
Collaboration, transparency, and code reuse aren’t just found in open source communities. Successful
software developers build together the same way at work—an approach known as “innersource.” These
innersource best practices will help your team create a developer culture that is effective and collaborative.

Be transparent
Transparency is the baseline for any innersource
culture, just as it is for the wider open source
community.

•	 Share projects across your organization as
broadly as possible. Exceptions can be made
for projects that require a higher level of
security on a case-by-case basis.

•	 Ensure that your team has the tools and
processes to communicate openly and
build consistently—and that those tools and
processes are being used. If they’re not,
find out why and make adjustments until you
establish a solid routine.

•	 Confirm that your engineering initiatives are
well-resourced and supported by leadership.

•	 Give developers enough autonomy to contribute
to projects outside their immediate teams.

Best practices for a collaborative
software development culture

Distribute workloads
To effectively adopt innersource practices,
contributors need to be able to work easily
across teams and organizational silos.

•	 Make approvals and reviews more effective
by distributing control across a smaller
group of participants. A small, cross-functional
team of decision-makers can also help teams
stick to quality standards and get support
from leadership.

•	 Spread heavy workloads across
geographically distributed developers or
even with non-developer team members.

•	 Keep in mind that non-developers are a
valuable asset to your innersource community.

Project managers can quickly assess the state of
the project, and changes made to project timelines
can be tied directly to the code in question.

Technical writers should be encouraged to
work alongside project engineers, precisely
documenting code features where they originate.

Security engineers can review code for
compliance and security-related weaknesses,
preventing issues earlier in the workflow.

Contact us:
github.com/enterprise
experts@github.com

Want to try innersource with your team?

Encourage communication and
ongoing review
Openly sharing work and feedback brings more
ideas into your innersource community—and
more code.

•	 Make ample use of your version control system’s
commenting, tagging, and review features.

•	 Use forks and branches so developers can try
different changes without affecting original
projects. These tools also make it easy to start
with existing solutions, instead of writing new
code each time.

•	 Encourage developers to share their latest
work early on and often by tagging others in
their code commits.

•	 If someone finds a bug, they should create an
issue describing the problem. Tag that same
contributor when you update the code so they
know the bug has been fixed.

•	 Make each step in the software development
lifecycle (such as testing and deployment)
visible to everyone.

Don’t forget the documentation
As innersource projects become more complex,
in-code documentation keeps work moving
and consistent.

•	 Document by default, not as an afterthought.
Effective documentation makes your decision
process clear to outside contributors and
avoids wasted resources and duplication.

•	 Add README and CONTRIBUTING guides to all
repositories to help everyone understand basic
usage and project best practices.

•	 Use documentation to help onboard and
acclimate new contributors and other
participants into your process.

•	 Update in-code documentation regularly to
keep user guides and manuals in sync with
the latest version of the code.

