
 GitHub | November 2021

 Adopting and scaling GitHub

 Advanced Security in your company
 GitHub Advanced Security (GHAS) is an application security

 solution that enables companies to approach security with a

 developer first mindset. There are multiple avenues that

 companies can follow to adopt any application security solution,

 but picking which one can be difficult. This whitepaper walks

 through an example rollout that larger enterprises and

 organisations can follow to adopt GHAS at scale.

 0

 Table of Contents

 Table of Contents 1

 Abstract 2

 What We’ll Cover in This White Paper 2

 Methodology 2

 Audience 2

 Acronyms 3

 Authors 3

 Executive Summary 4

 Phase One - Strategic Enablement Alignment 7

 Introduction 7

 Code Scanning Strategic Enablement 7

 Secret Scanning Strategic Enablement 9

 Phase Two - Create Internal Documentation 11

 Phase Three - Enable & Scale of Code Scanning 13

 Phase Four - Enable & Scale of Secret Scanning 19

 Conclusion 25

 Appendix 26

 1

 Abstract

 Adopting GitHub Advanced Security (GHAS) can be approached in multiple ways and

 requires a strategic approach for success, especially in larger enterprises and

 organisations with thousands of repositories. The purpose of this whitepaper is to lay

 down a foundation for enterprises on how to adopt GHAS, but most importantly, scale

 it quickly and e�ciently.

 What We’ll Cover in This White Paper

 We will cover:

 - The overarching strategy to adopting GHAS.

 - The suggested path to enabling code scanning at scale.

 - The suggested path to enabling secret scanning at scale.

 Methodology

 The methodology followed here is based on a successful customer implementation of

 GHAS, precisely, a larger company that adopted and scaled GHAS in months of

 enablement.

 Audience

 The audience of this whitepaper is people directly involved in rolling out GHAS in a

 large organisation/enterprise. Examples could be:

 - People who are maintaining the centralised GitHub Instance.

 - Security personnel who are helping drive the adoption of GHAS via policies and

 data verification.

 - DevOps Engineers who are helping drive the adoption of GHAS via CI/CD and

 automation.

 2

 Acronyms

 GHAS -> GitHub Advanced Security

 SME -> Subject Matter Expert

 Authors

 Nick Li�en - GitHub Advanced Security Field Architecture Team

 3

 Executive Summary

 This whitepaper covers the suggested path to adopt GitHub’s application security

 solution at scale. Enabling GitHub Advanced Security across a large organisation can

 be broken down into three core phases:

 Phase One - Strategic Enablement Alignment

 Although it's appealing to rush into the implementation phase, take the time to align

 on how GHAS will be implemented in your enterprise. Additionally, think about what

 success could look like in the 3,6 and 9 months after adoption. This phase may only

 take a few days or a week, but it lays a solid foundation for the rest of the rollout.

 Phase Two - Create Internal Documentation

 Like the above phase, organisations tend to rush into the implementation phase, as

 that stage is perceived to provide the quickest time-to-value. However, without the

 proper documentation and asynchronous resources provided to aid developers,

 security engineers, etc., in consuming GHAS correctly, usually, the value gets lost in

 the rollout due to people not consuming GHAS in the correct way. Take the time to

 create internal documentation (such as training, how to remediate, where to go for

 questions, etc.), and then communicate this documentation (email, teams, slack, etc.)

 to the consumers of GHAS so once you rollout GHAS, teams and people know what to

 do.

 Phase Three - Enable & Scale Code Scanning

 GHAS is an ecosystem of multiple solutions; it's essential to start somewhere focused,

 not just with the rollout of GHAS. Typically, we see teams focus on code scanning, to

 begin with. Leverage the API's available and rollout code scanning by team and by

 language across your organisation automatically. This allows you to scale in an

 4

 automated fashion and removes a lot of manual repeatable groundwork for developers

 and consumers of code scanning. Doing this will increase adoption.

 Phase Four - Enable & Scale Secret Scanning

 Finally, focus on the rollout of secret scanning. Secret scanning is a more

 straightforward tool to rollout, as it involves less configuration and touchpoints to

 enable. However, it's critical to have a strategy on how to handle results, new and old.

 Without a proper process in place, secret scanning can be challenging to manage

 e�ciently. Phase four walks through how to focus your e�orts productively on

 revoking the results of secret scanning. Specifically, focusing on the new secrets found

 after Secret Scanning has been enabled (in an automated way) to start with, then

 revoking the current secrets found after.

 The above is a high-level overview of successful enablement; more detail is provided

 in this whitepaper.

 On the other hand, di�erent rollout strategies that have a higher probability of

 friction and failure are:

 ● Overly Cautious, Phased Rollout

 Try not to enable GHAS by solely following a phased, team-by-team rollout

 strategy. Doing this will slow down rollout time significantly and stop teams

 using GHAS who know what they are doing.

 ● Big Bang Approach for Secret Scanning*

 Try not to click the enable all Secret Scanning button on day one. Although this

 seems tempting, this is a good way of taking up all active GHAS licences.

 * If you have purchased licences above your current active committer count, this approach is okay, but be

 wary that you will need to buy more licences if you grow in active committers after doing this.

 ● Rushed Approach

 5

 There isn’t a one size fits all approach, but doing everything at once will be

 pretty unsustainable unless you have a large team dedicated to the rollout.

 Create a plan, follow the plan.

 6

 Phase One - Strategic Enablement Alignment

 Introduction

 Before diving into the enablement of GHAS, it’s essential to think about how GHAS

 should be rolled out across the enterprise. Below are high-level strategic pillars on

 how to enable GHAS for code scanning and secret scanning. Every company will have a

 slightly di�erent approach to each section, so use this as a guide versus a line by line

 rollout plan.

 Code Scanning Strategic Enablement

 Code scanning is a great application security tool, but getting it rolled out across

 hundreds of repositories can be di�cult, especially when done ine�ciently. Below

 walks through a three-step strategic approach that gets organisations to adopt code

 scanning e�ectively.

 1) Enable

 To start with, focus on getting teams using code scanning. The more teams using

 GHAS, the more data you can use to drive tactical & specific remediation plans.

 Without the data, these conversations are di�cult. Meaning phase one of the rollout

 should focus on leveraging API’s, running internal o�ce hours and enablement

 events.

 The core focus is on getting as many teams using code scanning as possible. You

 obviously will mention the importance of remediation and encourage teams to

 remediate appropriately, but the focus is enabling and using versus fixing (for now).

 Below will go into detail on how to get this done.

 7

 2) Educate

 Next, focus on education. Education is likely the most crucial part of the plan as it

 teaches developers what to do in di�erent situations. Education will go over aspects

 such as:

 - When a secret scanning alert is found, what do teams have to do?

 - Are there various processes for di�erent types of secrets?

 - When a code scanning alert is found, what do teams have to do?

 - What’s the process that teams have to follow?

 Educate teams on the trust but verify process. Ensure developers are empowered to

 maintain the security of their repository whilst also ensuring the security team are

 authorised to verify what the developers are doing is correct and in the best interest of

 security.

 The above can be done as online sessions, Q&A’s, etc. But before you go and start

 pushing remediation, run education sessions, so developers are up to speed and aware

 of what you are expecting and how to remediate.

 3) Remediate

 After teams have enabled code scanning, developers are familiar with internal

 remediation processes and handling di�erent scenarios; it’s time to focus on

 remediation. Realistically you are going to push a decentralised and possibly,

 centralised approach. Meaning let teams drive their remediation, but use Security

 Overview (or the tool of your choice) to verify teams are remediating correctly. Out of

 this, you will likely see about a 40% group either not remediating or marking

 vulnerabilities as won’t fix. Use Security Overview to find these teams and have

 personalised conversations about why they aren’t remediating. Link back to previous

 education sessions, and stress the importance.

 8

 Iterate on this model. You are now using Security Overview to verify and code

 scanning to trust.

 Secret Scanning Strategic Enablement

 With secret scanning, it’s a little di�erent; you have a few ways of doing this. The

 easiest way of doing this is just to click enable all at the organisation level. Doing this

 will turn it on everywhere, but this is a speedy way to 1) cause an internal fire when

 you discover hundreds of secrets and 2) take up most of your licences. So think a little

 more tactically when enabling GHAS Secret Scanning. A possible approach is:

 1) Stop fueling the fire (e.g. stop developers committing secrets)

 One of the main aspects you would like to get ahead of is stopping any new secrets

 from being committed. This will make you stable with your current secrets found and

 give you a place to reduce, not increase. To do this, think about what automation you

 can put into place. Use the webhooks provided to notify the right people when a secret

 is committed. Most likely someone in security. Once advised a secret has been

 revealed, follow up with developers early. The more developers are made aware that

 the security team gets informed instantly and follows up, the more likely developers

 will think twice about committing secrets. The early push on this will make a

 di�erence.

 There is an example of consuming the GitHub Webhooks from Secret Scanning here:

 GitHub Secret Scanner Auto Remediator (GSSAR) . This tool automatically revokes

 certain types of secrets found.

 2) Reduce exposure of the most frequently committed secret types

 Now the above is in place, it’s good to start to revoke and remediate current secrets

 committed. Start with the top five most essential secrets (e.g. AWS, Azure, Custom

 Secret Pattern One, etc.). You can use the Security Overview in your organisation to

 filter by secret type and understand the number of secrets leaked under that type.

 Create a plan/process just for the five (or so) types of secrets. Each secret type will

 likely have similar processes but slightly di�er when it comes to the actual

 9

https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads#secret_scanning_alert
https://github.com/NickLiffen/GSSAR

 remediation. (e.g. you may have to work with the internal AWS team to work out the

 scope of the secret and impact, and you may have to work with the internal Azure

 team to work out the same).

 You can use the Secret Scanning Organisation API to pull the repositories in scope, and

 you can then use the repositories API to find out the admins on that repo on who you

 may need to follow up with.

 3) Remediate the rest & Educate

 Once you are comfortable with your most frequently committed secrets being

 remediated (in progress), plan for the other types of secrets to be revoked following

 similar processes as above, but with less urgent timelines. As long as Step 1 and Step 2

 are going well (especially step 1), you should see the number of revoked secrets

 decreasing at a healthy rate.

 As you focus on the final secret types, it’s essential to also focus on education. Every

 company has slightly di�erent training portals. Try and assign training to people who

 have access to GitHub, which educates on the importance of why secrets shouldn’t be

 leaked whilst showing how to handle sensitive information appropriately. E.g. a vault

 management tool, process environments, etc.

 10

https://docs.github.com/en/rest/reference/secret-scanning#list-secret-scanning-alerts-by-organization

 Phase Two - Create Internal Documentation
 Before sharing GHAS with any internal developers or turning it on for use, create

 documentation that defines processes that teams should follow. For example, when a

 secret gets committed or a code scanning alert is found. Even if the process simply

 asks the team to apply their best judgement, that is better than no documentation.

 Doing this will educate teams on what to do when (in the likely scenario) an alert is

 discovered. This will also prevent developers from getting bottlenecked when they

 have questions; if there were no documentation, they would come to you (the team

 rolling out GHAS), which would lead to frustrations as there is not enough autonomy.

 Some organisations will have a developer portal or a custom knowledge management

 (like a SharePoint site or a wiki) site where this content will live. It doesn’t matter

 where; it just needs to be put somewhere internally where developers typically go for

 documentation. Examples of what should live in this content (please link to public

 GitHub Docs whenever possible, no need to repeat):

 - What is GHAS?

 - How to enable Secret Scanning on a repository?

 - How to enable Code Scanning on a repository?

 - How should you use Code Scanning? Including:

 - How to use it within your CI choice (Actions, Jenkins, etc.).

 - If you have standard custom build processes, document how these may

 be configured using CodeQL.

 - What to do when you find a Code Scanning Alert?

 - How to ignore false positives? Alerts found in tests?

 - Is there a rough Service Level Agreement (SLA) teams need to follow

 (note: we don’t encourage SLA’s for new vulnerabilities unless they are

 11

 necessary. We encourage developers to fix vulnerabilities in the PR’s

 whilst they write the code).

 - What to do when you find a Secret Scanning Alert?

 - E.g. contact a member of the security team? Follow up with XYZ Team

 (XYZ Team being the team who may be maintaining the tool where the

 secret was committed).

 - You don’t need to put heavy process here, but give a high-level overview

 of what may need to be done.

 If you skip this step, your rollout won’t go at the pace you hope. This step may slow

 the initial rollout by a week or two, but that time will be made up during the POC when

 developers don’t need to come to your team for questions.

 12

 Phase Three - Enable & Scale Code Scanning
 After the documentation stage is complete and published for people to see, the focus

 should shift onto enablement. This means getting as many people (teams) using code

 scanning as possible. The high-level process for enablement at scale looks like this:

 ● Step One : Communicate to all users, informing them that code scanning is

 enabled and can be leveraged today. Link to the documentation created in the

 previous stage, adding any timelines set out within the planning stage which

 teams need to follow.

 ● Step Two: Leverage automation to aid teams in getting up and running with

 code scanning. (This will be the significant work package of enablement).

 ● Step Three: Create internal knowledge around specific use cases (e.g.

 containers, typical Java build types, frameworks, etc.) and run o�ce

 hours/lunch and learns to get teams with one-o� build processes using code

 scanning.

 Starting with a communication to all users letting them know code scanning is

 available will prompt teams who have heard of CodeQL and want to use a modern

 security tool to pick it up themselves and use it. This won’t account for a very high

 percentage of adoption in the overall rollout, but this will empower developers and

 teams to feel like they can control security in their applications without waiting for a

 central team to get involved.

 After the communication phase, bulk enablement via automation is an excellent

 approach to scale quickly. One of the best avenues is to break up mass enablement per

 language. This means enabling code scanning on all repositories that have the same

 language, creating a pull request for review that includes a sample

 codeql-anlaysis.yml file specific to those languages found in that repository.

 Firstly, collect the repositories by language at the organisation level. This will help

 identify which repositories use Java, JavaScript, Python, etc. A sample query could

 look like this:

 13

 Image One: Collecting all Repositories by an organisation, listing the languages.

 Note: If you would like to do this across multiple organisations, for example, at

 the enterprise level, you can run the below query first, taking the organisation

 name and feeding it into the organisation variable above.

 14

 Image Two: Collecting all Organisations by an Enterprise

 Take the data from the query in Image One and format it in a readable format which

 gives you something like this:

 Language Number of Repos Name of Repos

 JavaScript (TypeScript) 4,212 OrgName/RepoName
 OrgName/RepoName

 Python 2,012 OrgName/RepoName
 OrgName/RepoName

 Go 983 OrgName/RepoName
 OrgName/RepoName

 Java 412 OrgName/RepoName
 OrgName/RepoName

 Swift 111 OrgName/RepoName
 OrgName/RepoName

 Kotlin 82 OrgName/RepoName
 OrgName/RepoName

 C 12 OrgName/RepoName

 15

 OrgName/RepoName
 Table One: An example table showing repositories by a single language

 Filter out the languages that are currently not supported by GHAS. (Make sure your

 script still pulls languages that GHAS doesn’t support, as when language support is

 available, you have the script to pull the data).

 Note: A repository may have more than one language (monorepo, cloud-native,

 etc.), and if that’s the case, you can create them in the same way as above:

 Language(s) Number of Repos Name of Repos

 JavaScript/Python/Go 16 OrgName/RepoName
 OrgName/RepoName

 Rust/TypeScript/Python 12 OrgName/RepoName
 OrgName/RepoName

 Table Two: An example table showing repositories by multiple languages

 If you do the above, filter out the languages that are not supported, don’t filter

 out the repositories. You can still enable code scanning on repositories where

 one language isn’t supported; it just will not scan that one language; it will still

 scan the others in the repositories where there is support.

 Once you understand what repositories are tied to what language, it’s time to enable

 GHAS code scanning across all these repositories, one language at a time. The

 step-by-step process for enabling GHAS should look like this:

 1. Enable GitHub Advanced Security on the repository

 2. Enable code scanning on the repository

 3. Create a pull request into their default branch with an example

 codeql-analysis.yml file with a standard way of running CodeQL for that

 language.

 4. Create an issue on the repository to explain why a pull request has been raised

 on their repository. Link to the previous communication sent to all users, but

 16

 explain a little about what the PR does, what next steps they have to take, their

 responsibilities, and how they should be using code scanning.

 There is a publicly available tool that does steps 1-3. It’s called the: ghas-enablement

 tool. Step 4 can be daisy-chained onto the end of the tool but doesn’t come as

 standard because every company wants to give a slightly di�erent message.

 Note: It is essential to not just push into the repository's default branch. Doing

 this means you are not educating the developers on what to do and how to use

 code scanning. The pull request puts ownership on the development team to

 review and merge, giving them a sense of right and involvement in the process.

 The issue is also crucial; otherwise, the pull request gets created with no

 context.

 Note: (Only for people using actions to control code scanning) If you do not use

 the ghas-enablement tool, keep in mind there is no API access to the

 .github/workflow directory. This means you can’t create a script that runs

 without a git client underlying the automation. This is the current limitation of

 GitHub Actions. The proper workaround is to leverage bash scripting on a

 machine/container which has a git client. The git client can push/pull files into

 the .github/workflows directory where the Codeql analysis file should live.

 Re-run the tool for every language where it makes sense. For example, JavaScript,

 TypeScript, Python, and Go likely have a similar build process and, therefore, a similar

 analysis file. These are good examples of where to start. The above can be done for

 languages such as Java/ C/C++, but more descriptive text will be needed for drafting

 into the issue due to the varied nature of how these languages build and compile.

 Note: It is advised that you capture the pull request URLs created by

 automation, and every week checking and seeing which ones are getting closed

 out/not getting closed out. After a few weeks, it may be worth creating another

 issue if the PR is not closed or sending targeting internal emails to prompt

 action.

 This leads to the next stage of enablement, which is creating internal SMEs (subject

 matter experts) and running o�ce hours. The above automation will likely tackle a

 17

https://github.com/NickLiffen/ghas-enablement
https://github.com/NickLiffen/ghas-enablement

 large percentage of your adoption, but this doesn’t tackle one-o� use cases where a

 specific build process or frameworks/libraries need feature flags to be enabled to

 work. A more personalised and hands-on approach is required here to push a high

 adoption, especially for Java/C/C++. At scale, you can’t work one team at a time; with

 an enterprise of thousands of repositories, this will take too long. Instead, it’s good to

 run weekly/bi-weekly o�ce hours or lunch and learns.

 Note: O�ce hours and lunch and learns are similar events. They are defined as a set

 time where people can come along and learn about a specific topic. In the context of

 this whitepaper, we’ll demonstrate working with JSP and code scanning, or working

 with Java Spring and code scanning.

 The value of doing this in an organisation is that teams can come to sessions that suit

 the topic you are discussing; and are relevant to them. Some sessions that may be

 relevant which have been run before are (but is entirely company-specific):

 - Code scanning in a container

 - Code scanning & Java Struts

 - Code scanning & JSP

 Most of the o�ce hour sessions are focused on Java & C/C++ due to specific

 requirements around compilers and frameworks that may need a setup that isn’t

 trivial.

 Again, use the data you collected from the repositories by language task to create

 targeted o�ce hours. You have a list of repositories that use Java, so you may generate

 o�ce hours specific for Java and invite people who collaborate on Java repositories.

 The same for C/C++, and so on.

 Conclusion

 The above explains the approach organisations can take to enable code scanning. The

 advice would be to leverage automation as much as possible. GitHub o�ers extensive

 APIs that doesn’t just cover code scanning itself but also covers APIs that support the

 implementation process (e.g. user, repository API). Finally, continue to communicate,

 18

 iterate and adapt as new learnings arise throughout the rollout of code scanning in

 your organisation.

 Phase Four - Enable & Scale Secret Scanning
 GitHub’s secret scanning capability is slightly di�erent from code scanning since

 there is no specific configuration per programming language or per repository. This

 means enabling secret scanning at the organizational level can be easy. However,

 simply clicking: Enable All at the organisation level and ticking the option:

 Automatically enable Secret Scanning for every new Repository has some downstream

 e�ects that you should be aware of:

 - Licence consumption: This will consume all your licences, even if no one is

 using code scanning. This isn’t a problem if you do not plan on increasing the

 number of active developers you have in your organisation. However, if you see

 growth in the coming months in the number of developers, you will go over

 your licence limit and you may not be able to use GHAS on newly created

 repositories. This includes code scanning and secret scanning. So you should

 plan ahead.

 - Initial high volume of detected secrets: If you are a large organisation,

 especially with a high percentage of outsourced developers, be prepared to see a

 high number of secrets found. Sometimes this comes as a shock/surprise to

 organisations, and then lots of alarms get raised. If you would like to turn it on

 across all repositories, be prepared to what to do when you see hundreds, if not

 thousands, of secrets, committed to your git history.

 If you do enable all, the below approach is recommended:

 1. Focus on new ly committed secrets

 The first stage should be creating a process that handles any new credentials leaked

 from the secret scanner’s enablement date. It is easy to focus on revoking the

 credentials already revealed and discovered by GitHub’s secret scanning. However,

 while cleaning up these committed credentials, developers could continue to push

 19

 new credentials accidentally. Meaning, in the overall bigger picture, your total secret

 count is staying around the same, not going down as you intended. This is why before

 focusing on revoking any current secrets, it is essential to stop the curve of new

 credentials being leaked. This will mean when you do get around to revoking current

 secrets, the total number decreases and does not stay the same/go up.

 There are a few ways you could tackle newly committed credentials, but an example

 approach would be:

 - Step One - Notify: Use the webhooks available to be notified of any new secret

 alerts. A webhook fires when a secret alert is either: created, resolved, or

 reopened. So for this use case, you can filter only the created alert type. You can

 then parse the payload, and integrate it into Slack, Teams, Splunk, Email, etc.,

 anywhere which makes sense to you.

 - Step Two - Follow Up: Create a high-level generic remediation process that is

 secret type agnostic. This can be simply reaching out to the developer who

 committed the secret and their technical lead on that project, letting them

 know the importance of not committing secrets to GitHub. Then, encouraging

 them to find where that token is being used, revoking it, and updating the token

 in locations where it is needed.

 - Step Three - Educate : Create an internal training document assigned to the

 developer who committed the secret. Within this training document, you would

 go through the items discussed in Step Two, e.g. the importance of not

 committing secrets and the consequences. If the same person keeps on

 committing secrets, you could create an escalation process, but firstly use

 education to your advantage.

 Repeat Step Two/Three for any new secrets leaked. This will encourage a shift in

 behaviour across developers, as they know this is being properly tracked, and there

 are possible consequences and repercussions.

 Note: You can automate Step Two. For large enterprises/organisations with

 hundreds of repositories, manually following up is unsustainable. You could

 piggyback onto the notification process defined in Step One. As part of the

 webhook, you get the repository and organisation object where the secret was

 20

https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads#secret_scanning_alert

 leaked. Using this information, you can contact the current maintainers on the

 repository and create a targeted automated email/message to these people,

 letting them know what has happened.

 It is likely worth being open and transparent to your developers and users of GitHub

 before even starting Step One above, letting them know the process that has been

 defined and what happens if a secret is committed & pushed.

 Note : For the more advanced organisations, who would like to do

 auto-remediation of certain types of secrets, there is an open-source initiative

 called GitHub Secret Scanner Auto Remediator . This is a solution you can deploy

 into your AWS, Azure, GCP environment and tailor to automatically revoke

 certain types of secrets based on what you define most critical. This is also an

 excellent way to react to new secrets being committed with a more automated

 approach.

 2. Remediate Previously Committed Secrets (But Start with the Most Critical

 Ones First)

 After you feel comfortable with the process created to monitor, notify and remediate

 newly published secrets, it’s time to move on to doing the same for secrets discovered

 before GHAS was introduced. This is where it gets largely company-specific.

 Every company has di�erent types of secrets which are most important to them. For

 example, a company likely isn’t worried about a Slack Incoming Webhook secret if

 they don’t use Slack. However, suppose an AWS Access Key / Secret is leaked into a

 repository, and that company uses AWS heavily. In that case, that alert will need eyes

 on it quicker than other types of secrets. Additionally, a di�erent company may not

 have an enterprise AWS account, but they have a GCP account to prioritise GCP over

 AWS. It’s specific to an organisation.

 What has been seen to work well is focusing on the top five most essential credential

 types for your company. There could be 10-20 (if not more) di�erent secret types in

 the list of leaked secrets. It’s untenable to think about remediating all of them all the

 same time. So, focus on firstly identifying what secrets you would like to remediate.

 21

https://github.com/NickLiffen/GSSAR

 Once you know the secret types, you can do the following:

 Step One:

 Define a process for how to remediate each type of secret. The actual procedure for

 each secret type is pretty di�erent. For an AWS Key, you will have to work with the

 internal AWS team to work out what permissions the Key has if no one knows. For an

 Adobe Key, you are going to have to work with the Adobe team, etc. Get that process

 written down into a document (or web article in your knowledge portal).

 Note: When you create the process for revoking secrets, try and decentralize

 this onto the team maintaining the repository; not put the responsibility onto a

 central team to revoke. The reason? You want to teach and educate teams on the

 importance of not pushing credentials in the first place. If the developers know

 it won’t be their responsibility to fix and have to go through the hassle of

 revoking secrets, there is a higher percentage they will not care as much . Going

 back to the principles of GHAS, the developers need to take ownership of

 security; they need to have the responsibility of fixing security issues,

 especially if they create them.

 Step Two:

 Now you have the process which teams need to follow for revoking credentials; the

 next step is finding what exposure looks like for that secret type and getting metadata

 associated with the leaked secret so you know who to communicate the process to.

 Use GitHub Security Overview to collect this information. The screenshot below shows

 how to collect that information:

 22

 Image Three: Screenshot which shows how to filter by secrets

 Some information you are going to need to collect is:

 - Organisation

 - Repository

 - Secret Type

 - Secret Value

 - Maintainers on Repository to contact

 Note: Only use the GUI if you have a few secrets leaked of that type. If you

 have hundreds use the API to collect information; it will be much quicker

 and repeatable if you need to rerun it.

 Step Three:

 After the information defined above is collected, create a targeted communication

 plan for the users maintaining the repositories in the scope of each secret type. This

 can be sent out via email/Teams/Slack, or even GitHub, by raising an issue on the

 repository; use the tool that most suits your enterprise. (Use APIs provided by these

 23

https://docs.github.com/en/rest/reference/secret-scanning#list-secret-scanning-alerts-by-organization

 tools to send out the communications in an automated manner, it will help scale

 across multiple secret types.

 3. Continue to Revoke Di�erent Secret Types - and Educate

 The final stage is focused on continuing where you left o� in the previous stage,

 expanding the top five secret types to a more compressive list, with an additional

 focus on education. Continue to repeat Steps 1-3 above for the di�erent secret types

 you continue to support.

 Note: Another reason why it’s important to only start with the most critical five

 secret types is when you get to this stage, and you expand your coverage, you

 can take learnings from what went well/didn’t go so well and apply them

 learnings to the upcoming secret types.

 As you continue to build your remediation processes for other secret types, start to

 create proactive training material that can be shared with all current/new developers

 of GitHub in your organisation. So far, a lot of the focus has been reactive based on a

 secret being pushed. It is an excellent idea to shift to be proactive and encourage

 developers not to push credentials to GitHub. This can be achieved in multiple ways

 but even creating a one-two page document explaining the risks and reasons would be

 a great place to start.

 --

 Note: The above walks through a high-level process focusing on the enable all

 approach at the organization level. However, the above principles can still be

 applied even if you take a more staggered approach, not the big-bang

 enablement approach. Some companies only enable secret scanning on

 repositories where code scanning is enabled, meaning both features of GHAS

 scale evenly. This makes the value story of GHAS a little more balanced,

 compared to secret scanning taking all licences on day one, without code

 scanning even being touched. If you take the approach of enabling secret

 scanning and code scanning simultaneously, you can still follow the new ->

 24

 current (critical)-> current & educate method. The main di�erence will be the

 volume of alerts you will get; it will be lower. The advantage of doing it this way

 is you can take more time rolling out your processes, and if you don’t have the

 capabilities of automating a lot of steps, it can be a lot more manageable.

 Conclusion
 To conclude, there are multiple ways this document could and likely should be

 interpreted. The purpose is to share knowledge on an approach that has worked and

 does scale well, but each organisation may put their own flavour on implementing the

 core themes mentioned throughout.

 The main points to take away from this whitepaper are:

 - Automation works. Leverage the APIs and Webhooks available. If something

 isn’t directly in the product but would help with the rollout of GHAS within

 your organisation, look and see how you can get data out of GitHub

 programmatically to aid your strategy.

 - Communication is key . It’s vital to be open and transparent to your users.

 Before introducing any new processes or automation, always inform the users

 that are a�ected. The best approach here is to create targeted communications.

 For example, if the change only a�ects one person who has leaked a secret, only

 inform that person. If a change only a�ects people writing Java, only tell people

 who write Java. This is an excellent way to create e�ective communications and

 stop people from ignoring messaging.

 - Take your time. Rolling out GitHub Advanced Security isn’t going to be a

 one-week rollout; it likely also isn’t going to be a one-month rollout.

 Remember that GHAS isn’t just a tool; it’s aimed at shifting how security and

 developers work together to ensure security is truly a first-class citizen of

 software development.

 We are excited you are on a journey with GitHub Advanced Security (GHAS) . Let’s

 continue to shift the way security and software are developed.

 25

https://github.com/features/security

 Appendix
 Query One: Languages per Repository per Organisation

 {

 organization(login: "GitHub") {

 repositories(first: 100) {

 totalCount

 nodes {

 nameWithOwner

 languages(first: 100) {

 totalCount

 nodes {

 name

 }

 }

 }

 pageInfo {

 endCursor

 hasNextPage

 }

 }

 }

 26

 }

 Query Two: Organisations per Enterprise

 {

 enterprise(slug: "GitHub") {

 organizations(first: 100) {

 totalCount

 nodes {

 name

 }

 pageInfo {

 endCursor

 hasNextPage

 }

 }

 }

 }

 27

