrics—Companion metrics are supplementary indicators that provide
context to a primary metric, offering a more rounded understanding of performance.
For instance, while lead time is a metric for assessing velocity, it can sometimes be
misleading if used alone. Adding companion metrics like change failure rate helps to
clarify if shorter lead times reflect actual improvements or if there’s a trade-off, such
as decreased quality due to rushed deployments. However, it’s essential to strike a
balance; too many companion metrics can dilute focus, and increase measurement
costs, while too few can risk misinterpretation or misuse of the primary metric.

Metric recommendations based on zone
Quality
Change failure rate

• SPACE dimension: Performance
• Definition: The percentage of changes

to production or released to users that
result in degraded service 2

• Improvement (positive) direction:
Decrease is good

• Link to business outcomes: Lower
change failure rate may mean higher
reliability and fewer disruptions for
customers

• Calculation advice: What events are
considered a production deployment?
What event signals service failure?

(Median) Failed deployment recovery time

• SPACE dimension: Efficiency and flow
• Definition: How long it takes an

organization to recover from a failure
in production 3

• Improvement (positive) direction:
Decrease is good

• Link to business outcomes: Faster
recovery from deployment failures may
mean reduced downtime and maintains
customer trust.

• Calculation advice: What event signals
service failure? What event signals that
the failure is resolved?

(Median) Code security and maintainability

• SPACE dimension: Performance
• Definition: Degree of threat resilience and minimized risk exposure, and ease of

codebase maintenance, adaptability, and extension
• Improvement (positive) direction: Increase is good

2    From DORA: https://dora.dev/quickcheck/

3    From DORA: https://dora.dev/quickcheck/

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

Velocity
(Median) Lead time

• SPACE dimension: Efficiency and flow
• Definition: The amount of time it takes

a commit to get into production 5

• Improvement (positive) direction:
Decrease is good

• Link to business outcomes: Shorter
lead times may enable faster
responses to market demands.

• Calculation advice: What event signals
first commit for a release? What
event signals successful production
deployment (consider incremental
release handling)?

Deployment frequency

• SPACE dimension: Activity
• Definition: How often are releases

deployed to production 6

• Improvement (positive) direction:
Increase is good

• Link to business outcomes: Higher
deployment frequency may enable
rapid innovation and faster customer
feedback cycles.

• Calculation advice: What event signals
successful production deployment
(consider incremental release handling)

(Mean) PRs merged per developer

• SPACE dimension: Activity
• Definition: Number of pull requests successfully merged divided by total developers
• Improvement (positive) direction: Increase is good

• Link to business outcomes: Enhanced code security and maintainability may reduce
risks, lower costs, and support ongoing innovation.

• Calculation advice: What event signals code vulnerability and exposure threat? What
quality attribute signals code maintainability? What quality attribute signals code
adaptability and reusability?

• Need to know: Availability of telemetry or survey data to evaluate both code maintainability
and security

• Tips: This metric could be calculated through a combination of analytics from GitHub
Advanced Security, SonarQube, or similar products or based on survey data. 4

4    Survey questions can support answering this question where telemetry is not available, for example: It’s easy for me to understand and modify the code that I work with.

1 = Never; 2 = Rarely; 3 = Sometimes; 4 = Very Often; 5 = Always (This question is from DX’s Developer Experience Index (used with permission)) 

5    From DORA: https://dora.dev/quickcheck/

6    From DORA: https://dora.dev/quickcheck/

C O NTINUED O N NE X T PAGE PAGE — 9

https://getdx.com/
https://dora.dev/quickcheck/
https://dora.dev/quickcheck/

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

Developer happiness
(Median) Flow state experience

• SPACE dimension: Efficiency and flow
• Definition: I have significant time for

deep, focused work during my work days.
1 = Never; 2 = Rarely; 3 = Sometimes;
4 = Very Often; 5 = Always 7

• Improvement (positive) direction:
Increase is good

• Link to business outcomes: Improved
flow state experience may enable
engineers to deliver same or higher-
quality work faster, with fewer errors and
interruptions.

• Calculation advice: Ordered survey
responses for organization or team.
Identify middle value in results. Learn
more about developer flow.

(Median) Engineering tooling satisfaction

• SPACE dimension: Satisfaction
and well-being

• Definition: How would you rate your
overall satisfaction with the engineering
tooling you use? 1 = Very unsatisfied,
2 = Unsatisfied, 3 = Neutral, 4 = Satisfied,
5 = Very satisfied 8

• Improvement (positive) direction:
Increase is good

• Link to business outcomes: Greater
satisfaction with engineering tooling
may reduce friction, enabling faster and
higher-quality software delivery.

• Calculation advice: Ordered survey
responses for organization or team.
Identify middle value in results.

(Median) Copilot satisfaction

• SPACE dimension: Satisfaction and well-being
• Definition: If you have been assigned a Copilot license, how would you rate your overall

• Link to business outcomes: Higher PR merge rates per developer may indicate effective
collaboration and accelerated delivery.

• Calculation advice: How many developers to include in calculation? What event signals
that the PR is merged?

• Tips: Focus on total PRs rather than calculating average for an individual and then
calculating the mean. GitHub recommends taking particular care in the calculation of this
metric. It should not be used to compare engineers to one another. Instead, the metric’s
purpose is to provide a measure of output adjusted for the number of engineers working
within a team or organization.

7      This question is from DX’s Developer Experience Index (used with permission)

8      This question is from DX’s Developer Experience Index (used with permission)

C O NTINUED O N NE X T PAGE PAGE — 1 0

https://getdx.com/
https://getdx.com/

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

Business outcome
(Percentage) AI leverage

• SPACE dimension: Activity
• Definition: Opportunity being realized

due to effective engagement with AI,
through calculating the difference
between potential and current AI-
driven productivity gains across
employees working in engineering.

• Improvement (positive) direction:
Increase is good

• Link to business outcomes: Higher
AI leverage may reduce manual
engineering effort, or accelerate or
enhance the quality of delivery with
increased cost efficiency.

• Calculation advice: Average time-
savings associated with AI use. Average
staff salary per week. Total staff who
could benefit from AI in engineering.
Total staff currently ‘engaged’ with AI for
engineering. Cost of AI per week

(Percentage) Engineering expenses
to revenue

• SPACE dimension: Performance
• Definition: The total engineering spending

as a proportion of an organization’s total
revenue.

• Improvement (positive) direction:
Decrease is good

• Link to business outcomes: Lower
engineering expense ratios may indicate
efficient engineering investment and
increased profitability.

• Calculation advice: What expenses are
considered ‘total engineering’? What
constitutes organizational revenue?

• Tip: Best monitored at organizational-level
rather than team-level.

satisfaction with Copilot? 1 = Very unsatisfied, 2 = Unsatisfied, 3 = Neutral, 4 = Satisfied,
5 = Very satisfied, NA

• Improvement (positive) direction: Increase is good
• Link to business outcomes: Higher satisfaction with Copilot may be linked to improved

velocity or quality outcomes.
• Calculation advice: Ordered survey responses for organization or team. Identify middle

value in results
• Tips: This question should only be made available to staff with a Copilot license, or

results from non-Copilot license holders omitted from the calculation.

C O NTINUED O N NE X T PAGE PAGE — 11

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

(Percentage) Feature engineering expenses to total engineering expenses

• SPACE dimension: Performance
• Definition: The proportion of engineering expenses for feature development as a

portion of total engineering expenses.
• Improvement (positive) direction: Increase is good
• Link to business outcomes: Higher allocation to feature engineering expenses

may allow more direct investment in customer-facing improvements that drive
revenue growth.

• Calculation advice: What expenses are considered ‘feature development’? What
expenses are considered ‘total engineering’?

• Tip: Best monitored at organizational-level rather than team-level

C O NTINUED O N NE X T PAGE PAGE — 12

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

Three steps to
engineering success

C O NTINUED O N NE X T PAGE PAGE — 1 3

These three steps are the heart of GitHub’s ESSP, as they highlight your current friction
points and manage your expectations for how changes will drive improvements. As
you consider your future state, GitHub recommends thinking across the zones: quality,
velocity, developer happiness, and how together they contribute to business outcomes.
As part of the three-step process, GitHub also recommends the use of leading
indicators—like close to code telemetry such as number of commits, and surveys—to
monitor the early impact of the agreed changes on your engineering system. Your choice
of leading indicators will depend on the friction points being addressed.

Fig 2: Three steps to engineering success

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 14

Step 1: Identify the current barriers to success
The purpose of step one:
The goal of this step is to develop a clear understanding of the obstacles preventing
improvements. By understanding your current state and your desired future state,
and the gaps and barriers to reach the future state, teams can prioritize areas that
need attention and ensure changes are targeted and effective. This step encourages
understanding of your current performance baseline. That being said, if these current
performance baselines have not yet been quantified, it is still possible to start working
towards improvements.

Tasks for step one:

1.1 Audit current processes, gather data, and understand organizational priorities:

• Build an understanding of your development lifecycle: Put together a complete
picture of your teams’ SDLC processes and workflows, from idea to ship to learn.
Identify the different tasks and process flows, while also recognising that teams may
have different development lifecycles. Understanding the lifecycle is an essential
requisite to calculating metrics and determining bottlenecks. Need help charting your
lifecycle? There are many different ways to chart your lifecycle. Check out GitHub’s
documentation on building diagrams.

• Gather available metrics: Collect your team’s data on existing metrics for the zones,
so that you have a baseline. You don’t need advanced telemetry data to get started:
qualitative insights from developer surveys or focus groups can offer initial baselines.
These qualitative baselines capture team sentiments and highlight areas needing
attention. As you progress, you can make a plan to incorporate quantitative data to
refine your baselines and expand your view. By regularly reviewing progress against your
baselines, your organization can make informed decisions, adjust strategies proactively,
and celebrate tangible achievements on your path to engineering success.

• Industry benchmarks: Benchmarks are reference points drawn from industry data,
often representing average performance, or higher percentiles such as P75 or P90, for
specific metrics (See the DX Core 4 benchmarks and the DORA report benchmarks).
While benchmarks can reveal how your team’s performance compares to others,
remember to take into account differences in team workflows. There is benefit in
focusing on improvements over time rather than benchmarks.

https://github.com/resources/articles/software-development/what-is-sdlc
https://github.com/resources/articles/devops/what-is-devops#:~:text=How%20DevOps%20works-,The%20DevOps%20lifecycle,-The%20DevOps%20lifecycle
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-diagrams
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-diagrams
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-diagrams
https://getdx.com/research/benchmarks/
https://dora.dev/publications/

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 1 5

• Understand zone priorities: Engage with stakeholders to clarify which zones are
currently most critical for the organization given your business goals. Remember that
developer happiness is just as critical as the other zones. This helps to align the team’s
efforts with business goals and strategy.

1.2 Conduct qualitative research:

• Gather feedback: Interview or survey developers and other key stakeholders to
understand their pain points across the development lifecycle, remembering to include
the outer loop.

• Focus on where friction exists: where there seems to be delays and what impacts
engineers’ satisfaction. For organizations with more mature analytics capabilities,
you may be able to go beyond the recommended zone metrics to understand
more granular trends associated with your development lifecycles, like periods of
delay when progressing a pull request from submission to merge.

• Make sure that you’re seeking information on cultural, social, or process factors
that may affect the development lifecycle. Are team members feeling supported
and motivated? Is there a mindset that’s adversely impacting quality or velocity?
Are internal tools or processes slowing down work?

1.3 Prioritize key metrics and barriers:

• Map findings to the zones: Categorize each identified barrier by which zones it impacts
and onto your developer lifecycles.

• Prioritize the metrics to target: Once barriers are identified, prioritize which metrics
should be targeted for improvement. Consider any trade-offs between elements of
your desired future state and the barriers that are most actionable, keeping in mind
your business goals.

Tools needed for step one:
• Analytics and metrics dashboards
• Survey and feedback tools (to support focus groups, interviews, etc.)
• Process mapping tools

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 1 6

Skills needed for step one:
• Data analysis skills
• Stakeholder engagement
• Technical acumen and root-cause analysis

Tips for a successful step one:
• Focus on root causes, not just symptoms: While undertaking research, avoid being

misled by surface-level issues. For example, slow velocity might be attributed to manual
testing, but the root cause could be a lack of trust in automated testing. Dig deeper to
uncover the underlying problems. Common antipatterns in software engineering can
be a great place to start.

• A note: Antipatterns are common solutions to common problems where the
solution doesn’t actually resolve the problem and may inadvertently cause
undesired consequences. Check out this GitHub resource on antipatterns for a
detailed look into how they might manifest within your team.

• Involve the right people: During tasks 1.1 and 1.2, gather input from various roles
such as developers, testers, operations, security, and product managers to ensure a
comprehensive view of the workflow. This prevents overlooking critical perspectives or
bottlenecks.

• Balance quantitative and qualitative data: Metrics alone don’t tell the full story. Make
sure data-driven analysis includes feedback from the team to capture cultural and
morale-related barriers that may not appear in the numbers. Learn more about the
value of both qualitative and quantitative data to improve engineering system success.

• Don’t overwhelm yourself with too many barriers: Focus on the most impactful
barriers rather than trying to tackle everything at once. Prioritize key areas that will
provide the greatest momentum towards your future state.

• Ensure psychological safety: Create an environment where team members feel safe
enough to share their frustrations and challenges without fearing repercussions. This
fosters honesty and leads to better insights on the true barriers.

• Compare for learning, not judgement: While it can be valuable to compare trends in
teams’ metrics and workflows, keep in mind that teams may have different contexts,
work styles, and challenges. Use comparisons to identify best practices and areas for
improvement, rather than as a direct performance measure. Encourage knowledge-
sharing on what’s working well, but be mindful that what works for one team may not
always apply to another due to differing goals, technologies, or constraints. This is where
qualitative information can be particularly useful.

https://github.blog/enterprise-software/DevOps/3-common-DevOps-antipatterns-and-cloud-native-strategies-that-can-help/
https://getdx.com/blog/measuring-developer-productivity-via-humans/

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 17

How GitHub understands
and prioritizes opportunities
for improvement
Quality is a very important zone for GitHub. The importance of this zone is evident in
conversations across the organization, including our leadership team. But anecdotally, we felt that
our change failure rate and time to restore service could be improved. Our first step was to gather
baseline data to measure both metrics. We gathered data from our internal incident management
tooling to understand the number of incidents that were declared, along with the time between
an incident beginning, the time it was declared, and when the incident was resolved. We also
gathered metrics from our defined service-level objectives (SLO) to understand which SLOs
represented change failure rate, and measured which services were more frequently impacted.

As part of considering our current performance relating to quality, GitHub identified where the
potential bottlenecks or friction fall in our development processes. First, we identified that there
were some scenarios where deployed code changes would create an incident, and reverting
the changes took longer than we would like and ultimately increased our time to restore service
metric. Second, we also analyzed data from our internal developer satisfaction survey — which
asks engineers questions about their satisfaction with incident response tooling, testing, and
validation capabilities — and their confidence in being able to respond to incidents.

The insights from these surveys revealed time delays in rolling back deployments, which
introduced failures. We increased our understanding of these developer reports by triangulating
their feedback with quantitative data.

We also recognize that as we continually improve quality, we want to maintain velocity.
Our developer satisfaction survey showed that although our deployment frequency metric was
well in line with our organizational targets, (GitHub typically deploys approximately once per hour),
our developers were dissatisfied with the experience of deploying their code.

For example, being on standby for an unknown amount of time waiting for deployment to start
impacted their flow. This dissatisfaction, coupled with our median lead time metric suggested
that changes here could increase our overall velocity, and potentially increase developer
happiness. While GitHub identified room for improvement on both the quality and velocity zone,
we ultimately prioritized improvements to quality over velocity, as it was most critical to achieving
our business objectives.

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 1 8

Step 2: Evaluate what needs to be done
to achieve your target goal
Purpose of step two:
The goal of this step is to identify, evaluate, and agree on changes that could address the
barriers identified in step one. By doing this, teams can determine the most effective way
to achieve their future state and drive improvements in business outcomes. The focus
is on identifying actionable changes that are aligned with team goals and organizational
priorities, ensuring interventions lead to tangible, sustainable improvements. These
changes may be technology changes or additions, but they may be cultural, social, or
process-related changes, too.

Tasks for step two:

 2.1 Evaluate and prioritize changes:

• Identify potential solutions: Based on the barriers identified in step one, begin by
brainstorming possible changes that would reduce each barrier. For example, if a barrier
relates to slow deployments due to manual processes, one intervention might be
implementing automated deployment pipelines. If developer happiness is low, consider
initiatives that address workload balance or provide better tooling.

• Estimate cost and/or resource requirements: For each intervention, estimate the
resources required, including time, personnel, tooling, and budget. Consider both the
initial implementation effort and ongoing effort. Use this to support evaluation of the
feasibility of each intervention.

2.2 Conduct a risk, cost, benefit analysis for the changes:

• Identify risks: Each change will have risks. For instance, automating a process may
inadvertently introduce new errors or bugs if not tested thoroughly. For cultural changes,
risks might include pushback from the team or slow adoption. Assess the potential
risks for each change, including both technical risks and people-related risks.

• Weigh the benefits against the risks and costs: For each change, clearly outline the
expected benefits and how they will support achievement of the future state. Make sure
to balance this with any potential negative impact on other areas of the business (e.g.,
increasing velocity at the cost of quality or developer happiness). Also account for the

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 1 9

cost and/or resource implications identified in task 2.1.
• Start with a pilot: For significant changes or changes with high risk, consider starting

with a pilot. Test the solution with a few teams or using a smaller subset of the process
before scaling across the organization. This allows for faster learning and iteration, and
reduces the chance of large-scale disruption.

• Create a mitigation plan: For high-priority changes with notable risks, develop a risk
mitigation plan. This could involve rolling out the intervention in phases or involving
additional stakeholders to ensure the solution is robust.

2.3 Engage with key stakeholders:

• Review with teams: Share the proposed changes with engineering teams to get
feedback. Are the changes realistic? Will the changes support long-term goals,
or are there concerns about their implementation? Developers, testers, product
managers, and other team members will have unique insights into the practicalities of
implementing changes. If you have undertaken a pilot, share the findings from the pilot.

• Secure buy-in: For more significant changes, secure buy-in from leadership and other
stakeholders. Present the expected benefits alongside the potential risks and cost or
resource requirements. It’s important that there is alignment across all levels of the
organization, especially when the interventions involve process changes or resource
investments. Also be realistic about the timeframe for implementation and the
realization of benefits.

• Incorporate feedback: Be open to adjusting interventions based on feedback from
stakeholders, including those involved in any pilots. Some changes may need to be
deprioritized if they are deemed too risky or resource-intensive, while others may be
refined based on team input.

Data needed for step two:
• Barriers and priorities from step one
• Information on potential changes
• Information on available resources, budgets, etc.
• Outcomes from any pilots

https://linkedin.github.io/dph-framework/driving-decisions.html#focus-on-causing-action

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 2 0

Skills needed for step two:
• Business case development (cost, risk, and benefit analysis)
• Stakeholder engagement
• Technical acumen and root-cause analysis
• Research skills to explore potential change options
• Coaching skills to steer and co-create desired behaviors in the pilot

Tips for a successful step two:
• Don’t forget long-term sustainability: Even though it can be tempting to focus on quick

wins, make sure the selected changes are sustainable long-term. Avoid changes that
solve short-term problems but create additional maintenance burdens down the road.
For example, deploying new tools or software across the organization may immediately
accelerate velocity, but without investing in training, support, and change management
strategies, it can lead to frustration, errors, and reduced performance.

• Consider trade-offs across zones: Remember that changes may affect more than one
zone at once. Make sure that changes to improve one zone (such as velocity) do not
significantly negatively impact another (such as developer happiness or quality).

• Involve your team early: Changes are more likely to succeed if they’re co-created with
the team. Avoid imposing top-down changes without gathering input from those who
will be most impacted.

• Identify success metrics: Before implementing any changes, define how success
will be measured. Establish which metrics or indicators will show that the intervention
is leading towards your future state. Consider both leading and lagging indicators for
your target future. For example, a reduction in deployment time may be your lagging
indicator, but developer perception of PR duration and reduction in PR dwell time are
leading indicators.

• Stay agile and iterative: Don’t wait until you have the perfect solution to implement
changes. Adopt an iterative approach where small changes can be tested with leading
indicators, refined, and scaled over time. This reduces risk and ensures that the team
can pivot if an intervention isn’t yielding the expected results.

• Focus on high-impact, low-effort wins: If your team is overwhelmed by potential
changes, start with the solutions that are both easy to implement and have high
potential impact. These can provide immediate wins and build momentum for tackling
larger, more complex barriers.

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 2 1

How GitHub identifies
and pilots changes
With a baseline established and hypothesis on the key bottlenecks relating to quality
improvements, we assigned a team to dig deep on deployment rollbacks. The team proposed
a few changes that would allow for earlier detection of production issues, and opportunities to
respond to issues more quickly. Each proposal was estimated based on level of effort and level of
impact.

These changes included extending a wait time between deployments to allow for more time to
test code in between deployments, ultimately making a code rollback easier. This was a very low
effort change, with a potentially high impact. The team also proposed making changes to how
rollbacks were triggered and executed, which reduced the amount of time a rollback would take,
thus improving time to restore. This was a medium effort change, but the potential positive impact
was deemed high.

The team also proposed strategies to detect change failure earlier in the process, including:

• Implementing an end-to-end testing strategy during deployments
(leveraging GitHub Actions),

• A stage-based deployment model, which would deploy code to internal
 staff before deploying to customers

• An automated error detection system, which would alert when new
exceptions were detected during a deployment.

The team also recognised the value of our secret scanning and code scanning features, and
sought to embed them even more deeply in our practices. These suggestions were made by
consulting with many teams and experts, including application developers, observability teams,
reliability teams, and delivery teams.

In parallel, and based on feedback from developers about difficulties in responding to
unpredictable and confusing deployments, the team proposed simplifying notifications, surfacing
helpful log messages during the deployment process, and streamlining the UI. We also saw an
opportunity to improve the developer experience by increasing our transparency for when a
deployment was likely to start, and to enhance the monitoring experience during the deployment.

It was important to weigh these proposals against the potential risks. Some of the proposed plans
required slowing down deployments, which would increase the mean lead time for changes, and

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 2 2

reduce deployment frequency metrics in our velocity zone. We weighed the impact to our velocity
and determined how much of an impact we were able to withstand in order to see gains in quality
metrics. To counteract some of the reductions in velocity, the team also proposed increasing the
number of changes that could be deployed at once. This analysis was done very carefully to make
sure that an increase in changes would not result in a reduction of quality.

Once we decided which process and tooling changes to pursue—just like our features—we then
took an incremental approach to roll-out. You can work in incremental changes in two different
ways:

• The number of changes you make at a given time. Keep the scope small
so you know which change is driving what impact

• In terms of the distribution of the change (then scale to build confidence)

We also used a test application that allowed us to A/B test our process and tooling changes to
more accurately understand their impact on key metrics.

Step 3: Implement your changes, monitor
the results, and adjust
Purpose of step three:
The goal of this step is to scale the prioritized changes, including monitoring the
progress towards reaching your target future state. Successful implementation requires
ongoing monitoring and willingness to adjust to make sure changes are delivering the
desired improvements and are contributing to your business outcomes. By tracking
performance and iterating as needed, teams can make sustained progress and avoid
regressing.

Tasks for step three:

 3.1 Implement the changes:

• Assign ownership and responsibilities: Ownership ensures accountability and
makes it easier to monitor progress, so each intervention should have a clear owner
responsible for its implementation and success. The owner may be a developer,

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 2 3

engineering lead, or cross-functional team, depending on the nature of the intervention.
Link the implementation of changes to senior or executive KPIs (key performance
indicators) or targets.

• Foster communication and transparency: Clearly communicate to all relevant
stakeholders when an intervention is being rolled out, why it’s being done, and what
the expected outcomes are. This transparency fosters trust and encourages team
members to actively support the change. Encourage feedback during the rollout to
help identify any immediate issues or resistance. Remember that tooling or technology
changes also often require accompanying policy, process, or cultural changes.

• Train teams when necessary: Some changes may require new skills or processes. For
example, if implementing a new automated deployment pipeline, make sure teams are
trained in how to use the tooling. Offer support and guidance to reduce friction during
adoption.

3.2 Monitor performance post-implementation:

• Track key metrics: Once changes are implemented, track the identified metrics across
the zones. Compare the new metrics with the baseline established in step one to
evaluate the impact of the intervention. However, be realistic about the time it takes
for metrics to shift and expect some variance in performance rather than consistent
gains. Most change initiatives will require the use of a set of leading indicators. Often,
qualitative data like surveys are a useful leading indicator in addition to close to code
metrics such as pull request review times, depending on the current and future state
and barriers being addressed by the changes. Learnings from any pilots can be useful in
understanding likely timeframes to achieve downstream improvements.

• Gather qualitative feedback: In addition to metrics, gather feedback from developers,
operations, and other stakeholders on how the changes are impacting their day-to-day
work. Use interviews and team retrospectives to understand whether the changes are
positively affecting team morale, collaboration, or overall satisfaction.

• Identify early wins and challenges: Keep an eye out for both early successes and
challenges. Celebrate small wins, such as reductions in pull request review times
or improved test coverage, to build momentum. On the flip side, be prepared to
identify and address any resistance or unforeseen issues early, before they grow
into larger problems.

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 24

3.3 Adjust and iterate:

• Analyze what’s working and what’s not: After an initial period of implementation, review
the data and feedback to confirm that the changes are having the desired effect. Are
the target metrics improving? Are there trade-offs that need to be reconsidered? For
example, are quality targets being maintained while velocity is improving? It’s essential
to critically assess whether the changes are solving the barriers identified in step one.

• Pivot if necessary: If changes are not delivering the expected results, don’t hesitate to
pivot. It’s better to adjust mid-course than to persist with solutions that aren’t working.
Revisit the other potential actions from step two, and consider alternative approaches
or adjustments.

• Maintain continuous feedback loops: Make monitoring and feedback an ongoing
process. Don’t treat implementation as a one-time effort. Use team retrospectives,
stakeholder reviews, and performance dashboards to maintain a cycle of continuous
improvement. Regularly check in on the health of the zones and be proactive in
adjusting the changes as needed. Consider using automated alerting to make sure
that if a metric is falling outside expected performance ranges, it can be reviewed and
acted upon.

Tools needed for step three:
• Analytics and metrics dashboards
• Survey and feedback tools
• Project and change management tools

Skills needed for step three:
• Implementation management
• Data analysis and monitoring
• Change management
• Technical problem-solving and iteration

Tips for a successful step three:
• Don’t expect immediate perfection: Not all changes will produce immediate or

dramatic improvements. Be patient, and allow time for the changes to make a positive

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 2 5

impact. Surveys are a great tool for the earlier stages of an intervention. Remember, it
may take time for the team to adjust and for the changes to be fully embedded.

• Keep iterating on the changes: Remember that even after successful implementation,
further improvements can always be made. Teams should be encouraged to treat
the process as ongoing and remain open to refining changes as new challenges arise.
Changes in operating circumstances can also prompt the need to consider further
iterations.

• Watch out for unintended consequences: Some changes may introduce new friction
points or affect other areas of the workflow in unexpected ways. For example, speeding
up deployments may lead to more frequent post-release bugs if the quality zone isn’t
balanced. Be vigilant in identifying these side effects and address them promptly.

• Check in on psychological safety: Make sure that teams still feel comfortable speaking
up about issues post-implementation. Teams should feel empowered to offer honest
feedback about what’s working and what isn’t, without fear of judgment.

• Evaluate long-term impact: Over time, make sure that the improvements are sustained
and that new challenges aren’t introduced. Look for enduring improvements in team
performance and morale.

• Use feedback for further learning: Treat failures as opportunities for learning. If a
change doesn’t work, use the data and feedback gathered to understand why, and
apply those

https://docs.google.com/document/d/1-xWuCxDV9bn7w7UqQcexHi5a1-shoDR9/edit#heading=h.1y810tw

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 2 6

Maximizing the impact of your engineering system requires intentionality—which can be
achieved through a systematic approach, a learning mindset, and investment in the tools,
skills, and time needed to drive sustainable improvements.

GitHub provides a suite of tools, including GitHub Copilot, to support you in achieving
success in your software development, but these tools also need to be deployed
intentionally regarding the problems you’d like to solve, and with an awareness that tooling
changes often require social, process, and cultural changes.

How GitHub implements change
Following our incremental/piloting approach described above, GitHub very carefully rolled out the
changes identified in step two to an increasing number of applications. Even beyond our piloting
efforts, we still feature flag our process and tooling changes so that if an unexpected situation
arises as we scale the rollout, we can quickly revert to the previous process/tooling.

For example, when we rolled out changes to the deployment pipeline, we changed how we
measured deployment rollbacks. Previously, our metrics looked at a raw count of rollbacks, but
given our intervention to deploy changes to staff before customers, we began tracking rollback
metrics with a more granular view, measuring when a rollback included customer impact
versus impacting internal staff. We also began tracking how soon issues were identified after a
problematic deployment. This allowed us to show that the changes to the pipeline did improve
our quality metrics, by completely preventing external incidents in some cases, and being able
to respond to defects faster, thus reducing our change failure rate. Similarly, when implementing
our end-to-end testing strategy, we were able to measure when the tests uncovered an issue that
would have otherwise made it to production. This also reduced our change failure rate.

We also rolled out UI changes of our deployment tooling incrementally, which allowed the team
to gather feedback and pivot approaches along the way. As part of the rollout, the team identified
that while the UI improvements were helpful, some developers craved a more direct support
model. In response, the team built alerts to proactively alert a support team if intervention is
needed. While the UI could guide developers, the support model allowed for quicker resolution for
more complex scenarios.

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 2 7

A note on Copilot metrics:
The ESSP is part of GitHub’s commitment to support our customers’ understanding
and growth of Copilot impact. GitHub will continue to connect with our customers to
understand their highest data priorities, and develop and deliver a roadmap accordingly.
Our current priority is to focus on exposing leading indicators of Copilot success (such
as those on the Metrics API), which can be used alongside customer-sourced (or partner
supported) lagging indicators.

When implementing GitHub Copilot, we recommend using leading indicators to guide
your pilot and scaling efforts. Surveying developers on their experience with GitHub Copilot
provides early insights into areas needing additional training, where GitHub Copilot is most
beneficial, and potential time savings in achieving your engineering goals.

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

To drive meaningful and lasting improvements across the ESSP zones, GitHub
recommends the three-step process. Yet, these steps alone aren’t enough. As described
in SPACE, achieving true engineering success also requires complementary principles,
mindsets, and approaches that shape how teams interpret, implement, and sustain
progress over time. Tailoring the playbook to your needs, fostering a growth mindset, and
employing change management practices are essential to unlocking the full potential of
the playbook in a way that resonates with your team — and that helps you achieve your
unique goals.

Below, we’ll dig into additional concepts that will help support a well-rounded and adaptable
approach to engineering success, and enable organizations to create a resilient, effective,
and sustainable engineering system.

Tailoring
The GitHub ESSP should be tailored to align with your team’s specific needs, workflows,
and tooling. Rather than applying a universal approach, tailoring enables teams to select
metrics that directly reflect their goals, context, and budget. For instance, some teams may
choose to focus more heavily on developer happiness if morale is hindering engineering
system performance, while others might prioritize velocity to meet business goals.

Tailoring also involves deciding how to measure metrics—opting for telemetry data when
automated tracking is practical, or developer surveys when more nuanced feedback
is needed. Measurement is a tool—valuable when it supports improvement efforts
but not an end in itself. It’s essential to invest only as much as needed to facilitate or
evidence meaningful progress, avoiding the temptation to over-engineer the engineering
measurement system.

Additionally, tailoring includes complementing downstream metrics (e.g., deployment
frequency) with leading indicators that offer early signals of friction or improvement. By
tailoring such elements, the ESSP can reflect the diverse ways that engineering teams
work. As you tailor and select metrics, remember to collect data across the ESSP zones

Beyond the steps: Make the
playbook work for you

C O NTINUED O N NE X T PAGE PAGE — 2 8

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 2 9

(developer happiness, quality, velocity, and business outcomes) and include at least
three of the SPACE dimensions (satisfaction, performance, activity, communication and
collaboration, and efficiency and flow.)

Change management
Change management is essential for achieving success within the GitHub ESSP, ensuring
that teams can adopt and sustainably use new metrics, tools, and practices effectively.
Frameworks like ADKAR (Awareness, Desire, Knowledge, Ability, Reinforcement), Kotter’s
eight-step change model, or the three-stage change model associated with Lewin, provide
structured approaches that can be tailored to guide engineering teams through change.
For example, ADKAR’s focus on awareness and desire is useful when introducing new
metrics like those in the playbook, helping teams understand the role of these metrics
in guiding sustainable improvement. Kotter’s emphasis on building a coalition can rally
support across teams, especially when adopting telemetry or new measurement methods.
By applying these frameworks, change management can help teams feel prepared and
supported.

Growth mindset
GitHub’s ESSP is most powerful when approached with a growth mindset that values
learning as success in itself. This means recognizing that not every intervention will work as
intended on the first try—and that’s okay. Each attempt, whether it leads to immediate gains
or requires recalibration, offers valuable insights that propel teams forward. By embracing
the idea that failure is part of the process, teams can take bolder steps in understanding
bottlenecks, experimenting with solutions, and refining their practices. This mindset
fosters resilience, allowing teams to adapt, learn, and ultimately build an engineering
culture where each iteration brings them closer to sustainable improvement.

Gamification

Gamification done right

When thoughtfully designed, gamification can foster a positive and motivated engineering
culture. Drawing from behavioral economics, gamification is more effective when it
aligns with intrinsic motivators—such as the satisfaction of mastering a skill, solving
complex problems, or contributing to team goals. For instance, rewarding developers with

https://www.prosci.com/methodology/adkar?utm_term=prosci%20adkar&utm_campaign=SEARCH+-+Brand+-+MOFU+-+AU-EN&utm_source=google&utm_medium=cpc&hsa_acc=8715922205&hsa_cam=20640290596&hsa_grp=158104415207&hsa_ad=676583923655&hsa_src=g&hsa_tgt=kwd-302580028780&hsa_kw=prosci%20adkar&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAiAtsa9BhAKEiwAUZAszVodFsteLXIwUq7ycJsfzmvyY_MOB7wlLE6qT0cEgefrs-k9YVygARoCgywQAvD_BwE
https://www.kotterinc.com/methodology/8-steps/
https://www.kotterinc.com/methodology/8-steps/
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-6486.2004.00463.x

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 3 0

recognition for maintaining high-quality code or celebrating team milestones fosters a
sense of pride and commitment to excellence. Shout-outs to a team during a Town Hall
or ensuring that efforts on strategic priorities are noticed in performance reviews can
be motivating. When gamified elements focus on achievements that genuinely support
developer happiness, quality, and velocity, they can enhance engagement and drive
sustainable progress.

The pitfalls of gamification

However, it’s also necessary to be aware of the risks of incentive misalignment, where
rewards can encourage undesirable behaviors. For instance, using leaderboards to drive
rapid code reviews may prompt rushed reviews that compromise code quality. Similarly,
tracking and rewarding individual code contributions can lead to a focus on quantity over
quality, potentially increasing technical debt. It’s essential to recognize both subtle and
overt incentives that the monitoring of metrics can introduce.

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

GitHub understands that organizational needs and situations vary. For customers who are
looking for an alternative to the GitHub ESSP, here are a few strategies:

Understand feature usage without a focus on downstream impact
For organizations who may not have the capacity, or a pressing need, to invest in
understanding the downstream impacts of engineering changes, we recommend focusing
on feature usage telemetry and developer feedback. This option centers on gathering
insights through developer surveys, focus groups, interviews, and usage telemetry, which
will give you a closer-to-code picture of the developer experience. By focusing on these
developer reports and usage-based data points, teams can still uncover actionable
insights on developer satisfaction, and identify areas for improvement with a lower-level of
analytics investment.

Business value engineering with a focus on delay, cost, and risk
reduction
Business value engineering is useful for customers wanting to frame value and measure
improvements across the dimensions of delay, cost, and risk reduction. It draws on
developer-reported time savings (i.e. delay reduction) and other causally related metrics to
provide upstream and downstream insights into GitHub Copilot adoption, usage, and the
linking of downstream improvements specifically to GitHub Copilot.

Using SPACE as a foundation for your own framework
For organizations looking to develop their own approach to improving developer
experience, the SPACE model provides a research-backed foundation for designing
a holistic and balanced view of engineering. By structuring insights around the five

Alternatives to the GitHub
engineering system success
playbook

C O NTINUED O N NE X T PAGE PAGE — 3 1

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

dimensions of SPACE (see Page 5), organizations can ensure they account for the
complexity of engineering work at the individual, team, and system levels.

This approach helps avoid overly simplistic productivity measures and instead fosters a
nuanced understanding of the factors that drive sustainable performance, collaboration,
and satisfaction. By leveraging SPACE, organizations can shape initiatives that align with
both developer well-being and business impact, ensuring an evidence-based path to
engineering success.

C O NTINUED O N NE X T PAGE PAGE — 3 2

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

Technology is always changing, but the steps outlined in GitHub’s Engineering System
Success Playbook (ESSP) are foundational and timeless. Whether you’re keen to explore
the potential of GitHub Copilot or simply need to unblock your team’s workflows, the ESSP
steps will guide you in identifying obstacles, implementing solutions, and continuously
improving. The ESSP has an ethos of listen, act, learn—it’s a pathway to unlocking your
engineering team’s full potential and driving remarkable business outcomes. Ready to
elevate your engineering game? Dive into the playbook, start with step 1 today.

Want to learn more?
• GitHub Copilot onboarding survey:

https://downloads.ctfassets.net/wfutmusr1t3h/6BD0BWsrVXIIq1gSnnsrUd/
be55fd315df8ea02804bb7aa1b9fd114/ESSP-survey.pdf

• DX + PipeDrive case study describing the process of improving developer productivity
https://getdx.com/blog/pipedrive-developer-productivity/

• Realistic expectations regarding AI:
https://www.thoughtworks.com/en-au/insights/blog/generative-ai/reckoning-
generative-ai-uncanny-valley

Stepping into action and
towards success

C O NTINUED O N NE X T PAGE PAGE — 3 3

https://downloads.ctfassets.net/wfutmusr1t3h/6BD0BWsrVXIIq1gSnnsrUd/be55fd315df8ea02804bb7aa1b9fd114/ESSP-survey.pdf
https://downloads.ctfassets.net/wfutmusr1t3h/6BD0BWsrVXIIq1gSnnsrUd/be55fd315df8ea02804bb7aa1b9fd114/ESSP-survey.pdf
https://downloads.ctfassets.net/wfutmusr1t3h/6BD0BWsrVXIIq1gSnnsrUd/be55fd315df8ea02804bb7aa1b9fd114/ESSP-survey.pdf
https://getdx.com/blog/pipedrive-developer-productivity/
https://www.thoughtworks.com/en-au/insights/blog/generative-ai/reckoning-generative-ai-uncanny-valley
https://www.thoughtworks.com/en-au/insights/blog/generative-ai/reckoning-generative-ai-uncanny-valley

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 3 4

Antipatterns are “common solutions to
common problems where the solution
is ineffective and may result in
undesired consequences.” The first
step in GitHub’s ESSP is to understand
friction or bottlenecks in the team or
organization’s engineering system. The
following table provides examples of
antipatterns that may be synonymous
with friction or bottlenecks. The table
also lists potential changes that may
address the antipatterns and potential
leading metrics and indicators that may
be used to monitor whether the changes
are having the desired impact. GitHub
recommends asking engineering teams
to support the identification of these
antipatterns and to confirm the leading
indicators that are best suited to the
situation, as those listed may not be an
appropriate fit for your situation.

Appendix:
Engineering
success
antipatterns

Anti-Pattern Big Bang Releases

Description Teams wait too long to release, deploying large
batches of code at once.

Potential root-causes Fear of destabilization with frequent releases.

Lack of CI/CD pipeline maturity.

Preference for ‘all-at-once’ (or quality) certainty.

Strict compliance requirements.

Long review cycles between PR and deployment.

Quality impact Bugs and regressions are harder to detect and fix
in larger code bases. Some features may also be
released without having met quality expectations.

Velocity impact Slows release cycles due to complex, high-risk
deployments.

How AI could help Use GitHub Copilot to write and review
code faster, potentially leading to quicker
PR completion, leading to more frequent
deployments. Detect and resolve integration
issues to prevent change failures.

Friction requiring non-AI
intervention

Cultural issues or lack of communication
between teams.

Potential leading or
additional metrics or
indicators that may
indicate this antipattern

[↑ ↓ trend suggestions
antipattern]

Size of PRs ↑

PRs reviewed not merged ↑

PR review time ↑

Long-lived feature branches ↑

Zone metrics that may
indicate this antipattern

[↑ ↓ trend suggestions
antipattern]

Deployment frequency ↓

Change failure rate ↑

Lead time ↑

https://www.agilealliance.org/glossary/antipattern/

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 3 5

Anti-Pattern Gold Plating Overengineering Racking up technical debt

Description Developers spend too much
time perfecting code or adding
unnecessary features.

Building overly complex solutions
for simple problems.

Ignoring or deferring technical debt,
allowing inefficient and vulnerable
systems to persist.

Potential root-causes Culture of perfectionism.

Desire to showcase technical skills.

No clear MVP focus or feature
prioritization.

Desire to future-proof
unnecessarily.

Pressure to add value through
complexity.

Deadline-driven focus on features.

Long-term impact of technical debt
undervalued.

Significant risk in unknown
upgrades and effort to resolve
incompatibility issues.

Quality impact Increased complexity introduces
more potential for bugs without
added value to user.

Complex systems are more prone
to bugs and harder to maintain.

Code becomes brittle and bug-
prone, leading to poor system
health.

Velocity impact Adds unnecessary time to
development as teams over-focus
on perfection.

Slows development as complexity
adds overhead to build and
maintain systems.

Increases time to develop new
features as workarounds grow.

How AI could help Use GitHub Copilot to simplify
code and remove redundant code.

Use GitHub Copilot to refactor
existing code. This could be to
make the code more modular, or to
suggest a simpler way of solving the
problem.

Use GitHub Copilot to create
tests and refactor existing code.
This could be to make the code
more modular, or to suggest a
simpler way of solving the problem.
Autofix may reduce effort and
increase satisfaction with starter
suggestions in PRs.

Friction requiring non-AI
intervention

Product management decisions
about feature prioritization.

Overdesigning systems to solve
edge cases that rarely occur.

Prioritize and allocate engineers to
address the technical debt.

Potential leading or
additional metrics or
indicators that may
indicate this antipattern

[↑ ↓ trend suggestions
antipattern]

Work in Progress ↑

Late-in cycle code churn ↑

Usage of features/sub-features ↓

Developer satisfaction with delivery
cadence ↓

Usage of features/sub-features ↓

Cognitive complexity ↑

Code complexity ↑

Large blocks of commented out
code ↑

Duplicated Blocks ↑

Hardcoded values and secrets ↑

Dependency issues ↑

Zone metrics that may
indicate this antipattern

[↑ ↓ trend suggestions
antipattern]

Lead time ↑ Code security and maintainability ↓

Lead time ↑

Code security and maintainability ↓

Lead time ↑

Change Failure Rate ↑

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

C O NTINUED O N NE X T PAGE PAGE — 3 6

Anti-Pattern Unclear requirements Manual deployments Testing bottlenecks

Description Teams receive vague or incomplete
requirements, leading to
misunderstandings.

Relying on manual steps for
deployment instead of automation.

Relying on manual testing or
insufficient test automation,
causing delays.

Potential root-causes Pressure to start development
quickly.

Immature product discovery
process.

Frequent priority shifts from
stakeholders.

Perception that manual is ‘good
enough.’

Fear of effort needed for
automation.

Lack of investment in DevOps
practices.

Belief in thoroughness of manual
testing.

Resource constraints for
automation.

Limited familiarity with modern
test tools.

Previous experience with brittle,
costly, or flaky tests.

Quality impact Poorly defined requirements lead to
incorrect or low-quality features.

Manual deployments introduce
inconsistent outcomes that can
lead to post-deployment bugs.

Lack of thorough testing introduces
more bugs into production.

Velocity impact Time wasted clarifying
requirements or building incorrect
features.

Slows releases. Delays releases as testing takes
longer.

How AI could help Stay tuned: GitHub’s AI powered
platform continues to evolve

Use GitHub Copilot to create
automation, such as GitHub Action
workflows, to replace manual
deployments.

Use GitHub Copilot to troubleshoot
why a deployment automation has
failed.

Use GitHub Copilot to create test
suites, and automate CI workflows,
to remove frictions.

Friction requiring non-AI
intervention

Engaging with stakeholders to
ensure real-world needs are
reflected in the requirements.

Inconsistent processes and
human reluctance to adopt
automated deployment pipelines.

The need for a robust
testing strategy aligned with
the project’s goals

Potential leading or
additional metrics or
indicators that may
indicate this antipattern

[↑ ↓ trend suggestions
antipattern]

Time spent in meetings ↑

Work in Progress ↑

Rework ↑

Developer frustration ↑

Count of manual steps per
deployment ↑

Dwell (delay) time during CI/CD ↑

Deployment duration ↑

Automated test coverage ↓

Time spent on manual testing ↑

Zone metrics that may
indicate this antipattern

[↑ ↓ trend suggestions
antipattern]

Flow state experience ↓

Lead time ↑

PRs merged per developer ↓

Deployment frequency ↓

Failed deployment recovery time ↑

Change failure rate ↑

Engineering tooling satisfaction ↓

Change failure rate ↑

Deployment frequency ↓

(Median) Lead time ↑

Engineering tooling satisfaction ↓

GITHUB ’ S ENGINEERING SYSTEM SUCCESS PL AYBOOK MAY 2025

PAGE — 37

Anti-Pattern Siloed teams Inconsistent feedback loops Scope creep

Description Teams operate in silos, failing to
share data, tools, or processes
across teams.

Feedback from testing, users, or
other stakeholders is not provided
in a timely or consistent manner.

Constant addition of features or
changes mid-development without
proper evaluation.

Potential root-causes Incentives misaligned across
teams.

Culture prioritizes team-specific
goals.

Historical habit of independent
operation.

Waterfall mindset undervaluing
iteration.

Feedback viewed as an end-phase
activity.

Lack of real-time feedback tools.

Unclear project boundaries.

Poor change management
practices.

Culture discourages saying “no” to
requests.

Quality impact Inconsistent processes and tools
result in lower-quality handoffs
between teams.

Bugs and user issues linger due to
delayed feedback.

Rushed development due to scope
creep often leads to more bugs and
lower quality.

Velocity impact Cross-team dependencies lead to
delays when teams aren’t aligned.

Slows iteration cycles, as engineers
aren’t able to adapt quickly.

Introduces unplanned work that
delays original timelines.

How AI could help Copilot features can help improve
documentation and code
explanations.

Use GitHub Copilot for Pull
Requests to automatically analyze
pull requests and suggest changes
to provide a more consistent
feedback loop.

Developers can use GitHub
Copilot to ask questions about a
pull request, providing for a more
informed pull request review
that leads to a more consistent
feedback loop

Stay tuned: GitHub’s AI powered
platform continues to evolve

Friction requiring non-AI
intervention

Cultural issues or lack of
communication between teams.

Human communication and
prioritization of feedback.

Managing stakeholder expectations
and ensuring a disciplined
approach to scope management.

Potential leading or
additional metrics or
indicators that may
indicate this antipattern

[↑ ↓ trend suggestions
antipattern]

Cross-team collaboration
frequency ↓

Handoff delays ↑

Rework frequency ↑

Poor meeting attendance ↑

Feedback frequency ↓

Feedback quality ↓

Customer satisfaction ↓

Age of PR’s last human activity ↑

Scope changes per sprint ↑

Ratio of issue types per sprint ↑

Time spent on unplanned work ↑

Zone metrics that may
indicate this antipattern

[↑ ↓ trend suggestions
antipattern]

Lead time ↑

PRs merged per developer ↓

Deployment frequency ↓

Lead time ↑

Flow state experience ↓

Lead time ↑

WR IT TEN BY GITHUB WITH

