
GitHub | Sep 2022

Integrating GitHub Advanced Security with

third party reporting and analytics

platforms

GitHub Advanced Security (GHAS) is an application security

solution that enables companies to approach security with a

developer-first mindset. Integrating GHAS with external

reporting and security information and event management

(SIEM) tools allow customers of the GitHub platform to improve

their security posture by increasing the visibility of application

security events.

Table of Contents
Abstract 2

What we’ll cover in this white paper 2
Audience 2
Glossary of terms 2
Authors 2

Executive Summary 3

Integration Methods 4
Webhooks 4
REST API 6
GraphQL API 9
Audit Log 10

Metrics 12
Code Scanning 12
Secret Scanning 14
Repository Vulnerabilities (Dependabot alerts) 15
GitHub Audit Log 16

References 18

1

Abstract
This document is intended to capture strategies for integrating and ingesting alerts from the
GitHub Advanced Security (GHAS) platform into external reporting, Security Information and
Event Management (SIEM) services, and vulnerability analytics platforms.

Integrating the metrics provided by GitHub Advanced Security into an external reporting and
analytics platform allows customers to gain deeper insight into their application security
posture.

What we’ll cover in this white paper
● Methods for extracting information from the GitHub platform for ingestion in a reporting

tool
● Ideal integration methods
● Metrics to watch in your reporting/SIEM tool

Audience
The intended audience for this white paper is engineers looking to integrate the GHAS platform
into existing internal SIEM tools, including:

● GitHub administrators
● Application Security teams
● Security Operations
● SOC Analyst teams
● SIEM and reporting tool vendors
● GitHub partners working with customers on GHAS implementations

Glossary of terms
● GHAS - GitHub Advanced Security
● SIEM - Security information and event management
● SARIF - Static Analysis Results Interchange Format, a standard JSON-based format for

the output of static analysis tools.

Authors
Dan Shanahan - GitHub Advanced Security Field Specialist
Chad Bentz - GitHub Advanced Security Field Specialist
Alexander De Michieli - Senior Partner Engineer

2

Executive Summary
Enterprise data retention, audit requirements, and fluid design considerations are important in
your security architecture. While GitHub does provide the Security Overview for viewing GHAS
alerts, you may require a longer-term historical audit trail of the data, or even find the need to run
more powerful queries, charting, and visualizations while joining additional data from your own
environment logs.

There are four primary methods for extracting GitHub Advanced Security metrics from the
GitHub platform. These methodologies apply to both GitHub Enterprise Cloud and GitHub
Enterprise Server.

Webhooks
GitHub webhooks are HTTPS payloads that are immediately delivered to an endpoint when a
specified event occurs. Webhooks are the preferred method for long-term metric collection and
event alerting for the GitHub Advanced Security (GHAS) platform. Webhook events are sent for
status changes on all events in the GHAS platform including code scanning, secret scanning,
and Dependabot at the time the event occurs.

REST API
The GitHub REST API provides a snapshot view of the current status of your GHAS platform.
The REST API provides information about the state of all alerts for code scanning, secret
scanning, and repository vulnerabilities.

GraphQL API
Our GraphQL API is a powerful interface for querying information about your GitHub
configuration. This API allows developers to extract information about repository vulnerabilities
(Dependabot alerts)

Audit Log
To support debugging and internal and external compliance, GitHub Enterprise provides logs of
audited user, organization, and repository events. The content of the audit log is not scoped
specifically to GHAS events but provides insights into sensitive changes within your GitHub
environment.

3

Integration Methods

Webhooks
Webhooks are a one-way communication method that sends a JSON payload via HTTPS to a
receiver when an event happens on the GitHub platform.

Webhook messages are triggered each time a security finding is created, resolved, or marked as
closed by a user. The webhook message contains information about the alert and where the
finding was identified. The verbosity of the alert, along with the just-in-time nature of webhooks,
creates an ideal integration target for SIEM tools.

Webhook Pros Webhook Cons

● Easy configuration
● Protected with secret token
● Real-time event
● Minimal infrastructure required
● No rate limiting

● Tracking event lifecycle is difficult
● Potential for missed messages

Implementation
Creating a webhook is a two-step process. You'll first need to set up how you want your
webhook to behave through GitHub: what events it should listen to. After that, you'll set up your
server to receive and manage the payload.

Webhook configuration docs are available here.

Server-side Configuration
Your webhook receiver should be prepared to accept JSON payloads via a POST method. The
ideal content-type header will be application/json.

Setting a webhook secret allows you to ensure that POST requests sent to the payload URL are
from GitHub. When you set a secret, you'll receive the X-Hub-Signature and
X-Hub-Signature-256 headers in the webhook POST request. For more information on how to
use a secret with a signature header to secure your webhook payloads, see "Securing your
webhooks."

4

https://docs.github.com/en/developers/webhooks-and-events/webhooks/creating-webhooks
https://docs.github.com/en/webhooks/securing
https://docs.github.com/en/webhooks/securing

GitHub Configuration
Webhooks can be configured at the repository and organization level. To enable a webhook,
navigate to the settings page of either the repository or organization and choose Webhooks
under Code, planning and automation. Select to create a new webhook, then enter the endpoint
URL of your receiver, choose application/json as the content type, then enter the secret (if
one was generated on your receiver).

You will be asked which events should trigger a webhook. The following events are GHAS
specific, however, there are many other events that may be pertinent to your environment.

● Code scanning alerts
● Secret scanning alerts
● Secret scanning alert locations
● Security and analyses
● Repository vulnerability alerts (Dependabot alerts)

A complete example of a webhook receiver is available here.

5

https://github.com/github/platform-samples/tree/master/hooks/ruby/configuring-your-server

REST API
The GitHub REST API provides a fully-featured platform for extracting and updating findings
from GHAS. Information on findings from code scanning and secret scanning is made available
via the REST API. Additionally, GitHub has provided developer libraries to make writing
integrations easy.

The REST API is ideal in situations where you need to report on the current state of the GHAS
platform. For example, an API request could be created to return all the closed code scanning
alerts for a particular organization. It’s important to note that the REST API does have rate limits
in place. Personal access tokens maintain a rate limit of 5000 requests/hour. GitHub app
tokens are limited to 15,000 requests/hr.

REST API Pros REST API Cons

● CRUD interface
● Point-in-time view of the status of

alerts
● Filterable queries

● Requires poller infrastructure
● Not event driven
● Rate limits

Implementation
Consuming GHAS events via the API will require a poller service that queries the GitHub REST
API on a scheduled basis. OctoKit is a client library that makes writing these integrations easy
by abstracting some of the more complex aspects of the API such as paging and
authentication.

There will be two primary endpoints you will focus on, code scanning alerts and secret scanning
alerts

Authentication
Production applications that interact with the GitHub API should be built and installed as a
GitHub app. GitHub apps unlock many integration options and permission capabilities, as well
as expand the API rate limits to 15,000 requests per hour.

In non-production environments, you can provide a personal access token to authenticate to the
GitHub API. This token is scoped to the user and has a rate limit of 5,000 requests per hour.

NOTE: For documentation on the best integration methods with GitHub APIs, see Basics of
GitHub Authentication

6

https://docs.github.com/en/rest
https://docs.github.com/en/rest/overview/libraries
https://github.com/octokit
https://docs.github.com/en/rest/code-scanning#about-the-code-scanning-api
https://docs.github.com/en/enterprise-cloud@latest/rest/secret-scanning#about-the-secret-scanning-api
https://docs.github.com/en/enterprise-cloud@latest/rest/secret-scanning#about-the-secret-scanning-api
https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps
https://docs.github.com/en/enterprise-cloud@latest/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/rest/guides/basics-of-authentication
https://docs.github.com/en/rest/guides/basics-of-authentication

Code scanning API
The code scanning API provides visibility into all alerts generated by code scanning. This API
returns results for an entire enterprise, organization, or repository. Our guidance is to query the
enterprise API for all events on a scheduled basis to provide a snapshot of the current security
posture. Querying the enterprise API simplifies the process by not requiring you to populate a
list of all repositories or organizations.

Example query:

curl \

-H "Accept: application/vnd.github+json" \

-H "Authorization: token <TOKEN>" \

https://api.github.com/enterprises/ENTERPRISE/code-scanning/alerts

Code Scanning Analysis API
The Code Scanning Analyses API is able to extract both scan summary information and detailed
SARIF results. SARIF is a JSON results interchange format consumed by code scanning, and
produced by static analysis tools like CodeQL. The SARIF specification allows for detailed
information about runs of a code analysis tool and the results they produce. This notably
includes data points not generally available from the API, such as tooling, rule, severity,
locations, fingerprints, and code flows. For more information visit the SARIF support for code
scanning article.

To retrieve SARIF results you must supply a repository analysis id as returned from Code
Scanning List Analyses API and specify the application/sarif+json media type accept
header. The API response includes a subset of the actual data that was uploaded for the
specified analysis along with additional data such as the generated github/alertNumber and
github/alertUrl. The additional alert properties can be used to correlate data from the Code
Scanning API/Webhooks. Please note that the response size from this API may be
exceptionally large.

Example query:

curl \

-H "Accept: application/sarif+json" \

-H "Authorization: token <TOKEN>" \

https://api.github.com/repos/OWNER/REPO/code-scanning/analyses/ANALYSIS_ID

Secret scanning API
The secret scanning API provides visibility into all alerts generated by the secret scanning
service. This API returns results for an entire enterprise, organization, or repository. Again, like

7

https://docs.github.com/en/enterprise-cloud@latest/rest/code-scanning#list-code-scanning-alerts-for-an-enterprise
https://docs.github.com/en/enterprise-cloud@latest/rest/code-scanning#get-a-code-scanning-analysis-for-a-repository
https://docs.github.com/en/enterprise-cloud@latest/code-security/code-scanning/integrating-with-code-scanning/sarif-support-for-code-scanning
https://docs.github.com/en/enterprise-cloud@latest/code-security/code-scanning/integrating-with-code-scanning/sarif-support-for-code-scanning
https://docs.github.com/en/enterprise-cloud@latest/rest/code-scanning#list-code-scanning-analyses-for-a-repository
https://docs.github.com/en/enterprise-cloud@latest/rest/code-scanning#list-code-scanning-analyses-for-a-repository
https://docs.github.com/en/enterprise-cloud@latest/rest/code-scanning#custom-media-type-for-code-scanning

the code scanning API, the best practice is to query results from the secret scanning enterprise
API to retrieve all events across the enterprise.

IMPORTANT: The secret scanning API returns the plain-text content of a secret scanning alert
(containing the exposed secret). This information should not be logged and discarded if not
needed.

Example query:

curl \

-H "Accept: application/vnd.github+json" \

-H "Authorization: token <TOKEN>" \

https://api.github.com/enterprises/ENTERPRISE/secret-scanning/alerts

8

https://docs.github.com/en/enterprise-cloud@latest/rest/secret-scanning#list-secret-scanning-alerts-for-an-enterprise
https://docs.github.com/en/enterprise-cloud@latest/rest/secret-scanning#list-secret-scanning-alerts-for-an-enterprise

GraphQL API

GraphQL is a query language used to interact with APIs. The GitHub GraphQL API offers more
precise and flexible queries than the GitHub REST API, as it allows you to accurately define the
data you want. That being said, with accuracy comes complexity as all requests are validated
and executed against the schema. GraphQL requires in general a more structured approach.
For a list of docs, visit the Getting Started guide.

The GraphQL API has its own limits which are different from the REST API's rate limits. To
accurately represent the server cost of a query, the GraphQL API calculates a call's rate limit
score based on a normalized scale of points. Visit the Rate Limits guide to learn more about the
rate limits with the GraphQL API

GraphQL Pros GraphQL Cons

● More precise calls
● Reduced count of calls to the API

endpoint

● More complex configuration
● Limited integration options (only

Dependabot events)

Implementation
To communicate with the GraphQL server, you'll need an OAuth token with the right scopes
(refer to REST API documentation). While The REST API has numerous endpoints, the GraphQL
API has a single endpoint, which remains constant no matter what operation you perform:
https://api.github.com/graphql

Here’s an example of a GraphQL call to retrieve Dependabot events. If you want to learn more
about the RepositoryVulnerabilityAlert object, consult this resource.

9

https://graphql.github.io/learn/validation/
https://graphql.github.io/learn/execution/
https://docs.github.com/en/graphql
https://docs.github.com/en/rest/overview/resources-in-the-rest-api#rate-limiting
https://docs.github.com/en/graphql/overview/resource-limitations
https://gist.github.com/AlexDeMichieli/c39698fa591fcb2a9fac476018dd6a37
https://docs.github.com/en/graphql/reference/objects#repositoryvulnerabilityalert

Audit Log
Audit logs contain events that are generated by activities within your enterprise, from the current
month and up to the previous six months. The audit log also retains git events such as cloning,
fetching, and pushing for seven days. There are a multitude of recorded events that cover nearly
every important aspect of your enterprise; visit the Audit Log Events guide for a comprehensive
list. We recommend visiting the Accessing Audit Logs guide to learn how to view them.

Although many activities are recorded, it’s important to note that Audit Logs aren’t supposed to
substitute for alerts from the GitHub Advanced Security (GHAS) platform. The Audit Logs
contain a wealth of information that can help your SOC analysts discover threats against your
platform. Using correlation between audit log and GHAS data may assist you during an
investigation. SIEM platform integrations such as the Microsoft Sentinel - Continuous Threat
Monitoring for GitHub can provide tailored threat hunting queries for your environment.

Audit Log Streaming
Audit log streaming automatically writes a copy of all audit logs in an external location such as
S3, Azure Blob Storage, Google Cloud Storage, or Splunk. Log streaming is the de facto
mechanism for ingesting most platform events at the enterprise level (across all organizations).

Audit Log Streaming Pros Audit Log Streaming Cons

● Easy configuration
● Well-tested integrations
● Near real-time
● Resilience (7 days of playback)
● Pause for maintenance

● Limited set of integration options
● Only a subset of GHAS alert data

Implementation
Review the list of currently supported Audit Log Streaming integrations for GitHub Enterprise
Cloud to review a provider that best fits your needs. An Enterprise Owner is required to
configure the stream for any providers. Follow the detailed instructions provided for the specific
integration of your choosing. Further, consider the ability to pause the audit log stream in the
event of an outage or known maintenance at your provider.

Audit Log Polling
If your organization is using GitHub Enterprise Cloud you can interact with the Audit Log via the
GraphQL API and REST API. With both methods, you can access:

● Your organization or repository settings

10

https://docs.github.com/en/enterprise-cloud@latest/admin/monitoring-activity-in-your-enterprise/reviewing-audit-logs-for-your-enterprise/audit-log-events-for-your-enterprise
https://docs.github.com/en/enterprise-cloud@latest/admin/monitoring-activity-in-your-enterprise/reviewing-audit-logs-for-your-enterprise/accessing-the-audit-log-for-your-enterprise
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoftcorporation1622712991604.sentinel4github?tab=overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoftcorporation1622712991604.sentinel4github?tab=overview
https://github.com/Azure/Azure-Sentinel/tree/master/Hunting%20Queries/GitHub
https://docs.github.com/en/enterprise-cloud@latest/admin/monitoring-activity-in-your-enterprise/reviewing-audit-logs-for-your-enterprise/streaming-the-audit-log-for-your-enterprise#setting-up-audit-log-streaming
https://docs.github.com/en/enterprise-cloud@latest/admin/monitoring-activity-in-your-enterprise/reviewing-audit-logs-for-your-enterprise/streaming-the-audit-log-for-your-enterprise#pausing-audit-log-streaming

● Changes in permissions
● Added or removed users in an organization, repository, or team
● Users being promoted to admin
● Changes to permissions of a GitHub App

Please note that you can't retrieve Git events using the GraphQL API. If you wish to do that, you
should use the REST API instead. Likewise, keep in mind that the Audit Log retains Git events
for seven days, which is different from other audit log events that can be retained for up to
seven months.

For more information, visit the GitHub Enterprise Cloud documentation.

Implementation
You can programmatically access the GitHub Audit Log events with the REST or GraphQL API.

This endpoint is only available for organizations on GitHub Enterprise Cloud. You must be an
organization owner, and you must use an access token with the admin:org scope to use this
endpoint. GitHub Apps must have the organization_administration read permission to use
this endpoint. Visit the Using the audit log API for your enterprise documentation for a great
starting point.

By default, the response includes up to 30 events from the past three months. If you wish to
retrieve more (or less) events, you should use pagination. For more information about the audit
log REST API, see "Organizations."

The GraphQL response can include data for up to 90 to 120 days. For example, you can make a
GraphQL request to see all the new organization members added to your organization. For more
information, see the "GraphQL API Audit Log."

11

https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#using-the-audit-log-api
https://docs.github.com/en/enterprise-cloud@latest/admin/monitoring-activity-in-your-enterprise/reviewing-audit-logs-for-your-enterprise/using-the-audit-log-api-for-your-enterprise
https://docs.github.com/en/enterprise-cloud@latest/rest/reference/orgs#get-the-audit-log-for-an-organization
https://docs.github.com/en/enterprise-cloud@latest/graphql/reference/interfaces#auditentry

Metrics
In this section, we will discuss the core metrics from each of the capabilities of GHAS which
should be monitored and reported on. These metrics are not an exhaustive list, but only a
starting point.

Code Scanning
The role of code scanning is to review source code for security vulnerabilities found in the Static
Analysis process. The following metrics provide insight into the status of your security
scanning posture. All of these metrics are available (or can be extracted) in both the REST API
and webhooks.

Webhook Payload Example
REST Payload Example

Commonly Reported Metrics for Code Scanning:

Metric Description

Count of current open findings Count across the entire environment of all open
findings

Count of new findings over time New events plotted on a timeline

Count of closed findings over time Closed events plotted on a timeline

Mean time to resolution The resolution duration (closed at - opened at)
averaged over a time period

Count by severity Chart depicting counts by severity

Count by organization Chart depicting counts by organization

Count by repository Chart depicting counts by repository

Count by tool name Chart depicting counts by tool name

Count by rule Chart depicting counts by rule

Count by dismissed reason Chart depicting counts by the reason it was
dismissed

Count by language Chart depicting counts by programming language.
Webhook events include this data by default. API
responses do not.

12

https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads#code_scanning_alert
https://docs.github.com/en/rest/code-scanning#list-code-scanning-alerts-for-an-enterprise

13

Secret Scanning
Secret scanning identifies plain-text credentials from our secret scanning partners located in a
repository and prevents these credentials from being written to GitHub using push protection.
The following metrics provide insight into the counts of secrets available in your repositories.
These metrics are available by polling the REST API or by receiving webhook notifications.

Commonly Reported Metrics for Secret Scanning:

Metric Description

Count of current open secrets Total count across the entire environment of secrets in
an open state

Count of opened secrets over time Open events plotted on a timeline

Count of closed secrets over time Closed events plotted on a timeline

Mean time to resolution The resolution duration (closed at - opened at)
averaged over a time period

Count by resolution type Chart depicting counts by resolution type

Count by secret type Chart depicting counts by secret type

Count by repository Chart depicting counts by repository

Count by organization Chart depicting counts by organization

Count by repository visibility level Counts per repository visibility type (private, public,
internal)

Count of push protection bypass Chart depicting counts and reason for push protection
bypass

14

https://docs.github.com/en/code-security/secret-scanning/secret-scanning-patterns

Repository Vulnerabilities (Dependabot alerts)
Dependabot is the GitHub service that secures the software development supply chain. These
metrics give insight into the status of dependencies with vulnerabilities within your environment
and are accessible by querying the GraphQL API or by receiving webhooks.

Commonly Reported Metrics for Repository Vulnerabilities:

Metric Description

Count of current open vulnerabilities Total count across the entire environment of
vulnerabilities in an open state

Count of opened vulnerabilities over
time

Open events plotted on a timeline

Count of closed vulnerabilities over
time

Closed events plotted on a timeline

Mean time to resolution The resolution duration (closed at minus opened at)
averaged over a time period

Count by severity Chart depicting counts by severity

Count by repository Chart depicting counts by repository

Count by organization Chart depicting counts by organization

15

GitHub Audit Log
The following table describes audit log entries that may prove useful for security teams. These
events are not necessarily tied to GHAS capabilities but should be monitored to ensure the
integrity of the GitHub platform. This information is collected by polling the audit log REST or
GraphQL APIs or by configuring audit log streaming. The entire list of GitHub audit log events is
available here.

Commonly Reported Audit Log Metrics:

Action Example events

dependabot_alerts Users disabling Dependabot for an org

dependency_graph User disables dependency graph for an org

enterprise A new actions runner group is created

integration_installation A new GitHub marketplace app is installed

ip_allow_list The IP allow list is disabled for a repository

ip_allow_list_entry A new IP address is added to the ip allow list

org A new user is added to the org, MFA is disabled on an
org, a new user is added to an Advanced security
policy, a new self-hosted action runner is added

org_credential _authorization Member authorizes credentials for use with SAML
single sign-on

org_secret_scanning_custom_patter
n

A custom secret scanning pattern is deleted

oauth_application A new oauth application is created

repo Self hosted runner is created, member is added,

repository_advisory A repository security advisory is created

repository_dependency_graph The dependency graph is disabled for a repository

repository_secret_scanning Secret scanning is disabled for a repository

repository_secret_scanning_custom
_pattern

Secret scanning custom pattern is disabled for a
repository

repository_secret_scanning_push_pr
otection

Push protection is disabled for a repository

16

https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#audit-log-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#dependabot_alerts-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#dependency_graph-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#enterprise-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#integration_installation-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#ip_allow_list-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#ip_allow_list_entry-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#org-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#org_credential_authorization-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#org_secret_scanning_custom_pattern-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#org_secret_scanning_custom_pattern-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#oauth_application-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#repo-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#repository_advisory-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#repository_dependency_graph-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#repository_secret_scanning-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#repository_secret_scanning_custom_pattern-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#repository_secret_scanning_custom_pattern-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#repository_secret_scanning_push_protection-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#repository_secret_scanning_push_protection-category-actions

repository_vulnerability_alerts Dependabot alerts are disabled on a repository

secret_scanning Secret scanning is disabled at the org level by an
admin

secret_scanning_new_repos An admin disables secret scanning for all new
repositories

secret_scanning_push_protection A user bypasses a secret scanning push protection
alert

team A new team is added to a repository, a new member is
added to a team

17

https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#repository_vulnerability_alerts-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#secret_scanning-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#secret_scanning_new_repos-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#secret_scanning_push_protection-category-actions
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/reviewing-the-audit-log-for-your-organization#team-category-actions

References
Getting Starting with Ingesting GHAS alerts

● Presentation
Authentication to GitHub APIs

● Documentation
REST API

● Secret Scanning API
● Code Scanning API

GraphQL
● Dependabot (repository vulnerability alert)

WebHooks
● Secret Scanning Alert
● Code Scanning Alert
● Dependabot Alert

Log Streaming
● Blog
● Docs

Log Forwarding (Enterprise Server only)
● Docs

18

https://docs.google.com/presentation/d/1oOL_dhBd1SGVp9ugDM-VUmyB3dYb6caVi9EfQWmQS-4/edit?usp=sharing
https://docs.github.com/en/rest/guides/basics-of-authentication
https://docs.github.com/en/enterprise-cloud@latest/rest/secret-scanning
https://docs.github.com/en/enterprise-cloud@latest/rest/code-scanning
https://docs.github.com/en/graphql/reference/objects#repositoryvulnerabilityalert
https://docs.github.com/en/enterprise-cloud@latest/developers/webhooks-and-events/webhooks/webhook-events-and-payloads#secret_scanning_alert
https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads#code_scanning_alert
https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads#repository_vulnerability_alert
https://github.blog/2021-09-16-audit-log-streaming-public-beta/
https://docs.github.com/en/enterprise-cloud@latest/admin/monitoring-activity-in-your-enterprise/reviewing-audit-logs-for-your-enterprise/streaming-the-audit-log-for-your-enterprise
https://docs.github.com/en/enterprise-server/admin/monitoring-activity-in-your-enterprise/exploring-user-activity/log-forwarding

