
WRIT TEN BY GITHUB WITH

Modernizing
COBOL with
GitHub Copilot
Mashrur Hossain, Enterprise Senior Solutions Engineer, GitHub

Table of
contents

Introduction

The challenges of modernizing legacy code

GitHub Copilot to modernize legacy COBOL
to Java

Process for conversion from COBOL

Conclusion

3

4

6

8

25

Written by GitHub with PAGE — 3

Introduction

GitHub is where over 100 million developers shape the future of software,
together. The platform empowers developers to contribute to the open source
community, build proprietary software, secure code, ship it anywhere, and
leverage generative AI to accelerate software development.

In July of 2022, GitHub made GitHub Copilot generally available: this tool is an AI
pair programmer that assists developers in building performant software more
quickly while optimizing for their happiness. Below, we’ll discuss how generative
AI tools, like GitHub Copilot, are supercharging dev teams and making
collaborative practices like innersource even more effective.

https://github.com/features/copilot

Written by GitHub with PAGE — 4

Legacy codebases, like those written in COBOL, serve as the backbone of
many established industries, including finance, manufacturing, healthcare,
and telecommunications. While these systems are sturdy and reliable, they
are often bound to outdated paradigms that challenge integration with newer
technologies, lead to increased maintenance costs, and face a diminishing
talent pool for support. Migrating from COBOL to a more modern language is
not just a matter of translation; it’s a complete transformation, which can be
overwhelming and filled with uncertainties.

Despite the need to evolve, many organizations hesitate, fearing the scale of the
challenge and the potential for unforeseen disruptions. There’s a vast difference
between procedural COBOL and the contemporary, often object-oriented or
event-driven, paradigms of languages like Java and Go. Manually navigating
this migration journey can be arduous and error-prone. However, there’s light at
the end of this tunnel.

With advanced generative models like those which power GitHub Copilot
Business, modernizing COBOL code can be more streamlined and precise. The
Copilot Chat feature of GitHub Copilot can assist in translating code and offer
insights into optimizing structures, integrating patterns, and preserving original
functionalities through automated test generation. Through a series of steps,
GitHub Copilot will serve to help your COBOL transformation journey to modern
software. Anecdotally, we’ve seen organizations accelerate their migration
journey by a double digit percentage by leveraging Copilot.

In the next sections, we’ll share the best practices we’ve learned while helping
top organizations prepare for an easier migration, harnessing the power of
Copilot to breathe new life into age-old systems.

https://www.freethink.com/robots-ai/github-copilot
https://www.freethink.com/robots-ai/github-copilot
https://resources.github.com/copilot-for-business/?ef_id=_k_CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE_k_&OCID=AIDcmmc3fhtaow_SEM__k_CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE_k_&gad_source=1&gclid=CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE
https://resources.github.com/copilot-for-business/?ef_id=_k_CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE_k_&OCID=AIDcmmc3fhtaow_SEM__k_CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE_k_&gad_source=1&gclid=CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE

Written by GitHub with PAGE — 5

To effectively transition from legacy systems, such as
those built on COBOL, two critical developer processes
must be honed and intertwined: legacy code
understanding and solution integration. Developers
should be able to swiftly grasp the existing legacy code,
and simultaneously integrate modernized solutions
into the evolving infrastructure.

Challenges with Legacy Code Understanding

•  Bottlenecks: Institutional knowledge of COBOL is fading. Many
developers are more familiar with the latest languages and frameworks
than those used to bring the enterprise online in the 20th century.

•  Interpreting legacy code: Developers must often start by deciphering
often decades-old, sprawling, undocumented, or poorly documented
COBOL programs to understand their intent. This exhaustive process
pushes developers to either cling to older systems longer or opt for total
rewrites without complete understanding.

•  Previous attempts: Simplifying the procedure using rudimentary
translation tools or maintaining comprehensive documentation has
largely been insufficient. With archaic coding conventions, monolithic
architectures, and obsolete business logic embedded into the code,
navigating a legacy system can feel like venturing through a dense,
unmapped forest.

The Challenges of
Modernizing Legacy Code

Written by GitHub with PAGE — 6

Challenges with Solution Integration

•  Delicate integration: Integrating modern solutions into older
systems requires ensuring that the modernized code does not cause
disruptions, inefficiencies, or vulnerabilities. Extensive testing, patching,
and sometimes rolling back changes altogether are necessary to
ensure smooth operations.

•  Developer burden: Maintainers or senior developers have the added
burden of reviewing the integration, grasping its intent, and determining
if it aligns with the broader goal of modernization. This usually isn’t their
only responsibility, making the process even more tedious and leading
to delays in modernization projects.

Moving away from legacy systems such as COBOL presents myriad
complications. The declining knowledge in older languages and
the daunting task of unraveling extensive, ambiguous code turns
understanding the systems into a significant barrier. Efforts made
in the past to ease this shift have largely been insufficient. Blending
modern solutions into these age-old frameworks demands an intricate
fusion of the past and present, with an emphasis on ensuring both
stability and security. These impediments not only decelerate the pace
of modernization but may also dissuade teams from pursuing these
essential transformations. Let’s take a practical look at how GitHub
Copilot can provide a smoother transition from legacy systems like
COBOL to more contemporary platforms.

Written by GitHub with PAGE — 7

Generative AI, typified by models that provide data
recommendations tailored to user requirements,
is emerging as a game-changer in legacy code
conversion. Leveraging a platform like GitHub Copilot
Business, which is integrated into the software
transformation process, developers can experience a
smoother transition from legacy systems like COBOL
to contemporary platforms like Java.

Built upon AI models developed by GitHub, OpenAI, and Microsoft, GitHub
Copilot can help streamline the process of understanding and translating
age-old codebases, especially by shedding light on the complexities of
legacy systems.

Traditionally, developers tasked with interpreting legacy code turned to
manuals, older documentation, or external resources to bridge knowledge
gaps. GitHub Copilot’s Chat feature serves as an in-context guide, offering
insights directly within the editor. Feedback indicates that a significant
portion of developers using GitHub Copilot report reduced time spent on
external solution searches and experience a more uninterrupted workflow
during legacy code modernization.

GitHub Copilot to Modernize
Legacy COBOL to Java

https://resources.github.com/copilot-for-business/?ef_id=_k_CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE_k_&OCID=AIDcmmc3fhtaow_SEM__k_CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE_k_&gad_source=1&gclid=CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE
https://resources.github.com/copilot-for-business/?ef_id=_k_CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE_k_&OCID=AIDcmmc3fhtaow_SEM__k_CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE_k_&gad_source=1&gclid=CjwKCAjwvrOpBhBdEiwAR58-3H8znxJClO2Kzsdr-6PpDXQoKUZftW0gA6q7uSw_1lhwKpKqCFpKmRoC9JcQAvD_BwE
https://github.blog/2024-05-13-research-quantifying-github-copilots-impact-in-the-enterprise-with-accenture/

Written by GitHub with PAGE — 8

Copilot is trained on expansive datasets including diverse coding
conventions, languages, and paradigms. The result is an AI model that
can respond with relevant code suggestions in milliseconds. With the aid
of this AI, developers working on COBOL-to-[insert language of choice]
transitions have observed substantial gains in velocity and productivity.

Developers can highlight COBOL code and prompt Copilot Chat to explain
or summarize what the code does. The developer can then prompt Copilot
Chat to produce the conversion to their language of choice, then through
a practice termed “comment-driven development”, developers can detail
the functionalities they aim to preserve or introduce. Beyond just reactive
responses, Copilot can also actively review the ongoing work, proposing
snippets or structures for subsequent lines or components.

Copilot’s suggestions are not generic; they’re tailored based on the active
files in the IDE, ensuring that the offered solutions better align with the
project’s structure, style, and requirements. As the model matures, that
contextual awareness will continue to improve, for example we previously
transitioned Copilot Chat from an 8k token, 3.5 model to 32k GPT-4.
The greater token volume translates to more capacity for the model
to understand the prompts as more natural language characters are
computed.

As legacy systems like COBOL continue to challenge industries, tools like
GitHub Copilot become invaluable allies, accelerating the journey towards
modern, efficient, and scalable infrastructures.

https://github.blog/2024-05-13-research-quantifying-github-copilots-impact-in-the-enterprise-with-accenture/

Written by GitHub with PAGE — 9

Purpose and scope
There are various approaches to planning a conversion project from
COBOL to a modern language like Java. This involves more than just
converting COBOL code due to the differences in paradigms, platforms,
and ecosystems. In this chapter, we will explore several steps that can be
considered for these projects. However, before diving into specific steps,
it’s crucial to first establish a high-level understanding of the project’s
purpose and scope.

•  Purpose of conversion: Understand why the conversion is being
undertaken. Whether it’s for easier maintenance, integration with
modern systems, cost-saving, talent availability, or other reasons.

•  Scope of conversion: Determine the extent of the codebase, modules,
and functionalities that need to be migrated.

A helpful initial step is to ask Copilot Chat ‘how?’. You’ll find that Copilot’s response is fairly
generic to start with, but we’ll dive into more detailed responses shortly. Take a look:

Steps for
Conversion Projects

Written by GitHub with PAGE — 10

This was a general prompt given to GitHub Copilot with no prior
knowledge of the context for Copilot to base its response on. But as we
can see, Copilot has done a pretty good job of identifying the baseline
steps to determine the scope of the conversion project.

Now, let’s explore each result in more detail by refining our prompt and/or asking
follow-up questions based on the response. For instance:

Written by GitHub with PAGE — 11

Notice how the response from GitHub Copilot is tailored
to the task that was outlined in the prompt. Copilot can
do a wonderful job of translating COBOL code to Java
(examples to follow in sections below). However, since that
was not relevant to the task at hand, it did not include that
as an item in its steps.

Several leading companies in the financial services and telecom industries
have already embarked on modernization projects to transition away from
COBOL. Let’s look at two examples below: first, a project plan from a financial
services company outlining their vision for the modernization project, and
second, a telecommunications company’s reasoning, based on a thorough
assessment of tools, for choosing GitHub Copilot for their project.

Example project plan
An example project plan of a COBOL to Java conversion project using GitHub
Copilot is detailed below. We split it up in two phases:

Prerequisites:

•  Measure current velocity.

•  Select applications to focus on for migrations based on priority, business
impact, readiness.

•  Prepare the development environment so code is accessible to Copilot.

Transforming software:

•  Stage 1: Get an explanation for COBOL code.

•  Stage 2: Generate new code that performs the function. Alternatively,
translate the COBOL code directly where necessary.

•  Stage 3: Generate test cases based on the program in modernized code.
Does the newly generated code still do what the customer expects?

•  Stage 4: Measure Performance and Accuracy.

•  Stage 5: Develop Supplemental Models or implement RAG
(Retrieval Augmented Generation) for specific use cases.

Written by GitHub with PAGE — 12

These stages are perfectly described as high level implementation steps
from a customer who deals with large scale projects and it closely resembles
the outline we received from Copilot itself. Let’s draw attention to stage 5:
Supplemental model for specific use case - this is where an LLM is trained on
customer code so the AI can inherently understand and generate responses
aligned with specific coding practices and domain-specific knowledge unique
to the customer and further accelerate their development. Having this as
stage 5, after measurement, results in the customer being able to quantify the
acceleration in code generation, bug fixes, documentation and more.

Another example - a leading telecom company decided to take on their
COBOL modernization project using GitHub Copilot after a thorough
assessment of the tool and alternatives. They tasked roughly a dozen
engineers with evaluating Copilot and other tools over the course of a month.
The developers used Copilot and other tools in real-world development –
specifically, migrating COBOL to Java. At the end of this evaluation, they
created a scorecard comparing the tools.

One of the methods used was to leverage APIs for the latest GPT models in
a simple chat-based web application they built internally. Developers had
to manually reconstruct their prompt for each query. Overall, they gave this
process high marks for the model responses.

•  Suggestions were of high quality.

•  They could translate much larger “chunks” of code in a single pass
(due to the larger token budget).

However, they opted to leverage GitHub Copilot instead for the
following reasons:

•  Seamless integration with the IDE provided a smoother experience.

•  No need to manually create prompts, as Copilot offers advanced
server-side prompt engineering out of the box.

•  Copilot utilizes the latest GPT model.

Written by GitHub with PAGE — 13

Now that we have seen the “how’s and why’s” of
industry titans choosing Copilot for their COBOL
modernization projects, let’s dig into some of the
details of what such a project may look like.

Process
Initial assessment

Complexity analysis: Understand the size and complexity of the COBOL
codebase. GitHub Copilot Chat can play a pivotal role in this step,
specifically for:

a.		Code explanation: Copilot Chat can help explain individual COBOL
code snippets, including what different sections and statements are
doing. This can help a team understand the structure and functionality
of the code, which is a crucial part of complexity analysis.

b.		Identifying code patterns: Copilot Chat can help identify common
code patterns, such as loops, conditional statements and procedure
calls. Understanding these patterns can give a sense of the complexity
of the code.

c.		Understanding data structures: Copilot Chat can assist in
understanding the data structures used in the COBOL code, such as
arrays, records, and files. This can help in assessing the complexity of
the data manipulation in the code.

d.		Summary and comments: Copilot Chat can be used to generate/
add comments to code snippets including summarizing entire
sections (sometimes hundreds of lines of code with 1 prompt) to better
understand what each part of COBOL programs are doing.

Written by GitHub with PAGE — 14

e.		Generate documentation: Copilot Chat can be prompted to generate
documentation in plain text from programs by simply highlighting
sections and prompting it to generate documentation in the format
that the user wants.

f.	 Dependencies: Identify external systems, databases, and services the
COBOL application interacts with.

While GitHub Copilot can’t scan multiple files at once (like an SCA tool
can, at least at the time of writing this whitepaper), it can be prompted to
identify dependencies within a single COBOL program. It will also provide
relevant information on the dependencies and what needs to be done
with them in follow-up steps, providing a clear sense of the codebase’s
complexity.

Let’s look at an example. We copied the code (without the comments or summary) from a dbstat.
sqb file provided by IBM in its official documentation page for Db2 here. Then, we asked Copilot
to identify the dependencies. Images of the interaction can be found below:

Written by GitHub with PAGE — 15

As we can see from the response above, Copilot does a splendid
job of not only identifying the dependencies, but also providing
information on what they might be used for. This information can
be extremely valuable for a migration team.

Now let’s try a slash command, specifically “/explain” and have Copilot explain the code
block to us. The available slash commands can be pulled up by entering a slash in the
prompt window.

To use the “/explain” command, highlight all the code you want explained then enter the
command as shown below:

Written by GitHub with PAGE — 16

Let’s run it to see the output:

A similar approach can be used to identify subroutines, we will see what the response will be when
identifying subroutines from a payroll program that deals with employee payroll data when the
subroutines were referenced but not defined in the highlighted code. But first, let’s try “/explain”
to get a thorough understanding of what the program does:

Written by GitHub with PAGE — 17

Now let’s prompt Copilot to identify and provide details about the subroutines:

As observed from the response above, Copilot is able to identify and provide high level
details of the subroutines from the highlighted code.

Choose a Target Language
A commonly chosen language is Java. Java is suitable for large-scale,
enterprise applications that need robustness, security, and performance.
It also integrates well with other enterprise systems.

Code Translation
Automated translation with Copilot: Copilot can be used to automatically
convert COBOL code to a target language like Java or Go. It can also be used
to generate extensive unit tests and ensure the resulting code is providing the
output that is desired. Below is an example of when a translation is attempted
from a COBOL file taken from the previously referenced IBM DB2 examples
here and what the potential response could look like. The COBOL program
checks for and prints SQL warnings and errors to the screen:

Written by GitHub with PAGE — 18

As observed in the output above, Copilot not only attempts to translate the code to Java but also
provides useful comments and suggests next steps (e.g., placeholder comments for where SQL
code will be needed).

Written by GitHub with PAGE — 19

Another area in translation where Copilot excels, is when there is either
not enough information or code is available for a complete translation,
or when a direct translation to the target language is not directly possible
due to use of custom code, patterns, libraries that are specific to the
legacy language (COBOL in this case).

Below we have an example of what the output looks like if a direct translation is attempted in
such a case using the previously referenced dbstat.sqb program (the utility program can be used
to reorganize tables and run statistics), Copilot provides a lot of comments and steps in addition
to the code in the target language to help the team accomplish the task at hand:

https://www.ibm.com/docs/en/db2/11.5?topic=SSEPGG_11.5.0/com.ibm.db2.luw.apdv.sample.doc/doc/cobol/s-dbstat-sqb.htm

Written by GitHub with PAGE — 20

•  Manual rewrite using Copilot: This can be a very strong approach
when the intent is to not just translate but to modernize the applications
and infrastructure as a whole. A manual rewrite can help ensure that
the application takes full advantage of the features and strengths
of the new language and associated frameworks. This is also an
opportunity to refactor and improve the design since chunks of code
can be highlighted and refactored with the click of a button. This
can be used in conjunction with step 1 above to enhance the new
application and its functionality.

•  Code explanation: Copilot can be used to understand COBOL code
when considering translation, redesign, optimization. Using Copilot
Chat, blocks of code can be highlighted and prompted for various
questions like explanation, summary and comment generation,
refactoring and much more. We already saw the “/explain” command
used to generate explanations of code above. Below is an example
where Copilot is asked to add comments to a block of code:

Written by GitHub with PAGE — 2 1

Database migration
COBOL often interacts with legacy databases (like IBM DB2): Transitioning
to modern databases can also be considered with the aid of GitHub
Copilot in addition to tools or services that can assist with data migration.
Some examples of steps that can be taken at each stage of the database
migration process, and the role Copilot can play in them, are described
below (MySQL and PostgreSQL examples used for modern databases as
examples, can be applied to any):

Data mapping:

•  Utilize Copilot to generate SQL scripts for creating table structures
in the target database by providing desired schema changes and
transformation requirements.

•  Prompt Example: “Create a MySQL table definition equivalent to this
DB2 table definition”

Below is an example of extracting the business logic from the previously
referenced payroll program:

Written by GitHub with PAGE — 2 2

Optimization Tips:

•  Generate indexing and optimization strategies by inputting the table
structures and query patterns into Copilot.

•  Prompt example: “Suggest indices for optimizing these SQL queries on
a PostgreSQL table:”

Testing strategies:

•  Copilot can suggest various testing strategies and generate SQL
queries and scripts to validate post-migration data.

•  Prompt example: “Suggest a strategy and queries to validate the data
after migrating from DB2 to PostgreSQL.”

Rollback procedures:

•  Develop a rollback plan with the aid of Copilot, including crafting
scripts to revert changes or restore data from backups.

•  Prompt example: “Create a script to restore data from a backup file to
the PostgreSQL table in case of migration failure.”

Documentation assistance:

•  Copilot can help generate content for documenting schema,
relationships, transformations, and the migration process, aiding future
reference and knowledge sharing.

•  Prompt example: “Help me create documentation for the
migration process, including changes in schema, data types, and
transformations made from DB2 to MySQL.”

Post-migration support:

•  Copilot can suggest monitoring and performance tuning strategies, as
well as help troubleshoot issues with the new database system.

•  Prompt example: “Provide a strategy for monitoring and optimizing the
performance of this PostgreSQL table after migration.”

Testing
Unit Testing: Given the drastic change in the codebase, it is very important
to ensure all functions are covered by unit tests. Copilot thrives in
generating extensive unit tests for blocks of code, functions, classes and
sometimes entire files using just a prompt. There are useful shortcuts
available like /tests to speed up the process as well.

Written by GitHub with PAGE — 23

Below is a result of running the “/tests” command on the translated Java code from the payroll
program we were working with earlier:

Written by GitHub with PAGE — 2 4

To help verify the accuracy of the generated tests, we can prompt
Copilot to either “fix” the code by using the “/fix” shortcut or we can
write our prompt.

Below is an example of the output received when using the “/fix” command
on the generated unit tests:

It is always a good idea to double-check our work and Copilot provides
an easy to use “out of the box” solution to help us do just that.

•  Integration testing: Do the new functions/modules integrate well with
each other? This is crucial for ensuring the new application interfaces
correctly with other systems, especially if the original COBOL system
had numerous integrations. Copilot can be used extensively to
generate integration tests for converted modules in applications.

•  User Acceptance Testing (UAT): Help ensure end-users or
stakeholders validate the functionality of the converted system. Copilot

Written by GitHub with PAGE — 2 5

can be used to generate scripts for users to follow as they test the
system.

Training & Documentation
Both development teams and users will need training since they’re moving
from a procedural paradigm (COBOL) to an object-oriented/event-driven
paradigm like Java. Extensive documentation needs to be created and
Copilot can help with document generation.

•  Update existing documentation to reflect changes, architectures,
and new workflows.

Rollout strategy
A phased approach could be considered, rolling out modules
or functionalities gradually.

•  Thorough monitoring strategies for the new system after rollout
looking for issues and performance bottlenecks.

Post-migration maintenance
Establish a team or process to maintain, update, and troubleshoot the
new codebase.

•  Continue to gather feedback from users and stakeholders to
improve the system post-migration.

Considerations & challenges
•  Performance: Operations that performed efficiently in COBOL might

not do so in Java. Profiling and optimization may be required, and
Copilot assists in optimizing various aspects of the newly developed
application.

•  Legacy System Knowledge: It’s vital to involve experts in both COBOL
and the target language (Java) during this transition to ensure that all
nuances and functionalities are accurately transferred.

•  Integration with Legacy Systems: If the entire conversion is not
happening simultaneously, the new system may need to coexist and
integrate with the existing COBOL systems for some time.

Written by GitHub with PAGE — 26

Modernizing COBOL applications is a complex but necessary effort
for organizations seeking to remain competitive in today’s technology
landscape. GitHub Copilot offers a powerful solution to streamline
this process by providing contextual assistance, code translation, and
documentation generation. By leveraging its capabilities, developers
can significantly reduce the time and effort required to understand
and convert legacy code, ultimately leading to more efficient migration
projects. The structured approach outlined in the paper, including initial
assessments, code translation, and thorough testing, ensures that
organizations can effectively manage the challenges associated with
legacy systems. As demonstrated by industry leaders, the integration of
GitHub Copilot not only enhances productivity but also mitigates risks
associated with modernization.

Embracing these tools and methodologies will enable organizations to
transform their COBOL systems into modern, scalable solutions that meet
current and future demands.

Want to learn more? Visit https://github.com/features/copilot
or chat with a member of our sales team.

Conclusion

https://github.com/features/copilot
https://github.com/enterprise/contact

WRIT TEN BY GITHUB WITH

