
An inside look at how GitHub uses
LLMs, fine-tuning, and prompt
engineering in GitHub Copilot

Alireza Goudarzi

Senior Machine Learning Researcher

Copilot Prompt Team

Ex Copilot Model Team

Code completion with GitHub Copilot

Copilot Experience Today

Copilot Experience Today

Neighboring tabs

Snipy

Responsible AI

Truncation

Let’s get creative:
Features,
Improvements,
and more!

The LLMs Behind Copilot

• Fine-tune GitHub Copilot to better
understand and align with your
organization's unique coding practices
o Enhance library and API knowledge

o Specialized languages

o Adapt to evolving codebases

• Only accessible to your org

Fine-tuned Copilot Models for Enterprises

• Identify most impactful language opportunities to improve GitHub Copilot
o Beginning with C# and C++

• How can we improve the underlying LLM to improve GitHub Copilot performance on a
specific language?
o Data engineering

o Fine-tuning methodology

Language-specific LLM Fine-tuning

• Language-specific contextualization

• Project-wide RAG

Contextualization

• Can GitHub Copilot help make suggestions away from your cursor?

Next Edit Suggestions

• Offline evaluation is inherently difficult

• A/B testing: What do users prefer?

Image from https://xkcd.com/2530

Improvements to GitHub Copilot

Thank you!

	AI (Delete if not your track)
	Slide 1: An inside look at how GitHub uses LLMs, fine-tuning, and prompt engineering in GitHub Copilot
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Let’s get creative: Features, Improvements, and more!
	Slide 6
	Slide 7: Fine-tuned Copilot Models for Enterprises
	Slide 8: Language-specific LLM Fine-tuning
	Slide 9
	Slide 10: Next Edit Suggestions
	Slide 11
	Slide 12

