
Secure software development in the financial services industry   —   1

Secure software 
development in the 
financial services industry



Secure software development in the financial services industry   —   2

Table of 
Contents

INTRODUCTION

SAFEGUARDING CUSTOMER DATA

Build a culture of security

Always encrypt data

Encryption in transit

Encryption at rest

Encryption with GitHub

Adopt strong identity management practices

Using GitHub with identity management systems

Prevent database attacks

Segregate sensitive data

Preventing sensitive data from reaching repositories with pre-receive hooks

Enforce protections on source code

SECURING THE ENTIRE DEVELOPMENT PROCESS

Include legacy core systems

Automate processes to prevent bugs and errors

Integrating CI/CD with GitHub

Enforce manual reviews with required code review

Audit and compliance-proof your workflow

Move security all the way left

Creating a security culture

CUSTOMER STORY: SOCIETE GENERALE

SUMMARY

2

4

10

16

18



Secure software development in the financial services industry   —   3

Introduction
Trust is the foundation of the relationship between 

financial service institutions (FSIs) and their 

customers—and with each other. FSIs’ ability to 

prevent sensitive data from falling into the wrong 

hands is a cornerstone of this trust. Globally, 

governments have responded with a variety of 

regulatory frameworks obligating FSIs to protect 

customer data with severe sanctions imposed on 

firms that fail to do so. Failure to properly safeguard 

data can have profound and lasting impact on a 

company’s reputation and their business.

To make matters more complex, software has 

become a central component of FSIs’ business and 

will continue to increase in importance. However, 

strict regulatory and compliance requirements 

govern the way FSIs build their software, from 

the processes they follow to tools they use. These 

requirements are often prohibitive enough to 

compromise performance and stifle innovation.

The good news is secure development doesn’t have to 

be a barrier to collaboration or innovation. Financial 

institutions are uniquely positioned to create impactful, 

forward-thinking user experiences, and many of them 

are doing just that. Thousands of organizations are 

using GitHub to free their workflows from insular 

development and build secure processes that give 

engineering teams the flexibility to do their best work.

With consumer expectations higher than ever 

and increased pressure to lower costs, efficient, 

collaborative, and secure workflows can help teams 

shift focus to where it matters most: Building the best, 

most innovative software for their customers. 

In this article, we’ll outline the unique regulatory 

and technical challenges that FSIs face, how to 

address them, and how GitHub can help.

Introduction



Secure software development in the financial services industry   —   4

Safeguarding 
customer data

FSIs handle some of the most sensitive data in the 

world. They’re engaged in a constant arms race 

with those trying to obtain this data for criminal 

purposes—from individual hackers to state actors 

deploying considerable skill and resources in their 

efforts to undermine security. Fortunately, there are 

best practices and tools that can help companies 

secure their development processes and keep 

sensitive data safe.

Safeguarding customer data

There is no single solution or approach that can 

guarantee security. Instead, effective security 

relies on a layered approach, enforcing checks and 

safeguards at multiple points across data paths 

and workflows. This layered approach includes a 

combination of tools, practices, and culture.



Secure software development in the financial services industry   —   5

Education and training regarding the dangers of public networks,  

as well as the physical protection of devices like laptops, tablets,  

and cell phones.

Use of VPNs to secure access to internal corporate networks

Build a culture of security
A corporate culture that places security at the center of everything is key to 

enforcing security policies at scale. Creating a security culture means building 

processes that make everyone’s job. Examples include regular training on secure 

practices, highlighting the danger of social paths to infiltration like phishing 

attacks, as well as technical means. 

SPECIFIC BEST PRACTICES INCLUDE:
 

Enforcement of password policies, including complex passwords, 

regular password changes, and the use of password managers 

and generators to enhance password security

Use of two factor authentication

Safeguarding customer data



Secure software development in the financial services industry   —   6

Always encrypt data
One of the best ways to avoid unauthorized access to data is encryption.  

Even if a bad actor obtains access to data transmission, strong encryption 

can render that success of little or no value. Again, employing a layered 

approach is most effective when implementing an encryption strategy.  

This means:

Encrypting data in transit when it’s being transmitted 

between a permanent store and an end user

Encrypting data ‘at rest’ in the databases where it’s stored

ENCRYPTION IN TRANSIT
As a standard practice, any web-based effort should employ end-to-end 

encryption using modern encryption protocols such as TLS. TLS helps secure 

communication using strong, certificate-based encryption that can be 

essentially unbreakable in any practical sense. TLS also verifies each party in 

a network transaction, preventing ‘man-in-the-middle’ attacks, where a bad 

actor poses as a trusted partner in a transaction. Services like LetsEncrypt 

have greatly reduced the cost and complexity of implementing effective TLS 

and obtaining the required certificates.

ENCRYPTION AT REST
Some applications provide encryption services at the software layer. This sort 

of encryption is better than none but can bring significant costs in terms of 

complexity and reduced performance. Encryption solutions that run as close to 

the storage hardware as possible, such as filesystem encryption or hardware 

appliance level encryption can provide a transparent layer of encryption for all 

applications.

ENCRYPTION WITH GITHUB
All communication to and from our self-hosted solution GitHub Enterprise 

Server is protected by TLS with the option to use LetsEncrypt for inexpensive 

and simple certificate maintenance. GitHub also secures communication 

between Git clients used by developers and the server using SSH. Both are 

strong cryptographic protocols that present robust barriers to unauthorized 

interception or leakage of sensitive data.

Safeguarding customer data



Secure software development in the financial services industry   —   7

Adopt strong identity  
management practices

Prevent database attacks

The more passwords users have to remember, the more likely they are to 

default to insecure practices like writing passwords down or reusing  easy-

to-remember (and thus easy to crack) passwords. Using a centralized identity 

management system like LDAP, coupled with a single sign-on (SSO) solution 

can greatly reduce the number of passwords users have to manage, making it 

easier for them to follow sound password management practices.

USING GITHUB WITH IDENTITY MANAGEMENT SYSTEMS
GitHub Enterprise supports authentication and authorization using a variety  

of identity management solutions like Active Directory and LDAP. GitHub  

also supports SAML, which allows enterprises to provide a single sign-on 

experience for users.

Data entering an organization can be a dangerous vector that bad actors 

use to attempt to gain access to your systems. Many of these strategies 

rely on passing dangerous payloads to poorly designed systems, exploiting 

flaws to gain control. SQL Injection is a classic example, occuring when a 

bad actor intentionally appends SQL code to seemingly harmless data like 

a customer name in a web application. Flaws in the underlying software can 

result in arbitrary execution of this code, resulting in data being unintentionally 

returned to the user. These attacks are particularly dangerous because they 

may not cause an error or other event that might attract the attention of IT 

administrators overseeing security.

Again, a layered approach is most effective in ensuring that only valid data 

enters your environment. This begins with the code in the user interface and 

extends throughout the datapath through middleware to underlying data 

stores. Building validation into the code at each step can dramatically reduce 

your vulnerability to these sorts of attacks. A combination of frequent manual 

and automated reviews and tests are critical to supporting this effort.

Three ways you can prevent  
common vulnerabilities : 

• Only accept validated data into production systems

• Monitor systems for errors and edge cases

• Restrict access to data systems of records as much as 

possible by adopting an identity management system

Safeguarding customer data



Secure software development in the financial services industry   —   8

Segregate sensitive data
The fewer places sensitive data exists, the fewer opportunities (or less “surface 

area”) attackers have available to exploit. Reducing surface area means 

implementing practices like storing passwords in a password manager rather 

than entrusting them to individuals and never committing passwords, access/

API tokens, encryption keys, and other sensitive data to publicly accessible 

repositories.

Sensitive data should never be used or stored in non-production systems. Of 

course, teams might require large amounts of data that reliably mimic the 

real thing for testing, tempting some engineers to ‘refresh’ development and 

testing environments with production data. Instead of using production data, 

consider using a tool that allows you to configure and then generate large sets 

of dummy data. These allow reliable, realistic testing without risking sensitive 

information.

PREVENTING SENSITIVE DATA FROM REACHING 
REPOSITORIES WITH PRE-RECEIVE HOOKS
In addition to storing sensitive data separately, you can prevent the 

inadvertent (or deliberate) committing of protected data to repositories with 

pre-receive hooks —simple scripts that run in an isolated environment on the 

GitHub appliance. These scripts are triggered before code is pushed to GitHub 

to examine commits, identify sensitive information, and prevent it from being 

added to your repositories.

After examining code, pre-receive hooks return only one of two possible 

values: success, or failure. If it fails, developers will see a message informing 

them that their commit failed, along with any other useful information your 

team chooses to include. The code is committed to the repository only if the 

pre-receive hooks succeeds. The result? No unwanted code makes it to your 

repositories, protecting your company from violations, liability threats, and 

regulatory penalties.

Safeguarding customer data



Secure software development in the financial services industry   —   9

Preventing deletion of a branch 

Preventing code which fails automated 

testing and  Continuous Integration  

(CI)  checks from being merged

Enforce protections on source code
Effective security requires controlling access to sensitive information and the source code for the 

software that manages it. Granular controls mean you can effectively protect this information without 

creating a security-bound environment that denies access too comprehensively. GitHub can support 

your access policies with protected branches. Protected branches help maintain the integrity of your 

code by limiting several features of Git on any branch an administrator chooses to protect. For example, 

administrators can restrict who can post to a branch to specific users and teams. They can also disable 

force pushes that might change or delete code on certain branches. 

 
ADDITIONAL SAFEGUARDS INCLUDE:

Steps you can take to 
protect your customer’s most 
important information: 

• Use secure connections everywhere (no 

excuses!) and only transfer data using 

protocols like SSH and SFTP

• Never commit passwords, access/API 

tokens, encryption keys, and more to 

publicly accessible repositories.

• Use protected branches and  

pre-receive hooks to account for human 

error and protect sensitive data from 

making it to production

• Use an identity solution to restrict 

access and make sure only the right 

people have access to sensitive data

Safeguarding customer data

Requiring manual, auditable 

reviews from one or more people

Specifying ‘codeowners’ for any 

part of a codebase and requiring 

their review



Secure software development in the financial services industry   —   10

Securing the entire 
development process

Your software codebase and the development 

processes that shape the way your team builds are 

at the center of your layered security strategy. As 

developers work together and contribute changes, 

it’s important to put certain safeguards in place 

through a combination of best practices and GitHub 

features that make sure the code that reaches 

production is secure. 

Include legacy  
core systems
 

Tools like mainframes remain central to FSI 

operations more than 50 years after their initial 

introduction. These systems provide unparalleled 

capabilities but can also pose unique challenges 

Securing the entire development process

to secure. FSI teams should periodically evaluate 

all legacy systems and balance the cost of updating 

them against the potential risks they pose in terms of 

causing a security breach. Replacing a legacy system 

may not seem cost-effective until the threat of fines in 

the billions of dollars or a devastating security breach 

destroying public goodwill are included in the equation.

SELECTING A MAINFRAME SYSTEM
GitHub’s partner ecosystem includes many vendors 

producing, selling, and maintaining mainframe systems. 

For example, IBM recently announced extensions 

for Git, the technology underpinning GitHub, that 

allow modern DevSecOps practices to be applied to 

mainframe development workflows.



Secure software development in the financial services industry   —   11

Automate processes to prevent bugs and errors
Manual oversight is a critical component of an 

effective, layered security strategy. However, 

overreliance on people can be dangerous. People get 

tired, become distracted, or simply make mistakes. 

Put people to work where their skills are most 

important, and delegate repetitive, tedious, yet still 

critical tasks to machines. Your team can leverage 

fully automated Continuous Integration and 

Delivery (CI/CD) in your GitHub workflows. 

CI/CD tools test and evaluate your code every single 

time a commit is pushed to a repository. With CI/

CD in place, GitHub can test new code with existing 

production code to ensure the proposed changes 

work as intended and do not introduce security  

flaws into existing systems. These tests can also 

extend to examining all the code that your code 

depends on (its dependencies).

Implementing automation isn’t difficult—and it 

can yield immediate and measurable results. In a 

2017 study, the IEEE found that organizations that 

implemented automated dependency management, for 

example, had 60 percent fewer security vulnerabilities 

in their delivered software than those which did not.

organizations that 
implemented automated 
dependency management, 
for example, had 60 percent 
fewer security vulnerabilities 
in their delivered software 
than those which did not.

Securing the entire development process



Secure software development in the financial services industry   —   12

INTEGRATING CI/CD WITH GITHUB
Integrating CI/CD is easy with GitHub, and it won’t affect developers’ existing 

workflows unless an automated test result requires them to take action. The 

less intrusive automation is for developers, the more likely it is to be widely 

adopted and its benefits felt across an organization.

GitHub integrates with a variety of CI tools like Jenkins, Travis, and CircleCI. 

These automatically fetch code from a GitHub repository every time code is 

pushed, run tests, and return the results to GitHub with either a pass/fail status. 

They also return notifications on the status of each test, so developers can see 

where their code is failing.

You and your team can decide whether or not you’d like the results of CI tests to 

prevent code from getting merged into the code base or simply alert developers 

without taking action. If CI statuses are required, the pull request can only be 

merged when all required CI jobs complete. If you choose to prevent merging, 

the pull request can’t be merged until the required tests return successfully.

Integrating security tools and workflows 

Hundreds of tools integrate with GitHub—and many of them can 

help you keep your code and customer data safe.

• CI: CI tools like Travis CI, CircleCI, and AppVeyor automatically 

build and test code as you push it to GitHub, preventing bugs 

from being deployed to production

• Error reporting: Tools like Snyk, Sentry, and Dependabot help 

your team find, fix, and prevent vulnerabilities

• Code quality: Code Climate and Codeacy automate reviews 

with security and quality checks to prevent human error and 

streamline your team’s code review processes 

 

Ready to see what kinds of tools are available to your team?  

Visit GitHub Marketplace at github.com/marketplace or browse 

github.com/works-with.

Securing the entire development process



Secure software development in the financial services industry   —   13

Require reviews from one or more users 

with write access to the repository 

containing the changes

Require additional review and 

approval by one or more codeowners. 

Codeowners can be any combination 

of individual users or teams assigned 

specific responsibility for a section of 

a codebase, a particular technology, or 

any combination of the two

Empower reviewers to provide 

detailed, line-by-line feedback on  

any proposed changes.

Ensure that all reviews are logged 

and auditable in the future

Enforce manual reviews with required code review
Automation is important, but manual review of code will always remain a critical component of your  

security strategy. The more eyes on a given codebase, the more likely errors or vulnerabilities are likely to  

be detected. Reviews also serve a valuable function beyond security, helping ensure that institutional 

knowledge is shared, and providing learning and mentoring opportunities for developers of all skill levels. 

The result of regular, organization-sanctioned reviews is a codebase that is not only more secure but also 

healthier and more consistent.

Three steps to take to  
help your team prevent 
bugs and errors: 

1. Build in automated security 

scanning to reduce human error, 

test for weaknesses that may not 

be introduced otherwise, and save 

developers time

2. Integrate automation directly into 

your team’s GitHub workflow with 

status checks

3. Ensure all of your team members 

feel an equal and shared 

responsibility for building and 

maintaining secure software

GitHub provides a flexible framework for mandating code reviews. You can: 

Securing the entire development process



Secure software development in the financial services industry   —   14

Audit and compliance-proof your workflow

AUDIT LOGGING: 
GitHub Enterprise maintains comprehensive logs of user and 

system activity. Audited activity includes every `git push` 

operation, including who initiated the push, their IP address, 

and repositories affected by the operation. Logs can be 

forwarded to an external system (like Logstash or Splunk) 

for analysis, reporting and storage, ensuring compliance with 

regulatory requirements

ARCHIVING REPOSITORIES: 
Repositories that are no longer maintained can be archived a 

nd set to ‘read-only’ mode. This ensures that no new code can  

be committed to the repository while still allowing users to 

view its content

BLOCKING FORCE PUSHES: 
Git allows developers to rewrite commit history by ‘force 

pushing’ changes. While sometimes necessary in order to 

fix mistakes, this capability presents a challenge when 

regulations require data to be immutable. GitHub Enterprise 

allows administrators to block force pushes for individual 

repositories or for the entire appliance, ensuring commit 

history can never be rewritten

PREVENTING USERS FROM DELETING 
REPOSITORIES: 
The ability to delete repositories can be restricted  

to administrators

The regulatory standards under which FSIs work today require a robust logging and auditing capability. 

Not only do teams need to create an effective security strategy. They also have to prove they’ve done so 

to regulators. GitHub provides flexible and powerful logging, auditing, and reporting frameworks to help 

ensure compliance and the ability to prove it.

Securing the entire development process



Secure software development in the financial services industry   —   15

Move security all the way left
In the past, security was all too often an afterthought. In fact, the protocols 

which run the internet were not designed with security in mind at all. Bolted-on 

aftermarket security is better than nothing, but far from sufficient in today’s 

frenzied threat environment. To be effective, security must be built into every 

software project from its very inception. Moving security left means shifting 

security from the right-hand side of your timeline, near delivery, all the way to 

the left, at the beginning. This ensures that security remains front and center 

throughout the entire product lifecycle.

Involving security teams early can also influence design, development, and 

maintenance decisions before they become too difficult and expensive 

to change. This advice is simple enough, but process means very little if 

leadership and engineering teams aren’t on board. Secure development 

requires everyone to adopt an effective security culture.

CREATING A SECURITY CULTURE
DevSecOps is a way of thinking about security throughout the development 

cycle and distributing it across teams and roles. It no longer makes sense for 

security teams to join the process after an application is built, only to discover 

exploitable flaws. With security experts closely aligned from the start, teams 

can create collaborative processes that proactively support security as  

they build.

DevSecOps principles may require organizations to shift their team culture in 

addition to their infrastructure, but more reliable software and fewer surprises 

are worthwhile results. Some companies even invite security specialists into 

scrum teams to make sure it’s a priority throughout the process.

Securing the entire development process



Secure software development in the financial services industry   —   16

Customer story: 
Societe Generale

Societe Generale is a French multinational banking 

and financial services company, employing 146,000 

people in 66 countries worldwide. Global Banking & 

Investor Solutions (GBIS) is one of the bank's three 

core businesses, bringing together Corporate and 

Investment Banking, Asset Management, Private 

Banking and Securities Services.

“Our digital transformation 
is a strategic priority for 
the bank [...] We firmly 
believe that adopting the 
same tools and practices 
as the world's top 
software companies is the 
key to our success!”

AMIR JABALLAH, 
Global Head of Continuous Delivery Platform, 
Societe Generale

Customer Story: Societe Generale



Secure software development in the financial services industry   —   17

Led by Chief Information Officer Carlos Goncalves, GBIS embarked on a major 

overhaul of its information systems aimed primarily at embracing continuous 

delivery. In 2014, the Information Systems department equipped its continuous 

delivery platform with GitHub, which has since been adopted by more than 3,000 

employees worldwide.

“There has been an 80 percent reduction 
in administration costs over Societe 
Generale's previous solution. [GitHub] 
has freed up more time to provide change 
management support for the teams 
involved."
AMIR JABALLAH

Five key features convinced Societe 
Generale upfront that GitHub offered the 
best solution: 

1. Repositories: Developers can create their own 

repositories and work in teams, significantly reducing 

project delivery time

2. Code review: Developers can review and propose  

changes to code developed by their co-workers, ensuring 

it’s free of errors

3. Collaboration: Developers can also search and  

reuse code that already exists across the organization 

instead of reinventing field-tested solutions developed  

for other project

4. Documentation versioning: Programmers can create and 

host documentation as close as possible to the applications

5. Security: the platform is hosted on internal servers. GitHub 

Enterprise Server uses the enterprise directory to manage 

user authentication and logs all user and system activity

To meet its strategic objective of transforming 50 percent of GBIS software 

applications by the end of 2016, the GBIS IT department required a fast, high-

performance version control platform that fit seamlessly with the department's 

integration and test systems. To offer its developers the a high standard for 

functionality and performance levels, the bank shifted away from centralized version 

control to GitHub Enterprise Server—the best solution to meet these needs.

Customer Story: Societe Generale



Secure software development in the financial services industry   —   18Summary

Summary
Keeping data safe has never been more critical 

to the success, even survival of your business. 

Implementing effective security might seem 

overwhelming, but it doesn’t have to be. One of the 

advantages of a layered defense is to break up the 

task of implementing security into multiple, less 

daunting sub-projects. The most important thing to 

do is to start, or if you’ve started, continue to test, 

examine, question, and improve. Attackers never 

rest, and neither can you.

Part of the challenge in implementing effective 

security lies in balancing it with the freedom that 

software developers need to innovate, thrive, and be 

productive. Too little security is simply ineffective. 

Too much, on the other hand, can stifle creativity 

or encourage people to avoid your security 

efforts altogether. Tools like GitHub provide 

you with the controls you need to help find that 

balance for your organization.

Ultimately our goal is to help you transform your 

perception of security beyond a threat and into 

an opportunity to build customer satisfaction, 

attract new customers, and further differentiate 

your business. Good security pays off in customer 

trust—and partners like GitHub can help you on 

your way to an effective security strategy.



We’re here to help

GitHub supports building robust, 
secure code in all of these ways, 
and more. Ready to get in touch?

sales@github.com

1. Your data are under constant attack. A breach can have very serious 

consequences for your business and, increasingly, for you personally

2. There is no magic fix for security. Instead, a layered defense  

comprised of multiple tools, processes, and practices is much more 

resilient and effective

3. Effective security requires an effective security culture. Security must 

be a stakeholder in every important initiative and decision

4. Encrypt everything—no exceptions

5. Use a multi-layered approach to vet and validate all data entering your 

systems to prevent malicious attacks like SQL Injection

6. Plan for and include older, but still mission-critical systems  

like mainframes. Include the possible costs in terms of fines, civil 

liability, and lost goodwill when evaluating and upgrading legacy tools

7. Leverage automation where you can, particularly for  

software testing

Key takeaways:


