
C O N T I N U ED N E X T PAG E

1. Lack of alignment.
A strong DevOps team is only successful if it’s truly
crossfunctional. It may be tempting to start small, within
your own engineering team, but then you run the risk of
embracing principles within a silo—whichis the antithesis
of what a DevOps strategy aimsto do. As the saying goes:
Teamwork makes the dream work.

How to avoid: Begin by doing the foundational work to
ensure that all key teams are on board. This begins at
the top, so that leadership can help steer and champion
teams to work together and improve processes across the
entire software development lifecycle. Stakeholders may
include orgs such as IT, UX, product, and security.

2. Testing shortcuts.
Automation may seem synonymous with DevOps, but
adopting and implementing a DevOps strategy and team
extends well beyond automation of workflows. That said,
creating an environment of continuous testing, to enable
continuous delivery, is a core tenant of a DevOps practice.
It’s important not to skimp on resources or skip setting up
the test automations that seem too time-consumingor
complex.

How to avoid: Invest in building out your test automation
suite so that it runs with each commit. Your DevOps
solution should help to enable this process, ideally with the
help of AI to identify potential issues and suggest solutions,
so that you don’t add to your backlog of security debt.
Enterprise-grade solutions like GitHub Copilot can help
you code faster and remediate in real time. Copilot can
also help with generating unit and integration tests.

3. Complicated tool integrations.
More tools add up to more complexity. Your DevOps
toolchain should include applications for things like source
control, CI/CD, testing, infrastructure provisioning, and
even notifications—and they should talk to each other.
But today, this shouldn’t be a manual process or require
custom scripts to tie the pieces together—especially
because there are comprehensive, unified platforms
available to help reduce and simplify your toolchain. The
more that you can do within the developer workspace, the
better.

How to avoid: Begin by performing a tool audit. The goal
isn’t to make what you already have work at any cost (and
then add more). Consider what you really need and which
solutions are available now to help make your teams’
lives easier. GitHub Actions, for example, automates your
software workflows,with CI/CD, so you can build, test and
deploy your code right from GitHub.

4. Workloads and burnout.
Development teams often feel overwhelmed and
overworked, often because they’re asked to do increasingly
more outside of their job description. A scarcity of security
professionals relative to the number of developers puts
pressure on developers to become experts in application
security. This is not a small ask, and it’s an issue felt by
developers around the globe. According to the World
Economic Forum, there is a global talent shortage of
cybersecurity professionals. The more that organizations
can adopt software and DevOps practices to help bridge
the gap between development and application security,
the better. The orgs who do will have an advantage.

How to avoid: Look for DevOps tools and solutions that
can help offload tasks for developers (and security teams),
helping to reduce burnout, turnover, and friction between
teams. Developers typically face coding or remediation
learning curves, and spend too much time on rote coding
tasks and application security testing requirements,
leading 81% of developers to release vulnerable code under
pressure to ship. Bringing in an AI pair programmer can
help remove boilerplate tasks so that developers can focus
on the coding that matters most, and is the most fulfilling.

6 common pitfalls for DevOps
teams and how to avoid them

https://github.com/features/copilot#enterprise
https://github.blog/ai-and-ml/how-to-generate-unit-tests-with-github-copilot-tips-and-examples/
https://github.com/enterprise
https://github.com/enterprise
https://github.com/features/actions
https://www.weforum.org/stories/2024/04/cybersecurity-industry-talent-shortage-new-report/
https://www.immersivelabs.com/imperfect-people-vulnerable-applications/
https://github.com/features/copilot

6 C O M M O N PI T FA L L S FO R D E VO P S T E A M S A N D H OW TO AVO I D T H EM

5. Stuck on points of failure.
Your DevOps practice should create a more failure-
tolerant environment, but that doesn’t mean it will be
failure-free. Testing and learning is part of the game, but
the goal is to adopt a DevOps solution that allows you to
test and learn faster. Don’t make the mistake of letting a
failure slow you down or point fingers at a particular team.
DevOps is, if anything, a #oneteam goal.

How to avoid: Failures create learning opportunities. If
your process isn’t going according to plan, take a second
look at the workflow and allow space for teams to identify
points of failure and opportunities to innovate and
improve. Test new ideas and continueto learn.

According to Forrester,

“It’s obvious that solutions that merge
continuous integration, continuous delivery,
and release automation are valuable.
Enterprises are eager to adopt them — they’d
rather have a cohesive tool that they can
run out of the box than assemble things
themselves with scripts-and-glue code.”

DevOps can streamline software
development and delivery, and GitHub
offers a unified platform for your DevOps
lifecycle. As the world’s most widely adopted
AI-powered developer platform, used by 100+
million developers around the world, you’ll be
in good hands and good company.

Get started today. Learn more at
https://github.com/enterprise.

WR I T T EN BY G I T H U B WI T H

6. A point solution approach.
The flexibility of DevOps can be both a blessing and a
curse. By design, it gives individuals in an organization
more power and autonomy. In more chaotic environments,
however, poorly vetted features across multiple products
can lead to code that’s deployed, amended, or even rolled
back, causing customer and developer frustration.

How to avoid: Just as you need both leadership and
crossfunctional alignment to support your DevOps
strategy, you also need alignment around your DevOps
platform and its implementation. Be sure to designate
approval points and controls across processes and leave
room for some flexibility.

https://www.forrester.com/blogs/isdp-unified-devops-platforms-coordinate-development-and-operations/
https://github.com/solutions/use-case/devops
https://github.com/enterprise

