
Taking GitHub
Copilot to the stars,
not just the skies

WR IT TEN BY GITHUB WITH

5 takeoff tips for a thrilling Copilot launch

Daniel Figuicio, field CTO, APAC;

Bronte van der Hoorn, staff product manager

https://github.com/affrae
https://github.com/brontevdh

Table of
contents

Introduction: Preparing for a successful
GitHub Copilot launch

Tip #1: To build trust, transparency’s a must

Tip #2: Tech readiness, in this, we entrust

Tip #3: Training tips, a guiding light

Tip #4: Time to make AI coding skills tight

Tip #5: Teams share AI wins, in tools we trust

Putting it all together: Mission Control for
GitHub Copilot success Additional resources

About the authors

2

3

6

8

11

14

16

17

WR IT TEN BY GITHUB WITH PAGE — 1

Executive summary
AI-assisted coding can transform your software development processes
and outcomes. This article discusses five tips to support the successful
scaling of GitHub Copilot across your organization to enable the realization
of these outcomes.

Whether you are looking to accelerate code generation, streamline
problem-solving or improve code maintainability, by implementing Copilot
thoughtfully and systematically, you can maximize the benefits of Copilot
while helping to mitigate potential risks—supporting a smooth integration
that propels development teams to new heights of productivity
and innovation.

WR IT TEN BY GITHUB WITH PAGE — 2

Introduction: Preparing
for a successful GitHub
Copilot launch
The impact of GitHub Copilot on the developer community has been
nothing short of transformative. Our data reveals that Copilot significantly
boosts developer efficiency by up to 55% and enhances confidence in code
quality for 85% of users. With the rollout of Copilot business in 2023, and the
introduction of Copilot Enterprise in 2024, it’s our priority to support every
organization in seamlessly integrating Copilot into their workflow.

To establish a successful launch, securing endorsements from management
and security teams, allocating budgets, completing purchases, and adhering
to organizational policies are essential. However, there’s more you can do to
foster a smooth launch.

The excitement around the impact of Copilot is palpable. It’s not just about
speeding up development; it’s about enhancing the quality of work and
boosting developer confidence. As we introduce Copilot to more businesses
and organizations, our focus is on helping to facilitate a seamless integration
for everyone.

Early planning is crucial for smooth adoption. Initiating discussions with
management and security teams, planning budgets, and navigating the
purchase process should begin well ahead of time. This foresight allows
for comprehensive planning and ensures adherence to your organization’s
policies, paving the way for less friction for Copilot integration.

By starting these discussions and planning phases early, you can ease
the transition and proactively address potential hurdles. This preparation
ensures that by the time Copilot is ready to be rolled out to your teams,
everything is in place for a successful launch.

In this guide, we’ll share strategies gathered from organizations of all sizes
that have successfully integrated Copilot into their development processes.
By following these steps, you can not only streamline your Copilot rollout but
also maximize its long-term benefits for your teams.

Don’t wait until the last minute—begin preparing now to unlock the full
potential of Copilot and create a seamless experience for your developers
from day one.

https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2023-10-10-research-quantifying-github-copilots-impact-on-code-quality/
https://github.blog/2023-10-10-research-quantifying-github-copilots-impact-on-code-quality/
https://github.blog/2023-02-14-github-copilot-for-business-is-now-available/
https://github.blog/2024-02-27-github-copilot-enterprise-is-now-generally-available/#:~:text=Our%20most%20advanced%20AI%20offering,throughout%20the%20software%20development%20lifecycle.

WR IT TEN BY GITHUB WITH PAGE — 3

Tip #1: To build trust,
transparency’s a must

It’s natural for teams to be curious (and sometimes skeptical)
about the adoption of a new tool like GitHub Copilot. To
create a smooth transition, your announcements should
clearly articulate the reasons for adopting Copilot -- be
honest and transparent. This is an excellent opportunity for
leaders to reinforce the organization’s engineering goals,
whether they are focused on improving quality, increasing
development speed, or both. This clarity will help teams
understand the strategic value of Copilot and how it aligns
with organizational objectives.

Key strategies for building trust:
• Clear communication from leadership: Clearly state the reasons for adopting

Copilot. Explain how it will help the organization achieve its goals, whether that is
enhancing code quality, speeding up development cycles, or both.

Use relevant organizational channels to announce the adoption. This could include
emails, team meetings, internal newsletters, and collaboration platforms.

• Regular Q&A sessions: Hold regular Q&A sessions where staff can voice
concerns and ask questions. This encourages open communication and
addresses any skepticism or uncertainties.

Use the insights from these sessions to update your rollout program, continuously
refining your FAQs and other support materials based on your team’s feedback.

• Align measurements with goals: Ensure that the metrics you track
align with your Copilot adoption goals. For instance, if your goal is to improve
code quality, track metrics related to code review efficiency and defect rates.

Demonstrate consistency between what you say and what you measure - this
builds trust and shows that you are serious about the benefits Copilot can bring.

WR IT TEN BY GITHUB WITH PAGE — 4

• Ongoing reminders and training: Use reminders and training materials to
continually reinforce the adoption goals. This could include periodic updates,
success stories, and practical tips on leveraging Copilot effectively.

Provide comprehensive resources, such as guides, tutorials, and best
practices, to help teams get up to speed with Copilot (more on this below).

Sample communication plan
• Initial announcement:

Message: “We are excited to announce the adoption of GitHub Copilot
to enhance our development processes. This tool will help us achieve our
goals of improving code quality and accelerating our release cycles. Your
participation and feedback are crucial for a successful rollout.”

• Channels: Email, internal newsletter, team meetings.

• Regular Q&A sessions:

Message: “Join our Q&A session to learn more about GitHub Copilot and
how it can benefit our team. Share your questions and feedback to help us
address any concerns and improve the integration process.”

• Channels: Video conferences, company intranet.

• Progress updates and metrics:

Message: “We are tracking key metrics to ensure GitHub Copilot is helping
us achieve our goals. Here are the latest updates on our progress and how
Copilot is making a difference.”

• Channels: Monthly reports, dashboards.

• Training and resource distribution:

Message: “Check out our new training materials and best practices guide for
using GitHub Copilot. These resources are designed to help you make the
most of this powerful tool.”

• Channels: Internal wiki, email, training sessions.

WR IT TEN BY GITHUB WITH PAGE — 5

Don’t just listen to us…
Writing tests is one realm where Accenture’s developers have found GitHub
Copilot to be extremely useful. “It’s allowed us to take the time to create all
the unit tests, functional tests, and performance tests that we want in our
pipelines without having to go back and effectively write double the code.
There’s never been enough time in the past to go back and get to all of
them,” said Schocke.

In addition to writing tests, Copilot has also allowed Accenture’s developers
to tackle the ever-increasing technical debt that challenges any organization
of its size.

“We have more work than developers. We just can’t get to it all,” said
Schocke. “By augmenting our developers’ skills and helping them to
produce features and functions more quickly with higher quality, we’re able
to get to more of the work that just didn’t happen before.”

Daniel Schocke | Application Architect, Accenture | Accenture

Accenture & GitHub case study

Summary
To build trust, clearly communicate the reasons for adopting GitHub
Copilot and how it aligns with your organization’s goals. Providing
regular updates, open Q&A sessions, and ongoing training will help your
team feel at ease and address any concerns.

WR IT TEN BY GITHUB WITH PAGE — 6

Leverage GitHub’s comprehensive documentation to help
streamline the onboarding process for GitHub Copilot,
ensuring it’s as smooth as possible for your developers.
Engage a group of early adopters to identify potential friction
points (e.g., network settings) and address these issues
before a wider rollout.

Key strategies for nailing tech readiness:
• Early adopter observation: Treat your early adopters like customers, closely

observing their onboarding experience. Look for any friction points that might
hinder the process, such as configuration issues or network settings.

Establish a feedback loop for early adopters to share their experiences and
suggestions. This will provide valuable insights into potential obstacles and areas
for improvement.

• Resolve issues promptly: Consider forming a small task force dedicated to
resolving any issues identified by early adopters.
This team should have the authority and resources to act quickly
on feedback.

Use the feedback to update and enhance the organization’s tailored onboarding
documentation, making it more comprehensive and user-friendly.

• Gradual rollout: Start with a small group of users to better support an
onboarding process that is smooth and efficient. Gradually scale up as you
mitigate most issues, leaving only edge cases.

Continuously refine the process based on feedback and observations, ensuring a
seamless experience for the broader team.

• Feedback mechanism: Provide easy-to-use feedback forms or surveys for
those onboarding to Copilot. Regularly review this feedback to identify trends
and common issues.

Act on feedback swiftly to show that you value user input and are committed to
improving their experience.

Tip #2: Tech readiness,
in this, we entrust

https://downloads.ctfassets.net/wfutmusr1t3h/66acuCKYqXme0aukY8Rn3x/a8c682946b0176db5860544ad85fffe7/2024-04-23-GitHub-CCI-LP-Copilot-Impact-Survey-NT-V003.pdf

WR IT TEN BY GITHUB WITH PAGE — 7

Hear it from them…
“We built an automated seat provisioning and management system to meet
our specific needs. We wanted any developer at ASOS who wants to use
GitHub Copilot to be able to with as little friction as possible. But we didn’t
want to turn it on for everyone at the organization level as that would be a
pretty inefficient use of resources. So we built our own self-service system.

We have an internal website where every employee has a profile. To receive a
GitHub Copilot seat, all they have to do is click a single button on their profile.
Behind the scenes, that kicks off a Microsoft Azure Functions process that
validates the developer’s Azure token and calls the GitHub Copilot Business
API to provision a seat. Developers can even do this from the command line,
if they prefer.

At the same time, we have an Azure function that checks for inactive
accounts nightly by pulling the seat usage data. If a seat hasn’t been used
for 30 days, we mark it for deletion before the next billing period begins. We
check one last time for activity before deletion and then send an email to all
developers whose seats are revoked. If they want a seat again, they can just
click that button and start the process over again.”

Dylan Morley | lead principal engineer | ASOS

ASOS & GitHub case study

Summary
To create a smooth GitHub Copilot onboarding, leverage GitHub’s
documentation and involve early adopters to identify potential issues
before rolling it out to the entire organization. Implementing a robust
feedback mechanism will help you refine the process and continually
enhance the experience.

WR IT TEN BY GITHUB WITH PAGE — 8

Providing training materials in the engineer’s
native coding language is incredibly impactful,
especially when it demonstrates GitHub Copilot
in contexts relevant to their daily workflows.
Moreover, training doesn’t have to be limited
to formal videos or learning modules; peer-
shared ‘wow’ moments and practical tips can
be particularly powerful. Ensure these resources
are readily available as you roll out Copilot across
your teams. If you need help building the right
training program or tailoring training specific
to your organization, our GitHub Experts are
available to help.

Key strategies for supercharging training:

• Tailored training materials: Create training materials that are specific
to the coding languages and frameworks your engineers use daily. This
contextual relevance makes the training more engaging and practical.

Make these materials easily accessible, whether through an internal portal,
shared drive, or directly in the tools your developers use. Providing links to
these resources when provisioning seats is a great practice.

• Peer sharing: Encourage a culture of sharing within your team. Have
developers share their ‘wow’ moments and tips with Copilot in team
meetings, chat groups, or through internal blogs.

Compile these peer experiences into a repository of success stories
that others can learn from and be inspired by. Start building your own
Community to share successes, best practices and governance for Copilot
for your own organization

Tip #3: Training tips,
a guiding light

https://github.com/services/
https://github.com/orgs/community/discussions/86520

WR IT TEN BY GITHUB WITH PAGE — 9

• Regular updates and communication:
Keep everyone informed about what Copilot is achieving within your
organization (including any milestones that your measurements have
shown you’ve reached). Use email newsletters, organizational newsfeeds,
or internal social platforms to provide regular updates.

Highlight specific successes and improvements (either qualitative or
quantitative) brought about by Copilot. This not only builds enthusiasm but
also demonstrates the tool’s value in real-world scenarios.

• Implementation steps:

Provisioning resources: When providing a Copilot seat, include links to
role-specific training materials in the developer’s native language.

Frequent communication: Be proactive in communicating the benefits
and successes of Copilot within your organization. Regularly update the
team on new features, user tips, and success stories through newsletters
or internal newsfeeds.

Encourage peer learning: Foster an environment where developers
can share their positive experiences and tips with each other. Organize
informal sessions where team members can discuss how they’re using
Copilot effectively.

WR IT TEN BY GITHUB WITH PAGE — 1 0

Success speaks for itself...

“When we went to roll out GitHub Copilot to Cisco’s 6,000 developers
in our business group, they were eager and excited, but had plenty of
questions. We partnered with our GitHub Premium Support team to host
a series of training sessions where they explained how to get started with
GitHub Copilot, provided best practices for writing useful prompts, and
demonstrated its unique capabilities, followed by a Q&A. Soon enough,
our developers were confidently using GitHub Copilot throughout their
day-to-day development. What really helped us was getting a sense of our
developers’ questions and concerns beforehand, and keeping our sessions
high level, to address initial concerns during our Q&A session.”
Brian Keith | head of engineering tools, Cisco Secure | Cisco

Cisco & GitHub case study

Summary
Training materials are crucial—tailor them to the languages and
frameworks your developers use daily. Foster a culture of sharing ‘wow’
moments among your team and make sure to provide regular updates
on achievements and milestones your organization has reached using
GitHub Copilot.

WR IT TEN BY GITHUB WITH PAGE — 11

Onboarding to a new technology tool takes
time, and while we’ve streamlined the process
as much as possible, engineers still need
dedicated time to set up GitHub Copilot in
their work environment. It’s essential to create
excitement and opportunities for engineers to
experiment with Copilot and see how it fits into
their workflow. Expecting engineers to onboard
to GitHub Copilot while under unrealistic delivery
pressure is impractical; everyone needs time to
integrate new tools into their practice effectively.

Key strategies for enabling bonding
• Allocate dedicated time: Ensure engineers have dedicated time to

onboard to Copilot. This should be scheduled during periods when they
are not under tight delivery deadlines to prevent multitasking and ensure
full engagement.

• Create excitement and encourage experimentation: Foster a sense
of excitement around Copilot by highlighting its potential benefits and
encouraging engineers to experiment with it. Share success stories and
examples of how it can enhance their workflow.

WR IT TEN BY GITHUB WITH PAGE — 12

• Provide comprehensive resources:
Offer a variety of resources to help engineers get started:

• Share videos demonstrating how to install and set up the
GitHub Copilot plugin.

• Provide content showing relevant examples tailored to the
developer’s specific coding environment.

• Encourage engineers to write their first piece of code using
GitHub Copilot, starting with simple tasks and progressing to more
complex scenarios.

• Organize dedicated onboarding sessions:
Schedule onboarding sessions, such as a morning or afternoon,
where engineers can focus solely on setting up and exploring Copilot.
Make it clear that it’s acceptable to dedicate this time to learning and
experimentation.

• Encourage peer support and sharing:
Create channels for engineers to share their onboarding experiences and
tips with each other, such as Slack or Teams. This peer support can help
address common challenges and enhance the onboarding experience.
Consider organizing a GitHub Copilot hackathon to encourage
collaborative learning and innovation.

• Regular check-ins and feedback:
Conduct regular check-ins to gather feedback on the onboarding process
and identify any areas that need improvement. Use this feedback to
continuously refine and enhance the onboarding experience.

Sample onboarding schedule:
Day 1: Introduction and setup

• Morning: Watch a video tutorial on installing and setting up
GitHub Copilot.

• Afternoon: Install and configure the plugin in your development
environment.

WR IT TEN BY GITHUB WITH PAGE — 13

Day 2: Learning and experimentation

• Morning: Watch content showing relevant examples of GitHub
Copilot in action.

• Afternoon: Write your first piece of code using Copilot
(e.g., a slightly more complex “Hello World” scenario).

Day 3: Practice and feedback

• Morning: Continue experimenting with GitHub Copilot
and integrate it into your current projects.

• Afternoon: Post a “how did I do” entry in the Copilot onboarding
channel (Slack, Teams, etc.) and provide feedback.

Read between the lines…
Mercado Libre invests in the next generation of developers by offering its
own two-month “bootcamp” for new hires to help them learn the company’s
software stack and solve problems the “Mercado Libre way.” While GitHub
Copilot can help more experienced developers to write code faster and
minimize the need for context switching, Brizuela sees a vast amount of
potential in GitHub Copilot to accelerate this onboarding process and
flatten the learning curve.

Lucia Brizuela | Senior Technical Director | Mercado Libre

Mercado Libre & GitHub case study

Summary
Allocate dedicated time for your team to onboard and experiment with
GitHub Copilot when they’re relaxed and not under pressure. Foster
excitement and provide resources—including comprehensive guides
and hands-on sessions—to help them integrate Copilot into their
workflow effectively.

https://github.com/customer-stories/mercado-libre

WR IT TEN BY GITHUB WITH PAGE — 14

Most of us are influenced by peer pressure and
the opinions of those we regard as experts --
similar to the impact of influencer endorsements
and product reviews. GitHub Copilot is no
different. Engineers seek validation from their
peers and respected colleagues to ensure that
using Copilot is valuable and supports their
identity as accomplished professionals.

Key strategies for promoting
collaborative AI adoption within teams:
• Encourage peer-to-peer support and story sharing: Allow your early

adopter team to share their experiences with Copilot. Encourage them to
discuss how it has enriched their professional lives beyond just increasing
coding speed. What additional activities have they been able to undertake
thanks to the time saved with Copilot?

Highlight stories where Copilot has enabled engineers to focus on more
creative or high-impact tasks that were previously time-consuming or
overlooked. It’s wonderful if there are linkages between Copilot and being
able to better serve the organization’s customers.

• Share learnings and organizational tips: Distribute tips and tricks
specific to your organizational scenarios. Share practical advice on how
GitHub Copilot can address unique challenges or streamline workflows
within your team.

Foster a culture of continuous learning by regularly updating and
sharing best practices based on real user experiences.

Tip #5: Teams share
AI wins, in tools we trust

WR IT TEN BY GITHUB WITH PAGE — 15

• Integrate Copilot into organizational culture and
performance frameworks: Make the use of Copilot and the sharing of
Copilot practices a part of your organizational culture. Recognize and
reward those who contribute valuable insights and improvements.

Ensure engineers know that using Copilot is supported and encouraged by
management. This assurance can come through endorsements from senior
leaders and integration into performance reviews and goals.

Straight from the source…
Carlsberg’s developmental workflow. GitHub Copilot seamlessly integrates
within the development process, providing valuable coding suggestions
directly from the IDE, further removing development roadblocks. Both
Peter Birkholm-Buch, the company’s Head of Software Engineering and
João Cerqueira, one of Carlsberg’s engineers, reported that Copilot
significantly enhanced productivity across the team. The enthusiasm for the
Al coding assistant was so unanimous that as soon as enterprise access was
available, Carlsberg immediately onboarded the tool. “Everyone immediately
enabled it, the reaction was overwhelmingly positive,” shares Birkholm-Buch.
It’s now challenging to find a developer who wouldn’t prefer to work with
Copilot, he says.
Peter Birkholm-Buch | Head of Software Engineering | Carlsberg

João Cerqueira | Platform Engineer | Carlsberg

Carlsberg & GitHub case study

Summary
Encourage early adopters to share their experiences with GitHub
Copilot and highlight the benefits they’ve experienced. Integrate
Copilot into your organizational culture by sharing tips, recognizing
contributions, and ensuring strong management support.

WR IT TEN BY GITHUB WITH PAGE — 16

Putting it all together:
Mission Control for
GitHub Copilot success
You’re now ready to undertake your preflight checks. Build trust in the tool’s
purpose, address technical barriers, provide resonant training materials,
allocate time for setup and exploration, and foster team-wide usage. These
checks will support achieving to the maximum the impact of Copilot in
your organization. When you undertake these checks you help set up your
engineers for success and enable your organization to derive maximum
long-term impact from Copilot.

Additional resources
Looking for more GitHub Copilot goodness? Check out these additional
resources to supercharge your Copilot journey:

• Setting up GitHub Copilot for your organization Docs page
• How to use GitHub Copilot Enterprise full demo video
• Subscribing to Copilot for your organization Docs page
• Introduction to GitHub Copilot Enterprise tutorial
• GitHub Copilot for Business is now available announcement blog
• Subscription plans for GitHub Copilot Docs page
• GitHub Copilot pricing page
• Found means fixed: Introducing code scanning autofix, powered by

GitHub Copilot and CodeQL blog post
• How Duolingo increased developer speed by 25% with Copilot

customer story

https://docs.github.com/en/copilot/setting-up-github-copilot/setting-up-github-copilot-for-your-organization
https://www.youtube.com/watch?v=69ki9puJosQ
https://docs.github.com/en/copilot/managing-copilot/managing-github-copilot-in-your-organization/managing-the-copilot-subscription-for-your-organization/subscribing-to-copilot-for-your-organization
https://learn.microsoft.com/en-us/training/modules/introduction-to-github-copilot-enterprise/
https://github.blog/news-insights/product-news/github-copilot-for-business-is-now-available/
https://docs.github.com/en/copilot/about-github-copilot/subscription-plans-for-github-copilot
https://github.com/pricing
https://github.blog/news-insights/product-news/found-means-fixed-introducing-code-scanning-autofix-powered-by-github-copilot-and-codeql/
https://github.blog/news-insights/product-news/found-means-fixed-introducing-code-scanning-autofix-powered-by-github-copilot-and-codeql/
https://github.com/customer-stories/duolingo

WR IT TEN BY GITHUB WITH PAGE — 17

About the authors

Daniel Figucio is the field chief technology officer (CTO) for Asia-Pacific
(APAC) at GitHub, bringing over 30 years of information technology (IT)
experience, including more than 20 years in the vendor space. He is
passionate about helping the hundreds of developer teams with which he
gets to engage across the region through implementing strong developer
experience methodologies and technologies. Daniel’s expertise spans the
entire software development lifecycle (SDLC), leveraging his background
in computer science and pure mathematics to optimize workflows and
productivity. His programming journey has evolved from C++ to Java
and JavaScript, with a current focus on Python, enabling him to provide
comprehensive insights across diverse development ecosystems.

As one of the founding members of GitHub’s APAC team, Daniel has been
instrumental in driving the company’s growth in the region from its inception
over 8 years ago, when the team consisted of just two people. Based in
the Blue Mountains of New South Wales, Australia, Daniel balances his
commitment to enhancing developer experiences with interests in gaming,
outdoor activities like cycling and bushwalking, and culinary exploration.

Bronte van der Hoorn is a staff product manager at GitHub. She leads a
diverse range of multidisciplinary projects across GitHub Copilot. Bronte
is committed to helping customers unlock the full potential of AI, while
enhancing engineers’ satisfaction and flow through amazing tooling.

With extensive industry experience, a PhD, and a portfolio of publications
on management topics, Bronte combines research insights with practical
know-how. This approach supports her in designing and iterating on
features that are aligned with the complex demands of modern business
environments. An advocate of systems thinking and a champion of
collaborative work practices, Bronte fosters innovation by promoting a
holistic and contemporary perspective to organizational change.

https://github.com/affrae

WR IT TEN BY GITHUB WITH

