
1. Not getting all your teams on board 
It’s possible to get DevOps up and running within your 
software organization and yet still not see the speed of 
software delivery improve. Why? It may be because you 
only implemented DevOps principles in the engineering 
department—or worse yet, created separate DevOps 
teams—while keeping everything else in your company’s 
organization chart the same. 

 Bottom line: DevOps requires wholesale organization 
change and everyone’s buy in. Teams outside of 
engineering need to adopt DevOps too, including IT, 
UX, product, and marketing. 

2. Limited testing
Setting up test automation can be an intense, time-
consuming process. This can mean some teams run 
certain more complex tests manually. That’s a mistake. If 
you don’t invest in building out your test automation suite, 
you won’t be able to run your entire test suite with each 
commit. This can leave bugs and issues undiscovered 
until later in the workflow, making them harder to fix. 

Bottom line: Continuous delivery requires continuous 
testing. Dedicate time and resources to build a strategic 
automated testing suite to set yourself up for long-term 
DevOps success. 

3. Incomplete tool integration 
More tools mean more complexity. Your DevOps toolkit 
contains applications for things like source control, 
CI, deployment, testing, infrastructure provisioning, 
and even notifications. What are the odds they all talk 
to each other? Many software organizations end up 
managing their DevOps toolchains manually or using 
custom scripts to tie everything together—an approach 
that becomes less sustainable as more tools and use 
cases are added. 

Bottom line: Take advantage of GitHub Actions, a CI/
CD and automation tool that allows workflow steps to be 
treated as code, tying in integrations as needed. 

6 DevOps pitfalls and how to avoid them

4. Workload overload 
One good reason many companies move to a DevOps model 
is their development teams are overworked. But an excessive 
workload for too few people can also cause a DevOps 
implementation to fail. Introducing new tools and processes 
to a team that’s already struggling is a recipe for chaos, 
employee burnout, and higher turnover. 

Bottom line: Re-prioritize workloads and focus on core 
goals and objectives where possible before attempting the 
DevOps transition. 

5. Unwillingness to fail 
DevOps creates a more failure-tolerant environment, but that 
doesn’t mean it’s failure-free. In the aftermath of a failure, 
many beginner DevOps organizations make the post-mortem 
mistake of assigning blame to a single point in their workflow. 

Bottom line: Treat failure as a learning opportunity and create 
space for people and teams to identify failure points across 
your workflows. 

6. Total product anarchy 
The flexibility of DevOps can be both a blessing and a curse. 
By design, it gives individuals in an organization more power 
and autonomy. In more chaotic environments, however, 
poorly vetted features and redesigns can be deployed, 
amended, or even rolled back, causing customer frustration. 

Bottom line: Before implementing DevOps, design approval 
points and controls in your processes, and make sure you 
have up-to-date documentation. 

Get started today. Learn more at https://github.com/enterprise

DevOps is a transformative practice. Companies in almost every industry are increasingly adopting DevOps 
to give teams the time and freedom they need to tackle more challenging projects. But whenever you embrace 
a new strategy, there can be hiccups. Here are some common issues developers and organizations run into 
when adopting DevOps—and how to overcome them.

DevOps can streamline software development 
and delivery, bringing untold benefits to your 
business. Trust GitHub, the software development 
platform used by 83 million developers worldwide, 
to help you implement the DevOps model while 
avoiding these pitfalls. 


