

“The book” on
GitHub Enterprise
Cloud Adopton

WRIT TEN BY GITHUB WITH

What’s inside

3 Introducton

4 What is GitHub?

4 Understanding GitHub

5 Capabilites

7 Adoptng GitHub

7 Cloud frst

7 Thinking about structure

8 Constructs

10 How (opinionated)

10 One Enterprise to rule all (internal) things

17 Organizatons

21 Repositories

23 Teams

24 Users

25 Platform security (secure your environment)

32 Summary

Authors:
Philip Holleran Field CTO, GitHub
Kevin Alwell Principal Engineer, GitHub

Introducton

Document purpose
This document provides an Enterprise playbook
for technology decision makers, developer tools
teams and security specialists responsible for
understanding the GitHub Enterprise Cloud
platform, architectng the environment for their
business, creatng and executng a migraton
roadmap, and making a business case
demonstratng the value of developing software
on the GitHub platform.

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn PAGE 4

0

What is GitHub?

Understanding GitHub
GitHub is the home of 100 million software developers and countng. It’s where
builders collaborate on software from Idea to Producton. The platform is uniquely
fortunate to anchor the Open Source community, including some of the world’s most
infuental projects. Enterprises operatng in the platform realize tremendous value from
standardizing on such a ubiquitous, developer centric software delivery platform, due
in no small part to platform services being informed by data from Public repositories.
Historically GitHub has been hyper focused on the developer experience for git based
Source Code Management. Since the Microsoft acquisiton in 2018 the platform has
evolved from a leading SCM tool to an Enterprise end to end software delivery platform
inclusive of natve best in class SCM, Planning and Tracking tools, CI/CD, Applicaton
Security, IDE as a Service and AI pair programming. Core to our strategy is support for
teams that seek to employ the Best of Breed approach to the developer toolchain. The
community of developers and Enterprises atract modern service providers who build
world class integratons to support their workfows (ex: Jira, Jenkins, Azure DevOps).

Best in class Developer Experience
Developers know and love working with GitHub. This accelerates tme to productvity
and improves overall satsfacton leading to talent acquisiton and retenton benefts.

A fully integrated developer toolchain prevents unnecessary context switching, keeping
developers in their fow delivering software. According to our latest Forrester report, after
using GHEC and GHAS for three years, composite organizatons see > 22% productvity
gains overall.

Code Reuse and collaboraton are prolifc within the platform, encouraged by an
accommodatng architecture and default innersource philosophy.

Largest Connected Developer
Community

• Largest community of developers in the world, working in one place generatng
millions of lines of open source software that can be reused.

• Enterprise customers derive value from the OSS community in numerous ways
including through well maintained Service Provider integratons, Data driven
services like Dependabot and Copilot.

• Ubiquity of GitHub drives familiarity, impactng developer productvity and
happiness.

• Access to reusable components already built by the community

• Ability to share open innovaton to help global causes

“ ” —

https://github.blog/2023-01-25-100-million-developers-and-counting/
https://github.blog/2022-10-26-3-strategies-for-consolidating-your-toolkit-and-boosting-productivity/
https://github.blog/2022-12-20-increase-developer-productivity-save-time-on-developer-onboarding-and-drive-roi-in-2023/#key-challenges

“ THE b O Ok ” On GiTHUb EnTERPRisE ClOUD A D OP TiOn

WH AT is GiTHUb?

PAGE 5

C ON T.

0

Integrated, Developer Centric
Applicaton Security

• Applicaton Security is natve within GitHub through Code, Secret and Dependency
Scanning.

• Result quality is a central focus, reducing fricton and improving mean tme to
remediaton.

• Integrated AppSec maintains the developer fow preventng a productvity killing,
disjointed experience.

• Niche 3rd party integratons are supported through a frst class integraton workfow.

Stable, Innovatng partner for the
long term

• In 2018, GitHub became a Microsoft company. Microsoft has since communicated
that GitHub is their preferred developer tools platform.

• Since the Microsoft acquisiton GitHub has hired thousands of Engineers that
contnue to mature core services resultng in deeper integraton, greater value and
tool consolidaton.

• GitHub contnues to diferentate through services like GitHub Advanced Security,
Copilot and Codespaces.

• GitHub contnues to demonstrate customer centricity when developing and
delivering on the Product Roadmap.

Capabilites
Source control and collaboraton
A GitHub repository contains all of your project’s fles and each fle’s revision history
tracked through the git version control system. You can discuss and manage your
project’s work within the repository. Additonally, the Repository interface provides
access to other natve developer tools such as GitHub Advanced Security, Actons,
Copilot, CodeSpaces and Projects.

—

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

WH AT is GiTHUb?

PAGE 6

C ON T.

0

Security
GitHub Advanced Security is comprised of developer centric, best in class, natve
Applicaton Security tools. GHAS includes Code, Secret and OSS dependency
scanning.

Automaton
GitHub Actons is a natve contnuous integraton and contnuous delivery (CI/CD)
platform that allows you to automate your build, test, and deployment pipeline. You
can create workfows that build and test every pull request to your repository, or deploy
merged pull requests to producton.

Planning
A GitHub Project is an adaptable project planning board that integrates with your
repositories issues and pull requests to help you plan and track your work efectvely.

Developer environments
GitHub CodeSpaces is a natve, cloud hosted IDE confgured as code, designed to
accelerate tme to productvity and reduce the overhead of maintaining a local IDE for
applicaton development.

AI Code Completon
GitHub Copilot uses the OpenAI Codex to suggest code and entre functons in real-
tme, right from your editor. Research has found GitHub Copilot helps developers code
30% faster, focus on solving bigger problems, stay in the fow longer, and feel more
fulflled with their work.

Discussions
GitHub Discussions is a collaboratve communicaton forum for the community
around an open source or internal project. Community members can ask and answer
questons, share updates, have open-ended conversatons, and follow along on
decisions afectng the community’s way of working.

“ ” —

https://github.com/features/copilot
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn PAGE 7

0

AAD
conriec:t

E:nle1prt,e Acc:ount
Ce,ntraliza.11011

S$0 & Auto-PrOYisiooing
Audilabilify

Secumy Entorcement
Polley Enforcemem

Billing
U~Ma:n.tg~•

lndopondont Buc.lno.s
Unit

Policies & Controls

/Enterprise/

Enttr'p4'iH
Ac:count

Global Cenua.liz~
M._,,.,_gernent

Or'~r'liUl•CN'I controls

L.ocoJAu~
AppSeci:>oJCies

Fealure Manageme111
lricfVmtiOrl W.anagem:ml

Team Management
Repo M.a,,agemem

Oevelop111tf1I Team A
Internal

/org•green

Dev Team B
Internal

oevTeam ...
Internal

Dev Team C
Priv,Ut

/org-red

Dev~

~ Private

Adoptng GitHub

Cloud frst
As a SaaS platform, GitHub Enterprise Cloud is the most operatonally efcient
deployment opton for Organizatons operatng at scale on GitHub. In additon to its
ability to scale to support Enterprises with more than 50,000 developers, the platform
provides resilience and disaster recovery out of the box. Modern Enterprises are
partcularly atracted to GHEC because their developers will gain access to the latest
tools available on the platform, some of which have no path to support on the hosted
soluton such as CodeSpaces. Feature availability is a major compettve advantage,
as is tme to market. On Cloud, Enterprises will gain access to features months and
sometmes quarters before they ship to server.

Thinking about structure
Organizaton structures are constantly evolving, especially in acquisitve and/or
technology driven environments. Your GitHub architecture should refect your intenton
to promote a collaboratve developer experience that respects the complex and
dynamic nature of your business.

Platform Architecture (structure your environment)

“ ” —

“ THE b O Ok ” On GiTHUb EnTERPRisE ClOUD A D OP TiOn

A D OP T inG GiT HUb

PAGE 8

C ON T.

0

Constructs
Enterprise Account
The Enterprise Account is the highest level, logically isolated construct within GitHub
Enterprise Cloud. It is what administrators use to manage how GitHub interfaces
with internal business systems like your identty provider (IdP) and log management
system. The Enterprise Account also provides the ability to defne, and enforce, policies
governing the use of GitHub resources and capabilites. For GitHub Advanced Security
users the Enterprise Account also receives AppSec insight derived from Organizatons
operatng within its confnes.

Organizaton
Enterprises consist of one or more organizatons, to which users are added.
Organizatons are the “owners” of shared repositories, discussions, and projects.
They let administrators set more granular policies on repositories belonging to the
organizaton and user behavior within the organizaton. Policies not enforced at the
enterprise level are distributed out to individual organizatons.

Organizatons also serve as a roll-up mechanism for reportng. GitHub Advanced
Security provides a summary of the security status of repositories in an organizaton.
Consumpton-based services, such as GitHub Actons and Codespaces, are reported
at both the repository and organizaton level. Spending limits on these services can be
set on a per-organizaton basis.

Repository
Repositories are your applicaton source code. In additon to source code, repositories
are the way users access applicaton security metrics, CI/CD workfows, and other day
to day actvites for developers.

This is the primary construct developers interface with on GitHub. There are three
visibility types for repositories: Public, Internal, and Private.

• Public repositories are visible to the world and are primarily used for Open Source
content.

• Internal repositories are public to members of your enterprise account.

• Private repositories are only visible to admins and individuals or teams who have
been given explicit access.

—

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

A D OP T inG GiT HUb

PAGE 9

C ON T.

0

OltHub En11Mprise CkMJd tEMU)
Slngll, Sign On

OftHub SIU loglll
gilhtJb.COIMNll81Pf\Mlllab~

OSS (Opt.n SOur~)
glthubcom

GltHub EMU Identity
~

Flbrll(1m Entorp,IH Ac:oount

Pt1rsoNJI (Prtvat•) Aepoa
on gith.lb.~OCnkem

Not 'Vialbltt outalde of EMU

FH(ibm
Prl\'ataltntemal l\&poa

No, vlslblo 0\11.Sldt of E.MU

{Ac:ceu crwy to U88ffl In yoor 6den Pro,,,kler. no outa{de oolaboraton)

Team
GitHub Teams group users of common projects or specialized skills, they are often the
mechanism for providing role based access to collectons of repositories.

User
GitHub Users are mapped to individual people. They can be added to Organizatons as
Members and repository Teams as collaborators. Two user models exist:

• Standard user accounts

• Enterprise Managed Users (EMUs)

GitHub.com standard User
Standard Users on GitHub.com are owned and operated by individuals and are
designed to follow that individual as they join, contribute and leave Organizatons
throughout their life. These Users can actvely partcipate in the OSS community.

Standard GitHub Users can be invited to join Organizatons as contributors gated by
SAML 20.0 SSO. SCIM governs the workplace identty associaton and authorizes or
terminates access automatcally. Teams can also be associated with IDP groups via
Team Sync to keep GitHub Teams in sync with AD Group membership.

Enterprise
Managed User
Enterprise Owned user accounts on
GitHub.com that operate exclusively
within the confnes of an Enterprise
account on proprietary source
code. These user accounts are
created, updated and deleted by the
Enterprise. EMUs are managed by the
Enterprise IDP, namely Azure Actve
Directory or Okta. More Informaton.

Enterprise Managed users provide an Enterprise Owned and managed construct that
has limited write authorizaton to repositories outside the Enterprise account. Their
handles are defned through the Enterprise IDP and all access is subject to Conditonal
Access Policies including IP restrictons. EMUs are provisioned through SCIM
integraton, synced via IdP group membership with GitHub Teams, subject to Enterprise
SSO and conforming to enterprise naming conventons.

“ ” —

https://docs.github.com/en/enterprise-cloud@latest/admin/identity-and-access-management/using-enterprise-managed-users-for-iam/about-enterprise-managed-users
https://GitHub.com
https://GitHub.com
https://GitHub.com

“ THE b O Ok ” On GiTHUb EnTERPRisE ClOUD A D OP TiOn PAGE 10

0

How (opinionated)

GitHub Enterprise Cloud provides a number of fexible confguraton optons, allowing
each business to confgure the platform to best meet their unique needs. While there is
no single “best” way to implement GitHub Enterprise Cloud, there are some common
implementaton paterns and steps you should carefully consider.

The following sectons discuss recommended confguraton and implementaton of
your:

 • Enterprise Account

 • Organizaton(s) and their

 • Repositories

 • Teams

 • User Accounts

One Enterprise to rule all
(internal) things
Successful GitHub Enterprise Cloud implementatons begin with establishing a single
enterprise account for all internal work. This enterprise will govern policy across your
GitHub organizatons, users, and teams, and be your single portal for managing billing

Deciding on a user model
When creatng the enterprise, you’ll need to make one key decision - which user model
works best for your company: Enterprise Managed, or Standard? The details of each
were covered in the previous secton.

Ultmately, if you need full control of your developers’ accounts and a frm separaton
between the open source community and your enterprise code - EMUs are for you.
However, if your developers will be regularly building and maintaining open source code
as a part of their daily work the Standard model may be best.

Global confguratons
Once your enterprise is established it’s tme to confgure setngs and policies that apply
to all development work. Confguratons and policies not applied at the enterprise level
are managed in each organizaton. This lets you manage your desired balance between
centralized and distributed administraton.

—

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 11

C ON T.

0

Authentcaton
The frst setng to confgure is authentcaton. A few minor diferences exist between
Enterprise Managed Users and Standard Users, so we’ll cover each of them in its own
secton.

Enterprise Managed Users
When using Enterprise Managed Users a single Identty Provider (IdP) is confgured at
the enterprise level. Supported IdPs include Azure Actve Directory (AAD) and Okta. If
you need to support users from more than one IdP, you will need to confgure either AAD
or Okta to federate your various identty providers and expose a single store with which
GitHub Enterprise Cloud will integrate.

EMUs and outside collaborators
Every user account in an EMU enterprise must be mapped to an identty in your IdP.
Collaborators, consultants, and other outside partes will require an identty in your IdP.
These identtes do not have to exist in your enterprise identty store (LDAP, AD). Azure AD
includes the concept of a guest user and both Azure AD and Okta provide support for
multple user stores.

EMUs and Conditonal Access Policies
If you use Azure AD, you can confgure GitHub to use OpenID Connect (OIDC) to
manage authentcaton with your IdP. Doing so adds support for Azure AD’s conditonal
access policies.

standard Users
When using standard users you have the opton to either:

• Confgure a single SAML 2.0+ provider at the enterprise level, or

• Confgure each organizaton with a SAML 2.0+ provider

Most customers using standard users opt for a single, enterprise-level IDP integraton.
However, if your business has several, disparate identty systems, the organizaton-level
confguraton may work best. This mult-IdP approach is most commonly used in cases
where a business operates as a set of very-loosely held portfolio companies, each with
independent IT departments, tools, and processes.

Audit log
GitHub audits events triggered by actvites in your enterprise as well as git events,
or those specifcally associated with the pushing/pulling/cloning of code. GitHub
maintains non-git logs for a confgurable period up to six months, while git events are

“ ” —

https://docs.github.com/en/enterprise-cloud@latest/admin/identity-and-access-management/using-enterprise-managed-users-for-iam/about-enterprise-managed-users#identity-provider-support
https://docs.github.com/en/enterprise-cloud@latest/admin/identity-and-access-management/using-enterprise-managed-users-for-iam/configuring-oidc-for-enterprise-managed-users
https://docs.github.com/en/enterprise-cloud@latest/admin/identity-and-access-management/using-enterprise-managed-users-for-iam/about-support-for-your-idps-conditional-access-policy
https://docs.github.com/en/enterprise-cloud@latest/admin/identity-and-access-management/using-enterprise-managed-users-for-iam/about-support-for-your-idps-conditional-access-policy
https://docs.github.com/en/enterprise-cloud@latest/admin/identity-and-access-management/using-saml-for-enterprise-iam/configuring-saml-single-sign-on-for-your-enterprise#supported-identity-providers
https://docs.github.com/en/enterprise-cloud@latest/admin/monitoring-activity-in-your-enterprise/reviewing-audit-logs-for-your-enterprise/audit-log-events-for-your-enterprise

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 12

C ON T.

0

retained for seven days. Data from the logs is available to administrators within the
GitHub UI, via the API, and via streaming.

Customers should confgure audit log streaming within GitHub to ensure all data
captured is held within their preferred log management system and retained in
accordance with existng policies. GitHub currently supports natve integraton with:

• Azure Event Hubs

• Datadog

• Splunk

as well as the ability to directly write to:

• AWS S3

• Azure Blob Storage

• Google Cloud Storage

for ingeston into your tool of choice. Some customers use this data for anomaly
detecton via tools like Defender for DevOps and the GitHub App for Splunk.

Policies
The policies pane in your GitHub Enterprise account enables the defniton, and
enforcement, of a variety of policies across your enterprise, broken down by topic:

• Repositories

• Copilot

• Actons

• Projects

• Teams

• Organizatons

• Code security and analysis

Companies using Enterprise Managed Users should note that, unless explicitly
stated, these policies apply over Organizatons but do not apply to actvity in personal
namespaces.

Repositories
Policies in this secton govern repository creaton and management.

Base permissions represent the default set of permissions (if any) granted to all
members of the enterprise. In most cases this will either be “no permission” or “no
policy” in order to allow for limited access to partcularly sensitve repositories. A number
of other permissions are detailed in the documentaton.

“ ” —

https://docs.github.com/en/enterprise-cloud@latest/admin/monitoring-activity-in-your-enterprise/reviewing-audit-logs-for-your-enterprise/streaming-the-audit-log-for-your-enterprise#setting-up-audit-log-streaming
https://docs.github.com/en/organizations/managing-peoples-access-to-your-organization-with-roles/roles-in-an-organization

“ THE b O Ok ” On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 13

C ON T.

0

Repository creaton policies cover whether a user can create a repository in the
enterprise and, if so, what its visibility can be. Repository creators are automatcally
granted administratve permissions. Each opton comes with its own set of
consideratons:

• If a “members can create repositories” policy is set at the enterprise level users are
able to create repositories in organizatons in the enterprise.

• More granular control is available by selectng “No policy, ” which allows each
organizaton to set its own policy.

• Selectng “Disabled” will prevent your users from creatng repositories in the
enterprise. Companies optng for this approach typically use an automated process
to create repositories from standard confguratons with the necessary associatons
to meet audit requirements. Some large enterprise customers prefer retroactve
confguratons applied post-create to ensure confguraton standards.

Companies using Enterprise Managed Users may want to choose to enable the opton
to “Block the creaton of user namespace repositories”, because enterprise policies do
not currently apply to repositories in personal namespaces. Doing so is not advised,
however, if your company makes heavy use of forking or chooses to leverage those
personal spaces as a “sandbox” for developers.

Copilot
Policies in this secton govern use of Copilot, GitHub’s AI pair programmer. Copilot is
licensed separately from GitHub Enterprise Cloud. If your enterprise is using Copilot you
can use the setngs here to:

• Manage which organizatons’ users have access to the Copilot service

• Allow, or prevent, suggestons from the Copilot service that match public code

Actons
Policies in this secton govern use of GitHub’s automaton and CI/CD tool, known as
GitHub Actons.

Actons can be enabled on all, some, or none of the organizatons within the enterprise.
When enabled, administrators have the ability to defne which specifc actons are
available to their workfows. Three optons are available:

• “Allow all actons and reusable workfows” will let users run workfows containing any
GitHub Acton from the marketplace or defned in any public repository. This setng
is not appropriate for most enterprises.

• “Allow enterprise actons and reusable workfows” may seem like the best choice for
enterprises, but it often isn’t. If you select this opton ALL Actons must be defned in
your enterprise. This means developers cannot consume Actons directly from the
GitHub marketplace. You will need to defne a process to clone or fork all desired

—

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 14

C ON T.

0

actons into your enterprise, train your teams to reference those internal actons,
regularly check for updates, and bring them into your clones.

• “Allow enterprise, and select non-enterprise, actons and reusable workfows” is the
sensible, manageable choice for most enterprises. Selectng this opton presents an
allow list administrators can use to individually authorize:

• GitHub-created Actons

• Actons from verifed creators (authorship is verifed by GitHub)

• Specifc third party actons and reusable workfows.

Enterprises will need to create and maintain their own process for requestng access to
GitHub Actons when implementng the last opton. Administrators will have the opton
to reference approved Actons in four ways:

• the simple owner/repo path to the Acton’s source code

• a specifc branch of the Acton, referenced as owner/repo@branch

• a specifc tag/release of the Acton, referenced as owner/repo@tag

• a specifc commit SHA of the Acton, referenced as owner/repo@SHA

Enterprises performing their own security reviews of third party Actons should use the
owner/repo@SHA syntax specifc to the version of the Acton approved as commit SHAs
are immutable while code referenced by branch names and tags can change.

If your organizaton will make use of fork-and-pull workfows you can defne how Actons
should respond to workfows initated by pull requests into the parent repository. These
setngs are especially important if you will maintain open source repositories in your
enterprise or if you make use of outside collaborators.

Projects
Policies in this secton govern use of GitHub projects, the developer-centric, built-in
project management capability of GitHub. Administrators can use this secton to,
optonally, disable use of projects in one or more organizatons and govern visibility
changes of projects.

Organizatons
This secton allows administrators to enable/disable dependency insights, which
includes aggregated informaton about the use of OSS dependencies, their licenses,
and any associated security vulnerabilites. This should remain enabled as part of a
comprehensive strategy to understand OSS consumpton, mitgate security concerns,
and maintain license compliance.

Code security and analysis
This secton includes policies governing use of GitHub’s security features.
Administrators can decide whether repository administrators should be allowed to

“ ” —

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 15

C ON T.

0

enable or disable Dependabot alerts. Most enterprises should set this to “not allowed,”
which will keep Dependabot enabled across all their code.

Users of GitHub Advanced Security will fnd additonal, similar policy controls in this
secton. If you are using Advanced Security you’ll likely want to keep all of these set
to “not allowed,” which will prevent individual repository owners from circumventng
enterprise-wide security setngs.

supplemental Controls
While the policies secton of the enterprise account covers a wide variety of enterprise
needs, your specifc requirements may necessitate the enforcement / additon of
additonal policy controls. The GitHub community has built a number of GitHub
applicatons that extend our core platform to fexibility defne, and enforce, unique
policies. A few of the most common are listed below:

• Safe-setngs: Safe-Setngs is an event driven GitHub Applicaton that prevents
confguraton drift within your organizaton. It is supplemental to the existng controls
administrators enforce at the Repository, Organizaton and Enterprise Account
levels.

• Policy-bot: Allows for the defniton, and enforcement, of robust policies governing
code review and approval of Pull Requests

• GHAS compliance: GHAS compliance is a policy as code, event driven GitHub
Acton that enables administrators to confgure their Risk threshold for security
issues reported by GitHub Code Scanning, Secret Scanning and Dependabot
Security.

• Jira: Easily connect one or more GitHub Organizatons to your Jira site and select
specifc repositories to bring your work together. Use the Smart Commits syntax to
connect GitHub and Jira together.

Managing billing
The enterprise account is the central point for all billing within GitHub Enterprise Cloud.
This includes all organizatons that are part of your enterprise (organizatons are
covered in depth in their own secton, below).

seat licenses
GitHub Enterprise Cloud licenses are provisioned to your enterprise upon purchase and
available for use. Users provisioned in your enterprise consume a license and can be
added to any of your organizatons. If you are using GitHub Advanced Security those
licenses are purchased and managed the same way.

“ ” —

https://github.com/github/safe-settings/
https://github.com/palantir/policy-bot
https://github.com/GeekMasher/advanced-security-compliance
https://github.com/apps/jira

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 16

C ON T.

0

Consumpton-based services
Use of services such as GitHub-hosted Actons runners, Packages, and Codespaces,
are billed per unit consumed. Consumpton across all of your enterprise’s organizatons
is aggregated for invoicing. Customers who purchase GitHub Enterprise with a credit
card are billed directly on a monthly basis.

Though charges are aggregated into a single invoice, a detailed, per-organizaton
report of all consumpton services are available. An enterprise-wide spending limit for
each service can be set in your enterprise setngs. In the near term, we plan to enable
organizaton level spending limits for more fne grained control.

If you purchased GitHub Enterprise Cloud through a Microsoft Enterprise Agreement
you can connect an Azure Subscripton ID to your enterprise account and have all
charges managed via your Azure invoicing. If you purchased GitHub directly on invoice,
all consumpton charges will be billed via invoice.

Some centralized tools teams may need to apply a charge back to individual teams
operatng within the environment and consuming resources. During migraton, we
recommend building a service catalog that maps repositories to projects and teams.
This catalog could be kept in sync if repository creaton is externalized. Otherwise,
repositories should have their cost center ID as a repository topic. If there is no topic, that
repository can not request to have consumpton services enabled.

Insight into consumpton services billing, including Advanced Security is provided at the
Organizaton and Enterprise levels. In some cases, reports should be programmatcally
parsed for mapping aggregate consumpton back to project teams.

Advanced security
GitHub Advanced Security is licensed per seat for actve commiters to repositories
using the features. Each license for GitHub Advanced Security specifes a maximum
number of accounts, or seats, that can use these features. A commiter is considered
actve if one of their commits has been pushed to the repository within the last 90 days,
regardless of when it was originally authored.

Compliance Reportng
GitHub provides our latest SOC reports, 3rd party atestatons, and self-reported
business operatons procedures as self-serve documents within the enterprise
administraton page.

support
Enterprise administrators can open and manage their GitHub support tckets through
the Enterprise landing page.

“ ” —

https://docs.github.com/en/enterprise-cloud@latest/billing/managing-billing-for-github-actions/viewing-your-github-actions-usage#viewing-github-actions-usage-for-your-enterprise-account
https://docs.github.com/en/enterprise-cloud@latest/billing/managing-billing-for-github-actions/managing-your-spending-limit-for-github-actions
https://github.com/orgs/github/projects/4247
https://docs.github.com/en/enterprise-cloud@latest/billing/managing-billing-for-your-github-account/connecting-an-azure-subscription-to-your-enterprise
https://docs.github.com/en/enterprise-cloud@latest/billing/managing-billing-for-github-advanced-security/about-billing-for-github-advanced-security
https://docs.github.com/en/get-started/learning-about-github/about-github-advanced-security
https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/accessing-compliance-reports-for-your-organization
https://docs.github.com/en/enterprise-cloud@latest/support/contacting-github-support/creating-a-support-ticket

“ THE b O Ok ” On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 17

C ON T.

0

Organizatons
Your enterprise will consist of one or more organizatons. Organizatons are shared
accounts where your users collaborate across many projects at once, with sophistcated
security and administratve features.

The structure you apply to your organizatons can greatly facilitate collaboraton and
discovery while reducing administratve burden - or it can create unnecessary silos and
add administratve overhead. As such, it is important to give careful consideraton to
organizaton structure ahead of tme.

Organizaton Structure
Don’t overly index your GitHub organizatons to your current corporate structure.

When setng up your GitHub Enterprise instance, the immediate “least privilege”
instnct may be to create an Organizaton for every project or department at your
company. This might seem like a good way to manage permissions and reduce noise,
but it’s not the ideal strategy and should be avoided. It:

• Does not allow for fuid organizatonal structures. Your GitHub confguraton should
gracefully handle corporate reorganizatons without having to rename organizatons
and handle all the resultng downstream work, such as re-pathing integratons and
updatng external links.

• Increases the team management burden and silos conversatons. Teams (discussed
later in this document) are currently an organizatonal construct. This means a
team defned in one organizaton cannot be @ mentoned in another organizaton.
If a team needs access to more than one org, the team must be created in each
organizaton and mapped to the appropriate IdP group.

• Increases the burden of managing integratons. GitHub Apps are installed in
organizatons. Enterprises with many organizatons must install and manage each
of their integratons in each of their organizatons. However, note that there is a limit
of 100 GitHub App installatons per Organizaton.

We want you to get started with an architecture that helps your team work together
seamlessly, creatvely, and transparently without bogging you down in unnecessary
overhead. Instead of creatng many Organizatons and siloing users, we suggest using
one or few Organizatons for shared ownership of repositories and making use of Teams
to segment users within those Organizatons.

Below are three common models successfully adopted by GitHub Enterprise Cloud
customers that efectvely utlize as few organizatons as prudent for their business:

• Single Organizaton

• Red / Green Organizatons

• Portfolio Company Organizatons

—

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 18

C ON T.

0

Model: Single Organizaton
In this model, a single organizaton is used for all (or the vast majority) of all repositories.
Many small to medium-sized organizatons (less than 5,000 developers) that largely
operate as a single company efectvely use this approach to manage their GitHub
environment.

Most users of this model set their organizaton’s base permissions to “none.” This
requires all users to be explicitly added to all repositories in order to view them and/
or propose changes. By itself this approach creates silos, greatly limits visibility, and
actvely prevents Innersource. To prevent this, enterprises using this model use teams
to ensure visibility. For example, an “all members” team can be created and added to
repositories open to collaboraton. Some have gone as far as to have this type of team
automatcally added to all repositories by default. An excepton process exists to create
repositories that must truly be kept on a need-to-know basis.

Exceptons
Slight variatons on this model exist to handle extenuatng circumstances. Some
customers using this model maintain one or two “top secret” organizatons for projects
that must be kept completely separate from all other work, like projects for highly-
sensitve customers.

Another variaton on this model uses a separate organizaton to segment repositories
managed by teams in partcular locatons. Enterprises taking this approach tend to
have concerns around intellectual property laws.

For Organizatons with 10s of thousands of developers, it may be practcal to limit
the number of developers in an organizaton to approximately 10,000. So a developer
community of 70,000 may have 7 Green Organizatons.

“ ” —

https://docs.github.com/en/organizations/managing-user-access-to-your-organizations-repositories/setting-base-permissions-for-an-organization

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 19

C ON T.

0

Sandbox

Sandbox Repos

C R•po)

C..___R_•P" _ __,)

Sandbox

.. Collaborative
• unstructured Naming
• Gov<>mPd by broad AD

groups
• No base read permission
• Not viable for production

usage
• No eonsumpuon serv,c:es

~ Enterprise Account

Green

lntemal Repos

C Rope)

C..___R_ep_o ___,)

lnnersource (internal)

• MaJ□nty ol code here
• Standardized naming
• Base read permissions
• Governed by granular

ALM groups
• v,able lor prO<fUC1oon

usage
• Top,cs for d,scoverabi'lty
• Consumption enabled

Red

Private Repos

C R@po)

C R po)

Restriced (Highly
Confidential)

• Reduced se1 or repos
• Stan<1araized naming
• Governed by granular

ALM groups
• No Base read perm,ssion
• Consumption enabled

Archive

Deprecated Res C R•po

c ___ Re_r,o __)

Not accessible

• Reslricted to ErKerprise
Admins

Model: Red / Green / Sandbox /
Archive

The Red/Green model utlizes two primary organizatons and a sandbox:

“Green” organizaton
The “green” organizaton serves as the primary collaboraton space for developers
operatng within your enterprise account. About 90% of an enterprise’s repositories
will reside here. Setng the base permissions to “write” promotes Innersource and
empowers users to propose changes to repositories. Efectve use of branch protectons
(discussed later in this document) on repositories in the organizaton ensures users can
only propose changes. Any change proposed will need to go through the defned code
review and approval process to be accepted.

Higher-level permissions to repositories are granted through teams. Each team can use
their team’s repository page to view the repositories to which they have been granted
additonal permissions. With most actvity happening in the “green” organizaton, the
burden of managing teams and integratons is minimized.

“Red” organizaton
The “red” organizaton is for repositories that must be kept on a “need-to-know” basis.
The default permissions of the organizaton are set to “none,” which requires teams to be
explicitly added to the repositories to read them or propose changes.

“ ” —

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 20

C ON T.

0

A defned process should exist for creatng repositories and teams in this organizaton.
Doing so prevents unnecessary, self-imposed constraints.

Optonally, two more organizaton may be added to this model:

“sandbox” organizaton
A “sandbox” organizaton is a place in which any user can create a repository. This
allows developers to experiment in a place more visible, and more collaboratve, than
personal repositories. Such an organizaton is especially important if you confgure
GitHub Enterprise Cloud to prevent developers from creatng personal repositories.

A process for moving work from the sandbox into the green or red organizatons should
be defned to ensure experiments can transiton into more formal management.

“Archive” organizaton
An “archive” organizaton to contain repositories no longer actvely maintained. Any
repository can be archived, making it read-only for all users. While these repositories
can remain in their existng organizatons, some enterprises prefer to transfer ownership
of these archived repositories to a separate organizaton, leaving their other repositories
for actve work. Note that choosing to do this changes the “owner/name” syntax of the
repos. This may make fnding the repository in GitHub a bit more challenging if the user
expects it to be in the original organizaton.

Model: Portfolio company (Merger,
Acquisiton, Divesttures)
There are a few scenarios in which the red/green model, described above, may not
adequately match your enterprise’s internal structures:

• Very large companies (10s of thousands of employees) divided into relatvely statc
business units. Example: a global bank consistng of retail banking, personal
investments, capital markets, and insurance divisions.

• “Portfolio” companies with operatng units functoning largely independent of one
another. Example: A media company consistng of: broadcast networks, producton
studios, streaming service, and interactve games companies. These companies
may also experience regular mergers, acquisitons, and divesttures.

In a very large company we recommend mapping your GitHub Enterprise Cloud
organizaton structure to your highest-level corporate division. These will generally be
divisions one level below the CEO and be statc in nature (reorganizatons typically
happen within the division, leaving the top level structure alone).

In a portfolio company organizatons should be mapped to each business entty.

“ ” —

https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-repositories
https://docs.github.com/en/enterprise-cloud@latest/repositories/creating-and-managing-repositories/transferring-a-repository

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 2 1

C ON T.

0

Organizatons can be transferred from one enterprise to another, easing the burden of
managing a merger or divestture.

If possible, we recommend keeping a single organizaton per portfolio company or
major business division. This is essentally multple implementatons of the single
organizaton strategy described above. At most, we recommend implementng a
minimal red/green structure for each major division. If you go down this path, consider
implementng a single sandbox across all units and keeping archive repositories in
the primary organizaton. This will help minimize the number of actve organizatons to
manage.

Open Source
Open source projects should be kept in a dedicated organizaton, separate from the
corporate org(s). Otherwise you can run into security boundary issues, partcularly when
you use outside collaborators. If you are using an Enterprise Managed User environment
this may require having separate Enterprise accounts given the constraints on the
former.

Repositories
Repositories are the core construct within which developers build software. Controls
are available to manage work associated with the repository including issue tracking,
managing proposed changes, and code reviews.

Prefer teams for permissions
Permissions can be granted to teams and individuals. When possible, Enterprises
should grant permissions solely to teams, whose membership can be synced with IdP
groups. Automaton can be created, using webhooks and the GitHub API, to revert
any individual user permissions granted. GitHub’s open source safe-setngs app
implements a form of this, enforcing permissions defned in a confguraton fle.

Base permissions
The earlier secton on organizatonal models advocated for defaultng repository
permissions to “write” when possible. GitHub provides three diferent types of default
repository permissions:

• “read” allows all organizaton members to see the repository, clone it, and partcipate
in issues. If forking is allowed in your enterprise users can fork the repository.

• “write” allows all organizaton members the ability to push code to the repository. It

“ ” —

https://docs.github.com/en/enterprise-cloud@latest/admin/identity-and-access-management/using-enterprise-managed-users-for-iam/managing-team-memberships-with-identity-provider-groups
https://docs.github.com/en/developers/webhooks-and-events/webhooks/about-webhooks
https://github.com/github/safe-settings

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 2 2

C ON T.

0

does not necessarily let members push to the default branch or approve their own
changes. Properly confgured branch protectons, discussed below, control how
members can modify the code.

• “admin” allows all organizaton members to administer the repository. This should
not be used as a default.

Repository roles
Base permission levels for repositories are fairly coarse-grained. GitHub provides an
expanded set of repository roles, which can be explicitly granted to individuals or teams.
They are:

• Read

• Triage

• Write

• Maintain

• Admin

When planning your GitHub Enterprise Cloud implementaton you may fnd a need for
even more granular permissions than those applied to the default set of repository roles.
If that happens, you can create custom roles for your organizaton and apply more fne-
grained permissions.

Branch protectons
Permissions to Git repositories are, by design of the standard, coarse. Without a
mitgatng control in place a user with “write” permissions to a repository can push
commits to any branch, including default. To prevent this, teams should establish
branch protecton rules for their repositories.

A variety of protectons are available to help teams map their desired processes to their
branching strategy, and include:

• Requiring a Pull Request and code review for all commits merged. Most teams will
enable this on their default / m̀aiǹ branch they merge features into

• Requiring automated review(s) to pass. External processes such as GItHub Actons
(CI/CD) and Advanced Security (code scanning) can create status checks on pull
requests. You can defne which checks must successfully pass before a pull request
can be merged.

• Requiring pull request approvals from diferent teams, defned in a CODEOWNERS
fle, based on what fle(s) were changed.

• Restrictng the user(s) who can push to the branch. This can help teams prevent
humans from pushing to branches managed by machine accounts as part of a
branch-based release workfow. It can also be used to limit which users are allowed

“ ” —

https://docs.github.com/en/organizations/managing-user-access-to-your-organizations-repositories/repository-roles-for-an-organization
https://docs.github.com/en/enterprise-cloud@latest/organizations/managing-peoples-access-to-your-organization-with-roles/managing-custom-repository-roles-for-an-organization
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/about-pull-request-reviews
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/collaborating-on-repositories-with-code-quality-features/about-status-checks
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 23

C ON T.

0

to merge a pull request, if mandated by policy.

• Requiring signed commits. This feature requires users’ commits to the repository by
cryptographically signed, increasing confdence in their authorship.

Enterprises may wish to require a base level of branch permissions on each repository
in an organizaton. This is possible through use of the open source safe-setngs app
(created by GitHub), or by using GitHub’s webhooks and APIs. Safe-setngs will let you
defne repository setngs, such as branch protectons, as code in a single repository.
The app can apply those policies to all existng and newly-created repositories.

Those looking to enforce complex pull request approval workfows beyond that ofered
by required reviews and CODEOWNERS should consider implementng the open source
palantr/policy-bot applicaton.

Topics
Repository topics are a useful mechanism for grouping like repositories and promotng
discovery. Use topics to tag repositories that are:

• all components of a larger system or process, i.e. “payment processing”, “mobile
access”, or “data modeling”,

• writen the same language and/or framework, i.e. “Spring Boot”, “React”, or “Rust”

• maintained by the same team

Topics are mutable by design.

Teams
Teams to manage permissions
Earlier in this document we advocated for using teams, instead of organizatons, to
manage repository permissions and visibility, facilitate conversaton, and reduce
management overhead. Teams used for permission management should be synced
with an IdP group. This allows existng IdP processes and audit controls to be relied
upon for managing access to code. Onboarding, ofboarding, and access changes are
all managed by the IdP.

Teams to facilitate communicaton
Permissions aren’t the only use for teams. GitHub teams can be used to engage project
teams (not explicitly defned in your IdP) and/or topic-based teams in conversatons:

<Graphic of a PR conversation>”Hey @octocorp/react, I’m having trouble

“ ” —

https://docs.github.com/en/authentication/managing-commit-signature-verification/about-commit-signature-verification
https://github.com/github/safe-settings
https://docs.github.com/en/rest/branches/branch-protection#update-branch-protection
https://github.com/palantir/policy-bot
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/classifying-your-repository-with-topics
https://docs.github.com/en/enterprise-cloud@latest/organizations/managing-saml-single-sign-on-for-your-organization/managing-team-synchronization-for-your-organization

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 2 4

C ON T.

0

figuring out why this component isn’t updating along with the others.
Could someone more familiar with this component give it a :eyes:?
Thanks.

They can also be automatcally assigned as reviewers to code using CODEOWNERS.

<Graphic of PR assignees, including a team added by Codeowners>

<Graphic of a simple CODEOWNERS file, showing the team added in the
above graphic>

If your enterprise does not have a simple, quick way to create and manage these groups
in your IdP, organizaton members should be able to create and manage their own ad-
hoc teams.

Team pages
Each team has its own page within an organizaton, which takes the form https://
github.com/orgs/<orgName>/teams/<teamName>. Alternatvely, you can navigate
to a team’s page from your organizaton’s main page (https://github.com/
orgs/<orgName>), clicking on teams, then clicking on the desired team.

Team Repositories
Enterprises commonly desire to easily see which teams maintain which projects. And
members within teams appreciate a canonical list of the code their team maintains.
To meet both of these needs a list of all repositories to which a team has been granted
explicit permissions (beyond the organizaton’s default) is available on each team’s
page in GitHub.

The team repositories page can be accessed by clicking on “Repositories” in the top bar,
or directly accessing it at github.com/orgs/<myOrg>/teams/<myTeam>/repositories.

Users
Additonal consideratons for
Enterprise Managed Users
The earlier secton on enterprise account confguraton detailed the diferences
between standard and enterprise managed users and how to choose between the
two. If you elect Enterprise Managed Users a few additonal confguraton optons are
present.

“ ” —

https://docs.github.com/en/organizations/managing-organization-settings/setting-team-creation-permissions-in-your-organization
https://github.com/orgs/
https://github.com/orgs/

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 2 5

C ON T.

0

Personal namespaces
By default, users can create repositories in their namespace. The user who creates
the repository is, by default, an administrator and can invite other users to collaborate
on the repository. Team-based permissions are not available as teams are owned by
organizatons, and personal namespaces are outside of any organizaton.

Some enterprises prefer to allow individual developers the freedom to experiment in
their personal namespaces. Those who do should have a defned process for promotng
experiments to organizaton-owned repositories.

Other enterprises prefer to give developers the ability to create experimental repositories
within an organizaton, often a “sandbox”. Keeping such repositories in an organizaton
lets them apply organizaton-wide policies to those experiments and use teams to
manage access. This behavior can be enforced by blocking the creaton of user
namespace repositories

Restricted users for partners / consultants
Managing access for partners and consultants presents a unique challenge.
Such users often need access to several repositories, and to partcipate in team
conversatons. However, adding them as full members of the organizaton would grant
them the default access given to all other organizaton members, which may be too
broad.

For this reason, GitHub provides a “restricted’ user type. Restricted users in an EMU
environment operate as standard users, but they do not have access to internal
repositories.

Platform security (secure
your environment)
Authentcaton & Authorizaton
Establishing controls

• Push Protectons

• When you enable push protecton, secret scanning proactvely checks pushes for
high-confdence secrets (those identfed with a low false positve rate). Secret
scanning lists any secrets it detects so the author can review the secrets and
remove them or, if needed, allow those secrets to be pushed.

“ ” —

https://docs.github.com/en/enterprise-cloud@latest/admin/policies/enforcing-policies-for-your-enterprise/enforcing-repository-management-policies-in-your-enterprise#enforcing-a-policy-for-repository-creation
https://docs.github.com/en/enterprise-cloud@latest/code-security/secret-scanning/protecting-pushes-with-secret-scanning

“ THE b O Ok ” On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 26

C ON T.

0

• In additon to push protectons for Secret Scanning, GitHub is developing (or has
developed) additonal Organizaton controls to limit pushes that are too large,
containing invalid extensions (.mov, etc), non compliant commit messaging and
fle path length limits.

• Code In/Exfltraton

• Some organizatons apply broad network controls to limit developer access to
github.com to primitvely address the risk of data exfltraton. However, GitHub
UI trafc can be managed through an enterprise session decorator indicatng
an actve EMU session that inherently prevents write access to public GitHub.
com. If the decorator exists, trafc to GitHub is allowed because constraints are
automatcally applied. If the decorator does not exist, trafc is further evaluated.
This doesn’t satsfy all aspects of malicious exfltraton but it does provide another
layer of control to prevent inadvertent publishing to public GitHub. Consider
monitoring trafc to GitHub at the proxy or network gateway for this decorator.

• Similar to Stack Overfow, Medium or miscellaneous technical posts, with
unfetered access to GitHub.com, developers may have access to code with
malicious intent. While access to open source code has a measurably positve
impact on the quality and velocity of software delivery Organizatons should
manage its consumpton thoughtfully. There are layers of controls within most
organizatons that limit the blast radius and efcacy of that code including:

• Segmentaton within sensitve environments

• Developers may execute malicious code, but if that code doesn’t have access
to sensitve data or environments, it’s blast radius is reduced. Typically, there
are processes in place for managing code escalaton between environments
that should catch vulnerabilites prior to exploitaton.

• Automated SAST and SCA scans prior to deployment

• In the code promoton process from development, through QA and into
producton automated code scans should be enforced to provide feedback
to the developer and their team as to whether the code being introduced is
secure. GitHub provides Advanced Security features for this purpose, deeply
integrated with the developer workfow for in context remediaton.

• Private registry enforcement

• Packages pulled from GitHub and promoted through inital stages of
development are typically unavailable to build agents who only have access
to Organizaton approved private registries, excluding public registries.
Packages shunted into an applicaton that are unlisted on the applicaton
manifest are subject to standard SAST scans.

• Network in/egress controls

• Code that atempts to, for example, reach out to a malicious URI would be
prevented at the network level through standard network egress controls. All
inbound trafc from GitHub comes from known, cryptographically verifed
locatons.

—

https://GitHub.com
https://github.com

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 2 7

C ON T.

0

GitHub Enterprise Cloud (GHEC)

-;­
:;;-
::,
0

0
~ .,
E
0 .;
::,
u

Advanced
Securily

Actions
Orehestration

customer
ldP

Aclions
Runners

Source Code
Management

'1
::c
m n

Codespaces &
Copilot

customer
Log

Management

Internal Oev
Tooling

Personal Access Tokens (PAT) & ssH keys
• Classic

• Personal access tokens are an alternatve to using passwords for authentcaton
to GitHub when using the GitHub API or the command line. Personal access
tokens are intended to access GitHub resources on behalf of yourself. To access
resources on behalf of an organizaton, or for long-lived integratons, you should
use a GitHub App.

• V2

• Modern personal access tokens provide more fne grained access to Organizaton
resources. In contrast to most classic tokens, they also have fnite lifespans -
defned during credental creaton.

• MFA

• For supported IdPs MFA is typically handled within that environment. However,
GitHub also provides natve MFA for non-EMU organizatons.

Integratons with Existng Tooling
Enterprises are dutfully hesitant to create a porous network boundary for their self
hosted resources. As such, integratng a SaaS service such as the GitHub platform
requires a thoughtful, layered approach. The following integraton architecture and
design paterns ensure secure connectvity between GitHub Enterprise Cloud and your
self hosted resources.

Common integraton architecture

“ ” —

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token#about-personal-access-tokens
https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 2 8

C ON T.

0

Webhooks
Webhooks allow integratons to subscribe to events on GitHub and receive notfcaton
when those events occur. Integratons create webhooks, select the events for which
they desire notfcaton, provide a publicly-routable HTTPS endpoint to which GitHub
can deliver a JSON payload, and (optonally) a secret value GitHub can use to
cryptographically sign the payload.

Webhook payloads are JSON delivered in an HTTPS POST.

Delivering webhooks to on premises resources
As part of your deployment of GitHub Enterprise Cloud you may need to have webhooks
send notfcatons to applicatons hosted behind your frewall. The two most common
needs are sending notfcatons to locally-deployed CI/CD solutons, like Jenkins, and to
locally-deployed project management tooling, like Jira Server.

With proper network confguraton it is possible for GitHub Enterprise Cloud to notfy
these systems. This is achieved through implementng a form of reverse proxy, which
includes:

• A publicly-routable FQDN to which GitHub can send the HTTPS post

• URL rewrite and port forwarding to the appropriate applicaton

This patern can be implemented using of-the shelf components from vendors like
ngrok, confguraton of existng web servers like NGINX, or a commercial product such
as a WAF or API gateway.

securing webhook deliveries to on premises resources
When implementng a reverse proxy to handle webhook delivery GitHub recommends
the following practces:

• Only allow inbound HTTPS trafc on port 443 to your FQDN

• Only allow trafc from the IP ranges advertsed in the hooks secton of htps://api.
github.com/meta

• Terminate SSL at your FQDN and inspect the JSON payload for the presence of well-
formated JSON

• Ensure the soluton(s) you are integratng with support, and use, webhook signatures

HTTPS requests from GitHub.com containing informaton about an event that has
happened on the platform. They serve as the preferred mode of integraton for service to
service communicaton.

“ ” —

https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads
https://ngrok.com/docs/integrations/github/webhooks
https://api.github.com/meta
https://api.github.com/meta
https://docs.github.com/en/developers/webhooks-and-events/webhooks/securing-your-webhooks
https://GitHub.com

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 2 9

C ON T.

0

Copilot endpoints
htps://github.com/login/device/code

htps://github.com/login/oauth/access_token

htps://api.github.com/user

htps://api.github.com/copilot_internal/v2/token

htps://api.github.com/copilot_internal/notfcaton

htps://default.exp-tas.com

htps://copilot-telemetry.githubusercontent.com/telemetry

htps://copilot-proxy.githubusercontent.com

APi access
iP allow lists
Integratons with GitHub may need to call GitHub’s APIs in order to properly functon.
If you have confgured an IP allow list for your organizaton the IP ranges of any
integratons installed must be included in the allow list. When setng up the IP allow list
you can optonally allow installed integratons to update it. If the author of the integraton
provides an allow list for their applicaton it will automatcally be added to your allow list.
If not, the allow list will need to be managed manually.

IP allow lists and Conditonal Access Policies for EMUs

If you are using Enterprise Managed Users with OIDC SSO GitHub will automatcally use
your IdP’s conditonal access policy (CAP) IP conditons to validate user interactons
with GitHub. You will need to ensure the IP ranges of all applicatons and integratons
are added to your IdP’s CAP.

IP allow lists, CAP, and Actons runner access

GitHub provides hosted Actons runners you can use to perform your builds,
deployments, statc analysis scans, and any other desired automatons. If you are using
GitHub-hosted runners with 4 or more vCPUs you can receive a statc IP address for
your runners. This IP address is unique to your enterprise and can be added to your IP
allow list or IdP CAP to grant the runners access to your code.

Polling
If you are writng an integraton or automaton against the GitHub API you should
avoid API polling. To ensure the performance and reliability of our system for all
GitHub enforces a hard rate limit on API actvity for individuals and a higher limit for
applicatons. Regular polling of our API, especially in larger organizatons, will hit the
rate limit.

“ ” —

https://docs.github.com/en/enterprise-cloud@latest/organizations/keeping-your-organization-secure/managing-security-settings-for-your-organization/managing-allowed-ip-addresses-for-your-organization
https://docs.github.com/en/enterprise-cloud@latest/admin/identity-and-access-management/using-enterprise-managed-users-for-iam/about-support-for-your-idps-conditional-access-policy#github-apps-and-oauth-apps
https://docs.github.com/en/actions/using-github-hosted-runners/using-larger-runners#networking-for-larger-runners
https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=2022-11-28#requests-from-personal-accounts
https://docs.github.com/en/developers/apps/building-github-apps/rate-limits-for-github-apps
https://copilot-proxy.githubusercontent.com
https://copilot-telemetry.githubusercontent.com/telemetry
https://default.exp-tas.com
https://api.github.com/copilot_internal/notification
https://api.github.com/copilot_internal/v2/token
https://api.github.com/user
https://github.com/login/oauth/access_token
https://github.com/login/device/code

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 3 0

C ON T.

0

Rather than polling our API on a scheduled basis, you should instead
use webhooks to be notfed of events on GitHub. The integraton will
receive any webhook events to which it is subscribed and can then
make an authentcated request to GitHub should any acton need to
be taken.

network Confguraton
• To connect with GitHub.com from an isolated workspace,

consider allowing scoped communicaton with the service based
on known URIs. URIs are available based on request and per
service.

• GitHub strives to deliver a modifed session header that includes
the enterprise identfer for EMU accounts. This identfer,
atached to all requests, would provide key data for network
fltering to permit write authorizaton exclusively to the enterprise
account and read to all of GitHub.

Migratons
Changing to a new system can seem like a dauntng task. Thankfully,
GitHub provides a number of helpful tools to ease the technical
aspects of migraton and services to help your organizaton establish
a plan for successful migraton with minimal impact to teams.

Migratng step by step
Version control, CI/CD, and security tools and processes can get
quite complex. Given the complexity, most enterprises focus frst
on migratng their source code to GitHub Enterprise Cloud, while
supportng existng tooling such as planning and tracking and CI/
CD. Moving all code from disparate version control systems into
GitHub lets developers quickly start realizing the benefts of GitHub:

• Code is more easily searched, shared, and collaborated on.

• Open Source dependencies are immediately monitored by
Dependabot.

• Code can be scanned and monitored for secrets by GitHub
Advanced Security.

• Cloud-hosted dev environments reduce the on-boarding and
context switching costs associated with switching between
projects

This migraton is usually performed team-by-team or business unit
by business unit. Once a team’s code is in GitHub, and integrated

“ ” —

https://GitHub.com

THE b O Ok On GiTHUb EnTERPRisE ClOUD A D OP TiOn

HO W (OPiniOn ATED)

PAGE 31

C ON T.

0

with existng tooling and processes, those teams can begin migratng their:

• Security scanning process to GitHub Advanced Security’s code scanning

• CI/CD jobs to Actons

A source code migraton creates the opportunity for a new AppSec paradigm, shiftng
security left into the developer workfow. Lastly, CI/CD and aspiratonally planning and
tracking.

Consider enabling GitHub Copilot early in the code migraton process to deliver a quick
and incredibly impactful win for your organizaton. Copilot not only makes developers
more productve, but it measurably improves their satsfacton and reduces the fricton
of adoptng new tools like Actons by creatng templates automatcally.

Migraton tooling
GitHub provides tooling to help you easily migrate your repositories and CI/CD pipelines
into GitHub.

The GitHub Enterprise Importer (GEI) is a highly customizable API-frst migraton
ofering designed to help you move your enterprise to GitHub Enterprise Cloud. The GEI-
CLI wraps the GEI APIs as a cross-platform console applicaton to simplify customizing
your migraton experience. Most enterprise customers who are using the CLI, often
abstract the CLI for their developer communites by building a dashboard on top of the
CLI. That abstracton can contain a series of validatons for the migraton including
checks on repo/fle size and lfs usage. Contributons can be mapped back to original
commiters during the migraton process.

The GitHub Actons Importer helps facilitate the migraton of Azure DevOps, CircleCI,
GitLab CI, Jenkins, and Travis CI pipelines to GitHub Actons.

“ ” —

https://github.com/github/gh-gei
https://github.com/github/gh-valet

“ THE b O Ok ” On GiTHUb EnTERPRisE ClOUD A D OP TiOn PAGE 32

0

Summary

GitHub, as a wholly owned subsidiary of Microsoft strives to
contnuously provide an experience developers know and
love so that they can deliver experiences that delight your
customers. GitHub Enterprise Cloud is an enterprise market
leading, developer frst, software delivery platform. In a
world consumed by software, GitHub is the advantage.

—

Learn more at
github.com/enterprise

WRIT TEN BY GITHUB WITH

https://github.com/enterprise

	Introduction
	What is GitHub?
	Understanding GitHub
	Capabilities

	Adopting GitHub
	Cloud first
	Thinking about structure
	Constructs

	How (opinionated)
	One Enterprise to rule all (internal) things
	Organizations
	Repositories
	Teams
	Users
	Platform security (secure your environment)

	Summary

