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Code completion with GitHub Copilot



Copilot Experience Today



Copilot Experience Today

Neighboring tabs

Snipy

Responsible AI

Truncation



Let’s get creative:
Features, 
Improvements,
and more!



The LLMs Behind Copilot



• Fine-tune GitHub Copilot to better 
understand and align with your 
organization's unique coding practices
o Enhance library and API knowledge

o Specialized languages

o Adapt to evolving codebases

• Only accessible to your org

Fine-tuned Copilot Models for Enterprises



• Identify most impactful language opportunities to improve GitHub Copilot
o Beginning with C# and C++

• How can we improve the underlying LLM to improve GitHub Copilot performance on a 
specific language?
o Data engineering

o Fine-tuning methodology

Language-specific LLM Fine-tuning



• Language-specific contextualization

• Project-wide RAG

Contextualization



• Can GitHub Copilot help make suggestions away from your cursor? 

Next Edit Suggestions



• Offline evaluation is inherently difficult

• A/B testing: What do users prefer? 

Image from https://xkcd.com/2530

Improvements to GitHub Copilot



Thank you!
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