
SIX DEVOPS PITFALLS
FOR ENGINEERING LEADERS

TO AVOID

DevOps can be a transformative practice for businesses of all sizes and
types. Companies in almost every industry are using DevOps to give teams
the time and freedom to tackle more challenging projects. As with all software

development strategies, there are some shared pitfalls to watch out for.

1. Partial org transformation

It’s possible to get DevOps up and running within your
software organization and yet still not see any overall
improvement to the speed of delivery. In many cases,
this is due to implementing DevOps principles only in
the engineering department while keeping everything
else in your company’s org chart the same. Since
DevOps is a more agile software delivery model,
teams outside of software need to align to match,
including IT, UX, product, and marketing.

2. Incomplete testing automation

Continuous delivery also means continuous testing.
Setting up test automation can be an intense, time-
consuming process, which means some teams leave
certain complex tests alone to be run manually. If
you go this route, you won’t be able to run the entire
test suite with each commit. At best, you can run
only a core set of tests upon commit, leaving the full
test suite to be run periodically. This can leave bugs
undiscovered until later in the workflow, making them
harder to fix.

3. Tool integration problems

Your DevOps toolkit contains applications for
things like source control, CI, deployment, testing,
infrastructure provisioning, and even notifications.
What are the odds they all talk to each other? Many
software organizations end up managing their
DevOps toolchain manually or using custom scripts
to tie everything together—an approach that
becomes less sustainable as more tools and cases
are added. To solve this problem, GitHub recently
released a new feature called GitHub Actions that
allows workflow steps to be treated as code, tying
in integrations as needed.

4. Too much too fast

One good reason many companies move to a
DevOps model is that their development teams are
overworked. But an excessive workload can also cause
a DevOps implementation to fail. Introducing new tools
and processes to a team that’s already struggling to
manage the workload is a recipe for chaos, employee
burnout, and higher turnover. Re-prioritize, defer, or
delegate work to contractors where possible before
attempting the DevOps transition.

5. Unwillingness to fail

DevOps creates a more failure-tolerant environment,
but that doesn’t mean failure-free. In the aftermath
of a failure, many beginner DevOps organizations
make the post-mortem mistake of assigning blame
to a point in the workflow. Instead, treat failure
as a learning opportunity. Taking an issue-solving
approach is much more useful without introducing
extra stress. Some companies, Netflix among them,
actually cause simulated failures on purpose in order
to get teams used to handling them.

6. Total product anarchy

The flexibility of DevOps can be both a blessing
and a curse. By design, it gives DevOps teams more
power and autonomy, but those teams might also
end up doing things they shouldn’t. In more chaotic
environments, poorly-vetted features and redesigns
can be deployed, amended, or even rolled back,
causing customer frustration. Before implementing
DevOps, it pays to carefully design some approvals
and controls into your processes.

DevOps has the power to streamline software development and
delivery, bringing untold benefits to your business. GitHub, the software

development platform used by 30 million developers worldwide, can help
you implement the DevOps model while avoiding these pitfalls.

Get started with GitHub today.

Visit https://github.com/enterprise

