
 Celo
 Security Assessment
 September 12, 2019

 Prepared For:
 Marek Olszewski | Celo Labs
 m@celo.com

 Prepared By:
 Josselin Feist | Trail of Bits
 josselin@trailofbits.com

 Eric Rafaloff | Trail of Bits
 eric.rafaloff@trailofbits.com

mailto:m@celo.com
mailto:josselin@trailofbits.com
mailto:eric.rafaloff@trailofbits.com

 Executive Summary

 Project Dashboard

 Engagement Goals

 Coverage

 Recommendations Summary
 Short Term
 Long Term

 Findings Summary
 1. Spam attack through out-of-bound access on fractionMulExp and transfer
 precompiled contracts
 2. Lack of contract existence check on delegatecall will lead to unexpected behavior
 3. Lack of contract existence check in MultiSigWallet will lead to unexpected behavior
 4. Lack of contract existence check in Governance will lead to unexpected behavior
 5. Race condition in the ERC20 approve function may lead to token theft
 6. Quick buy and sell allows vote manipulation
 7. Linked list compromise through incorrect insertion
 8. Missing validation of message signatures
 9. Gas cost of precompiled transfer contract is unclear
 10. Unsafe Solidity type conversion
 11. Oracle exchange rates can be manipulated by calling removeExpiredReports
 12. Compromise of a single oracle allows limited control of the price
 13. Arithmetic rounding leads to non-constant product
 14. Lack of validation in update allows for SortedFractionMedianList compromise
 15. Exchange fallback function will lead to trapping ether
 16. Incorrect access control allows anyone to burn tokens’ reserve
 17. Missing validation in contract initializations
 18. Celo identity attestation vulnerable to SIM-swapping attacks
 19. Oracle’s median can be compromised with zero value
 20. Exchange susceptible to front-running
 21. On-chain mitigation does not prevent reserve from becoming under-collateralized
 22. Attestation validator selection takes place in a single transaction
 23. MultiSig contract is missing address validation
 24. Missing validation allows for Istanbul message forgery
 25. Missing validation allows for Istanbul message replay
 26. Future messages can crash a node through out-of-memory condition
 27. A malicious or unreachable proposer can trap the system

 © 2019 Trail of Bits Celo Assessment | 1

 28. Integer overflow allows for arbitrary priorities in stored message
 29. Liveness depends on local clock synchronization
 30. Use of static constants for gas is error-prone
 31. Missing error check can lead to incorrect randomness commitment
 32. Unhandled errors can lead to invalid node state
 33. Proposed blocks can be out of sequence
 34. Integer overflow allows for early revocation of payments
 35. Attestation validator can add their address to any identity

 A. Vulnerability Classifications

 B. Code Quality Recommendations
 Stability
 Governance
 consensus/istanbul/core/backlog.go

 C. Slither delegatecall upgradeable proxy checks

 D. Property testing of LinkedList

 E. Detecting correct inheritance initialization with Slither

 © 2019 Trail of Bits Celo Assessment | 2

 Executive Summary
 From August 7 through September 6, 2019, Celo engaged Trail of Bits to review the security
 of the Celo blockchain. Trail of Bits conducted this assessment over the course of eight
 person-weeks, with two engineers working from the celo-blockchain (8360bec4) and
 celo-monorepo (4f257e39) GitHub repositories.

 The Celo blockchain aims to provide a stable coin to its users. It is composed of a fork of
 geth , for which the main modification is the implementation of the Istanbul Byzantine Fault
 Tolerance (IBFT) consensus protocol. Several smart contracts provide on-chain validator
 selection and decentralized governance.

 Trail of Bits used the first week to familiarize ourselves with the Celo codebase. We started
 our review of the Governance contracts during the second week and looked for common
 Solidity flaws in the other contracts. We finished our review of the Governance contracts
 during the third week and started our review of the Stability contracts. During the fourth
 week, Trail of Bits focused on the Stability contracts, as well as the beginning of our IBFT
 consensus protocol review. Finally, we spent the fifth week finishing our review of the IBFT
 consensus protocol.

 During our assessment of the Celo smart contracts, we also developed custom Slither
 scripts to ensure the correct review of the upgradability mechanism (Appendix C) and the
 inheritance initialization (Appendix E). Additionally, we used Echidna to check properties on
 the linked list implementation (Appendix D). Appendix B contains code quality
 recommendations.

 Trail of Bits identified 35 issues, ranging in severity from undetermined to high, including:

 ● The ability to crash remote nodes through an out-of-bound access
 ● The ability to crash remote nodes through an out-of-memory condition
 ● Multiple price manipulations, including:

 ○ Missing access control for expired report removal functionality
 ○ A malicious oracle having limited control over the price, and
 ○ A malicious oracle being able to compromise the sorted list due to a lack of

 input validation
 ● The ability to predict the outcome of random attestation validator selection
 ● A missing check of IBFT messages, which allows a malicious validator to send forged

 messages on behalf of another validator
 ● A proposer being able to trap the system by being silent
 ● The SMS-based identity mechanism used by Celo being vulnerable to SIM-swapping

 attacks

 © 2019 Trail of Bits Celo Assessment | 3

https://github.com/celo-org/celo-blockchain
https://github.com/celo-org/celo-monorepo
https://github.com/ethereum/go-ethereum/
https://github.com/ethereum/EIPs/issues/650
https://github.com/ethereum/EIPs/issues/650
https://github.com/crytic/slither/tree/master/slither

 While the smart contracts codebase comprises several high-risk and complex components,
 Celo developed its smart contracts with a clear understanding of common Solidity flaws.
 The Celo team consciously avoided several issues frequently associated with contracts of
 this complexity. However, Celo based the stability algorithm on a new mechanism (the
 constant-product decentralized one-to-one mechanism), which lacks real-world evaluation.
 Moreover, the lack of high-level contract documentation highlighting how contracts are
 composed and interact with each other made the review more difficult.

 The Go codebase represents a significant work in progress. Not all functionality was
 implemented, and some parts of the code were redundant, making its review more
 difficult. A lack of adequate data validation resulted in multiple findings.

 Trail of Bits recommends that Celo fix the identified smart contracts issues and carefully
 evaluate the economic problems that can arise from the stability mechanism. We also
 recommend fixing all of the identified Go issues, adding gosec to Celo’s continuous
 integration pipeline, and carefully reviewing the data validation of the system.

 Once the IBFT consensus implementation has been finalized, Trail of Bits recommends
 performing a follow-up assessment to review the updated codebase.

 © 2019 Trail of Bits Celo Assessment | 4

https://github.com/securego/gosec

 Project Dashboard
 Application Summary

 Name Celo-blockchain, celo-monorepo

 Version 8360bec4, 4f257e39

 Type Go, Solidity

 Platforms Ethereum

 Engagement Summary

 Dates August 7 - September 6, 2019

 Method Whitebox

 Consultants Engaged 2

 Level of Effort 8 person-weeks

 Vulnerability Summary

 Total High-Severity Issues 20 ◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼
 ◼

 Total Medium-Severity Issues 4 ◼◼◼◼

 Total Low-Severity Issues 3 ◼◼◼

 Total Informational-Severity Issues 6 ◼◼◼◼◼◼

 Total Undetermined-Severity Issues 2 ◼◼

 Total 35

 Category Breakdown

 Access Control 2 ◼◼

 Authentication 1 ◼

 Configuration 1 ◼

 Cryptography 1 ◼

 Data Validation 23 ◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼
 ◼◼◼◼

 Denial of Service 2 ◼◼

 Patching 1 ◼

 © 2019 Trail of Bits Celo Assessment | 5

 Timing 3 ◼◼◼

 Undefined Behavior 1 ◼

 Total 35

 © 2019 Trail of Bits Celo Assessment | 6

 Engagement Goals
 Celo and Trail of Bits scoped the engagement to provide a security assessment of the Celo
 Blockchain. The Celo team identified Governance, Stability and IBFT consensus as the
 highest priorities for review.

 Specifically, we sought to answer the following questions:

 ● Is governance voting correctly implemented?
 ● Can the Reserve contract be drained?
 ● How does the system react in case of an oracle error or compromise?
 ● Does stability work as intended?
 ● Is the IBFT consensus protocol working as intended?

 Coverage
 Governance contracts. Trail of Bits reviewed the validators voting mechanism for
 correctness and searched for a way to vote with more weight than purchased, or prevent
 other users from voting. We reviewed the D'Hondt implementation, while considering
 potential out-of-gas issues. We also focused on the correct state transition of governance
 voting. Finally, we checked whether the notice period of the bonded deposit could be
 bypassed.

 Stability contracts. Celo based its stability algorithm on the
 constant-product-market-maker model. We reviewed the model, taking into account its
 arithmetic imprecision, handling of oracle compromise, and the stability of the buckets. We
 also reviewed the sorted oracle list implementation to ensure the correct order of its
 elements.

 Common contracts. We reviewed the implementation of the gold token for correctness.
 As several contracts rely on the delegatecall proxy pattern, we reviewed them for the most
 common flaws.

 IBFT consensus. We focused on the message event protocol, including event types such as
 PREPREPARE and COMMIT. We looked for ways to compromise a node through crafted
 messages, prevent a quorum from occurring, and trigger invalid state transitions.

 The Celo team was aware of the following issues prior to the beginning of the audit:

 ● The issues presented in Correctness Analysis of IBFT .
 ● The out-of-memory issue triggered by round change messages.

 © 2019 Trail of Bits Celo Assessment | 7

https://arxiv.org/abs/1901.07160

 ● The lack of consistency in the process to re-join the consensus after a crash. (As a
 result, we did not evaluate how nodes re-synchronize after leaving the network.)

 ● Some changes of a significant IBFT liveness pull request was not merged
 (https://github.com/celo-org/celo-blockchain/pull/366)

 ● Stability fee updates were not retroactive.

 © 2019 Trail of Bits Celo Assessment | 8

https://github.com/celo-org/celo-blockchain/pull/366

 Recommendations Summary
 This section aggregates all the recommendations made during the engagement. Short-term
 recommendations address the immediate causes of issues. Long-term recommendations
 pertain to the development process and long-term design goals.

 Short Term
 ❑ Check the input length in fractionMulExp and transfer (core/vm/contracts.go).
 Incorrectly sized input can potentially crash the node.

 ❑ Check for contract existence prior to a low-level call with non-empty data or
 delegatecall with the EXTCODESIZE opcode in Proxy.sol, MultiSig.sol and
 Governance.sol. The lack of an existence check can lead to unexpected behavior if no
 contract exists.

 ❑ Document that suicide or selfdestruct can lead to unexpected behavior. Prevent
 future upgrades from introducing these functions. A self-destructed contract might
 lead to an incorrect state of the proxy.

 ❑ Implement increaseAllowance and decreaseAllowance from OpenZeppelin in
 GoldToken.sol, StableToken.sol . These functions offer a mitigation to the ERC20
 approval race condition.

 ❑ Consider implementing a weighted stake (with the weight decreasing over time) to
 incentivize users to vote earlier, or requiring a minimal staking period. Users have no
 incentive to vote early, which makes the voting system vulnerable to quick buy or sell
 orders.

 ❑ Be sure that users are aware of the risk of front-running, and properly document
 the arbitrage opportunity. This issue is inherent in the nature of on-chain exchange and
 is present in several similar platforms.

 ❑ Prevent key from being equal to previousKey and nextKey in LinkedList.inser t
 (LinkedList.sol). Without these checks, it is possible to compromise the linked list.

 ❑ Use OpenZeppelin’s ECDSA helper library to validate signatures and consistently
 validate that the returned value is not equal to an address of zero. Direct calls to
 ecrecover do not contain the checks necessary for its correct usage.

 ❑ Update the requiredGas function in /core/vm/contracts.go#L459-L461 to return a
 value of zero. The current gas price is undefined and might lead to an incorrect
 assumption.

 © 2019 Trail of Bits Celo Assessment | 9

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d1158ea68c597075a5aec4a77a9c16f061beffd3/contracts/token/ERC20/ERC20.sol#L104-L138
https://docs.openzeppelin.com/contracts/2.x/api/cryptography#ecdsa

 ❑ Ensure that all unsafe type conversions (e.g., going from a larger integer to a
 smaller integer) are validated in BondedDeposits.sol . The codebase relies on numerous
 unsafe type conversions, which might introduce errors in future code updates.

 ❑ Allow only privileged addresses (e.g., an owner address) to call
 removeExpiredReports (SortedOracles.sol). Calling the function affects the price, which
 creates an undocumented arbitrage potential.

 ❑ Implement on-chain monitoring of the exchange and oracle contracts to report any
 suspicious activity. Each oracle has limited control over the price, which can allow them to
 manipulate it to their benefit. On-chain monitoring will help detect malicious behavior.

 ❑ Add validation present in insert to update
 (SortedFractionMedianList.sol#L99-L101). Missing validation allows an oracle to
 compromise the list.

 ❑ Remove payable from the Exchange’s fallback function. Otherwise, Ether sent to the
 contract will be trapped.

 ❑ Remove the burn function or add the onlyOwner modifier in Reserve.sol . Consider
 removing the private mintToken function. The burn function allows any caller to burn the
 balance to an arbitrary token.

 ❑ Apply all the missing validations listed in TOB-CELO-17 . Missing validation can result
 in incorrectly deployed contracts.

 ❑ Consider more secure forms of electronic identity, such as email addresses or
 domain names. SMS is an insecure protocol that is vulnerable to SIM-swapping attacks.

 ❑ Document the risk of SIM-swapping attacks. Users must be aware of the risk they
 incur when using SMS for attestation.

 ❑ Prevent the contract from accepting either a numerator and denominator of 0 in
 SortedOracles.so l. An oracle can compromise the list with these values.

 ❑ Consider lowering the amount of gold tokens from which the tax fee is triggered.
 In its current form, the system is at risk of being under-collateralized.

 ❑ Monitor the price to ensure the reserve is always over-collateralized from a given
 threshold. In its current form, the system is at risk of being under-collateralized.

 © 2019 Trail of Bits Celo Assessment | 10

 ❑ Remove the validator selection from request (Attestations.sol), and perform the
 selection in a separate transaction. The current validator selection process is
 deterministic, and users can know who the validator will be before sending a request.

 ❑ Add the notNull(newOwner) modifier to replaceOwner (MultiSig.sol). The lack of the
 modifier allows setting the zero address as an owner.

 ❑ Ensure that the message address is the message’s sender, and the signer of the
 message is also the message’s sender (core/handler.go). Missing validation of a
 message’s sender address allows anyone to replay broadcasted messages, and allows a
 validator to send a message on behalf of other validators.

 ❑ Limit the number of requests per source stored in the backlog
 (consensus/istanbul/handler.go). The unbounded buffer can lead the node to crash,
 due to an out-of-memory error.

 ❑ Change the proposer if he never send a PREPREPARE message (IBFT state
 transition). If the proposer has not changed, he is able to trap the system indefinitely.

 ❑ Check for arithmetic overflows in backlog.Priority
 (consensus/istanbul/core/backlog.go). The overflow allows the user to set arbitrary
 priority.

 ❑ Document that users must keep an accurate local time when using Celo. An
 insecure source of local time can allow an attacker to isolate a target from the network.

 ❑ Create a config file to contain the gas limit, or allow unlimited gas from system
 calls. The statically hardcoded gas limits are error-prone and might cause the system to
 become trapped.

 ❑ Check the error value returned by computeCommitment in random.go . The missing
 error check might lead to unexpected behavior.

 ❑ Consider allowing only buy and sell orders that do not lead to loss of precision.
 StableToken uses the constant-product-market-maker model. The model relies on the
 product of the StableToken and GoldToken buckets being constant. Due to a rounding
 imprecision, the product does not stay constant.

 ❑ Perform consistent error handling. If a failed operation would result in an invalid
 node state, divert program control flow and return early. The lack of consistent error
 handling is error-prone and makes code review more difficult.

 © 2019 Trail of Bits Celo Assessment | 11

 ❑ Perform consistent validation of all incoming messages. Do not assume client-side
 validation will prevent an attacker from crafting malicious messages.

 ❑ Ensure that an overflow will not occur between timestamp and expirySeconds in
 Escrow . An overflow can allow an attacker to revoke its payments early.

 ❑ Add a minimal number (>1) of required validators for attestation. If one validator is
 malicious or compromised, they can add their SMS number to any identity.

 ❑ Use Slither printers to review that each contract has only required functions. This
 will prevent unintended functionality from being exposed.

 © 2019 Trail of Bits Celo Assessment | 12

https://github.com/crytic/slither/

 Long Term
 ❑ Avoid low-level Solidity calls. Low-level calls are error-prone and do not have the same
 in-built protections that high-level calls.

 ❑ Carefully review the Solidity documentation , especially the entire Warnings
 section. Solidity contains several pitfalls that must be known when writing smart contracts.

 ❑ Carefully review the pitfalls of using the delegatecall proxy pattern.
 Delegatecall-based upgrades require a deep understanding of EVM and are highly
 error-prone.

 ❑ Ensure that users are aware of the ERC20 increaseAllowance and
 decreaseAllowance functions, and encourage them to make use of them when
 appropriate. These functions prevent the ERC20 approval race condition.

 ❑ Add tests to the codebase that validate the proper handling of invalid signatures.
 Signatures are an important part of the codebase and must be properly tested.

 ❑ Write a specification of each new precompiled contract, and add tests to the
 codebase to check that they are followed. The precompiled contracts must have a
 specification to ensure they are tested correctly.

 ❑ Eliminate unnecessary type conversions from the codebase. The codebase relies on
 numerous unsafe type conversions, which can introduce errors in future code updates.

 ❑ Consider requiring that validators automatically call removeExpiredReports as the
 first transaction of every block. Calling this function affects the price, which creates an
 undocumented arbitrage opportunity.

 ❑ Document all expected arbitrage opportunities. Users will benefit from a discussion
 of known arbitrage opportunities offered by the system.

 ❑ Assume that an attacker may be able to compromise some of the oracles when
 designing the protocol . Price computation should be robust in case of partial
 compromise.

 ❑ Use Echidna and Manticore to:
 ● Ensure that a multisig’s owner can never be the zero address. Zero as owner will

 lead to unexpected behavior.
 ● Check the sorted lists implementation. Both tools will help find any list

 compromises.

 © 2019 Trail of Bits Celo Assessment | 13

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/

 ❑ Use Manticore to ensure the correctness of the market model computation. Price
 computation requires extra care. Symbolic execution will help identify any arithmetic
 issues.

 ❑ Use crytic.io or Slither to detect the most common Solidity flaws . Trail of Bits
 identified several of the presented findings using Slither.

 ❑ Introduce additional software tests to check that initialization validation is
 adequately enforced across all contracts. The lack of validation can result in incorrectly
 deployed contracts.

 ❑ Investigate solutions to reduce dependency on the Governance holders for system
 collateralization. Currently, the system relies on the Governance holders to send new
 collateral if the system is close to losing its collateralization. This is a manual solution and
 requires users to trust the Governance holders.

 ❑ Carefully evaluate the evolution of the gas bound of the contracts. The contracts
 rely on gas-expensive computation operations that might lead to out-of-gas issues in the
 future.

 ❑ Validate the messages after their parsing . Messages are controlled by external users
 and must be thoroughly validated. For example, the round field must always be less than 4.

 ❑ Add on-chain monitoring to check the attestation requests, and report any
 suspicious activities.

 ❑ Thoroughly validate each field that is decoded from a user-controlled source in the
 IBFT consensus implementation. Multiple issues were the result of missing data
 validation.

 ❑ Use gofuzz to check the robustness of the nodes and the precompiled contracts.
 Fuzzing will help locate potential node crashes.

 ❑ Long term, use Echidna and Manticore to ensure that invalid prices cannot be
 added to the list. Moreover, consider oracles as untrusted users, and validate and
 monitor their inputs.

 ❑ Review IBFT state transitions to ensure that no state can lead to an infinite loop.
 IBFT is a new protocol and requires extra care in its state transitions.

 ❑ Investigate moving away from consensus protocols that require a global clock. The
 local clock can be easily compromised.

 © 2019 Trail of Bits Celo Assessment | 14

https://cryptic.io/
https://github.com/crytic/slither/tree/master/slither
https://github.com/google/gofuzz
https://github.com/crytic/echidna
https://github.com/trailofbits/manticore

 ❑ Add additional documentation and testing for node error handling and crash
 recovery strategies. Error handling is a frequent source of error in Go and should be
 carefully designed and implemented.

 ❑ Use SafeMath for all arithmetic operations. SafeMath will prevent all potential integer
 overflow.

 ❑ Add tests to the codebase that validate proper error handling in random.go’s
 GenerateNewRandomnessAndCommitment function. Ignoring errors can result in unexpected
 behavior.

 ❑ Add tests to the codebase that check for proper data validation preprepare.go’s
 handlePreprepare function. Consistent validation is important in ensuring that nodes
 conform to the protocol that Celo intends to implement.

 © 2019 Trail of Bits Celo Assessment | 15

 Findings Summary
 # Title Type Severity

 1 Spam attack through out-of-bound access
 on fractionMulExp and transfer
 precompiled contracts

 Data Validation High

 2 Lack of contract existence check on
 delegatecall will lead to unexpected
 behavior

 Patching High

 3 Lack of contract existence check in
 MultiSigWallet will lead to unexpected
 behavior

 Data Validation High

 4 Lack of contract existence check in
 Governance will lead to unexpected
 behavior

 Data Validation High

 5 Race condition in the ERC20 approve
 function may lead to token theft

 Timing High

 6 Quick buy and sell allows vote
 manipulation

 Timing High

 7 Linked list compromise through incorrect
 insertion

 Data Validation Low

 8 Missing validation of message signatures Cryptography Informational

 9 Gas cost of precompiled transfer contract
 is unclear

 Undefined
 Behavior

 Informational

 10 Unsafe Solidity type conversion Data Validation Informational

 11 Oracle exchange rates can be
 manipulated by calling
 removeExpiredReports

 Access Control High

 12 Compromise of a single oracle allows
 limited control of the price

 Data Validation High

 © 2019 Trail of Bits Celo Assessment | 16

 13 Arithmetic rounding leads to
 non-constant product

 Data Validation High

 14 Lack of validation in update allows for
 SortedFractionMedianList compromise

 Data Validation High

 15 Exchange fallback function will lead to
 trapping ether

 Data Validation Medium

 16 Incorrect access control allows anyone to
 burn tokens’ Reserve

 Access Control Informational

 17 Missing validation in contract
 initializations

 Data Validation Low

 18 Celo identity attestation vulnerable to
 SIM-swapping attacks

 Authentication High

 19 Oracle’s median can be compromised
 with zero value

 Data Validation High

 20 Exchange susceptible to front-running Data Validation High

 21 On-chain mitigation does not prevent
 reserve from becoming
 under-collateralized

 Data Validation High

 22 Attestation validator selection takes place
 in a single transaction

 Timing High

 23 MultiSig contract is missing address
 validation

 Data Validation High

 24 Missing validation allows for Istanbul
 message forgery

 Data Validation High

 25 Missing validation allows for Istanbul
 message replay

 Data Validation High

 26 Future messages can crash a node
 through out-of-memory condition

 Data Validation High

 27 A malicious or unreachable proposer can
 trap the system

 Denial of
 Service

 High

 © 2019 Trail of Bits Celo Assessment | 17

 28 Integer overflow allows for arbitrary
 priorities in stored message

 Data Validation Informational

 29 Liveness depends on local clock
 synchronization

 Denial of
 Service

 Low

 30 Use of static constants for gas is
 error-prone

 Configuration Informational

 31 Missing error check can lead to incorrect
 randomness commitment

 Data Validation Medium

 32 Unhandled errors can lead to invalid node
 state

 Data Validation Undetermined

 33 Proposed blocks can be out of sequence Data Validation Undetermined

 34 Integer overflow allows for early
 revocation of payments

 Data validation Medium

 35 Attestation validator can add their
 address to any identity

 Data validation Medium

 © 2019 Trail of Bits Celo Assessment | 18

 1. Spam attack through out-of-bound access on fractionMulExp and transfer
 precompiled contracts
 Severity: High Difficulty: Low
 Type: Data Validation Finding ID: TOB-CELO-01
 Target: core/vm/contracts.go

 Description
 Out-of-bounds access in the fractionMulExp precompiled contract allows an attacker to
 consume nodes’ resources without paying fees.

 fractionMulExp accesses the input array without checking its length (ex: input[0 : 32]) :

 func (c * fractionMulExp) Run (input [] byte , caller common . Address , evm * EVM , gas uint64)
 ([] byte , uint64 , error) {

 gas, err := debitRequiredGas (c, input, gas)
 if err != nil {

 return nil , gas, err
 }

 parseErrorStr := "Error parsing input: unable to parse %s value from %s "

 aNumerator, parsed := math. ParseBig256 (hexutil. Encode (input[0 : 32]))
 }

 aDenominator, parsed := math. ParseBig256 (hexutil. Encode (input[32 : 64]))

 Figure 1: contracts.go#L497-L507

 If the contract is called without enough data in the transaction, the function will trigger a
 panic. As a result, the node will not accept the transaction, and no fee will be removed from
 the user.

 If the transaction executes costly operations prior to the call to the precompiled contract,
 these operations will not have to be paid. Figure 2 shows an example.

 contract Exploit {
 function attack () public {
 // Execute costly operations
 //

 // Call to fractionMulExp, triggering the panic and
 // canceling the costly operations
 dst = address (0xff - 3);
 dst. call ("");

 }
 }

 Figure 2: Exploit.sol

 © 2019 Trail of Bits Celo Assessment | 19

 An attacker can take advantage of the situation to spam the network for free.

 A similar issue is present in the transfer precompiled contract, but has a lower impact as
 the contract is only callable by the gold token contract.

 Exploit Scenario
 Bob is a node in the Celo network. Eve deploys a contract triggering the panic and sends
 millions of transactions to Bob. As a result, Bob is unable to process the transactions and
 becomes unreachable.

 Recommendation
 Check the input length in fractionMulExp and transfer.

 Consider using a tool such as gofuzz on the Celo-specific, precompiled contracts to ensure
 their correct behavior.

 © 2019 Trail of Bits Celo Assessment | 20

https://github.com/google/gofuzz

 2. Lack of contract existence check on delegatecall will lead to unexpected
 behavior
 Severity: High Difficulty: High
 Type: Patching Finding ID: TOB-CELO-02
 Target: Proxy.sol

 Description
 Proxy uses the delegatecall proxy pattern. If the implementation is incorrectly set or
 self-destructed, the proxy can exhibit unexpected behavior.

 A delegatecall to a self-destructed contract will return success, as part of the EVM
 specification. The Solidity documentation warns:

 The low-level call, delegatecall and callcode will return success if the called account is
 non-existent, as part of the design of EVM. Existence must be checked prior to calling if
 desired.

 Proxy uses delegatecall without checking for code account existence:

 function _setAndInitializeImplementation (
 address implementation ,
 bytes calldata callbackData

)
 external
 payable
 onlyOwner

 {
 _setImplementation (implementation);
 bool success;
 bytes memory returnValue;
 (success, returnValue) = implementation. delegatecall (callbackData);
 require (success, "initialization callback failed");

 }

 Figure 1: Proxy.sol#L83-L96

 assembly {
 let implementationAddress : = sload (implementationPosition)
 let newCallDataPosition : = mload (0x40)
 mstore (0x40 , add (newCallDataPosition, calldatasize))

 calldatacopy (newCallDataPosition, 0 , calldatasize)

 let delegatecallSuccess : = delegatecall (
 gas,
 implementationAddress,
 newCallDataPosition,
 calldatasize,

 © 2019 Trail of Bits Celo Assessment | 21

https://solidity.readthedocs.io/en/v0.4.24/control-structures.html#error-handling-assert-require-revert-and-exceptions

 0 ,
 0

)

 Figure 2: fallback function execution (Proxy.sol#L35-L49)

 As a result, the proxy will not throw an error if its implementation is incorrectly set or
 self-destructed. It will instead return success, while no code was executed.

 Exploit Scenario
 Bob upgrades GoldToken to an incorrect new implementation. As a result, all the calls to
 transfer and transferFrom return success, while they do not change the state and do not
 perform token transfers. Eve uses the situation to scam Celo’s users.

 Recommendation
 Check for contract existence prior to a delegatecall with the EXTCODESIZE opcode.
 Document that suicide or selfdestruct can lead to unexpected behavior. Prevent future
 upgrades from introducing these functions.

 Carefully review the Solidity documentation , especially the entire Warnings section. In
 addition, carefully review the pitfalls of using delegatecall proxy pattern.

 References
 ● Contract upgrade anti-patterns

 © 2019 Trail of Bits Celo Assessment | 22

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/

 3. Lack of contract existence check in MultiSigWallet will lead to unexpected
 behavior
 Severity: High Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-03
 Target: MultiSig.sol

 Description
 Failure to check for a contract’s existence may lead to incorrect assumptions about the
 success of a call in the MultiSig contract.

 MultiSig is meant to allow for both the execution of code and the transfer of Ether. In
 both cases, the call is done through an assembly call:

 function external_call (
 address destination ,
 uint value ,
 uint dataLength ,
 bytes memory data

)
 private
 returns (bool)

 {
 bool result;
 /* solhint-disable max-line-length */
 assembly {

 let x : = mload (0x40) // "Allocate" memory for output (0x40 is where "free memory"
 pointer is stored by convention)

 let d : = add (data, 32) // First 32 bytes are the padded length of data, so exclude that
 result : = call (

 sub (gas, 34710), // 34710 is the value that solidity is currently emitting
 // It includes callGas (700) + callVeryLow (3, to pay for SUB) +

 callValueTransferGas (9000) +
 // callNewAccountGas (25000, in case the destination address does

 not exist and needs creating)
 destination,
 value,
 d,
 dataLength, // Size of the input (in bytes) - this is what fixes the padding

 problem
 x,
 0 // Output is ignored, therefore the output size is zero

)
 }
 /* solhint-enable max-line-length */
 return result;

 Figure 1 : MultiSig.sol#L254-L275

 The Solidity documentation warns:

 © 2019 Trail of Bits Celo Assessment | 23

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

 The low-level call, delegatecall, and callcode will return success if the calling account is
 non-existent, as part of the design of EVM. Existence must be checked prior to calling if
 desired.

 As a result, if the destination does not contain code, MultiSig will return success. Calls with
 non-empty data are likely made with the intent of executing code, while in this case no
 code can be executed.

 Exploit Scenario
 Bob proposes a transaction that is meant to transfer tokens. The destination is incorrectly
 set. Bob’s transaction is accepted and executed. As a result, Bob incorrectly assumes that
 the tokens transfer succeeded.

 Recommendation
 Check the contract’s existence prior to every low-level call with non-empty data, using the
 EXTCODESIZE opcode.

 Avoid low-level calls. If unavoidable, carefully review the Solidity documentation , especially
 the entire Warnings section.

 © 2019 Trail of Bits Celo Assessment | 24

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

 4. Lack of contract existence check in Governance will lead to unexpected
 behavior
 Severity: High Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-04
 Target: Governance.sol

 Description
 Failure to check for a contract’s existence may lead to incorrect assumptions about the
 success of a call in the Governance contract.

 Governance.externalCall uses assembly to call an external destination:

 /* solhint-disable max-line-length */
 let x : = mload (0x40) // "Allocate" memory for output (0x40 is where "free memory"

 pointer is stored by convention)
 let d : = add (data, 32) // First 32 bytes are the padded length of data, so exclude that
 result : = call (

 sub (gas, 34710), // 34710 is the value that solidity is currently emitting
 // It includes callGas (700) + callVeryLow (3, to pay for SUB) +

 callValueTransferGas (9000) +
 // callNewAccountGas (25000, in case the destination address does

 not exist and needs creating)
 destination,
 value,
 d,
 dataLength, // Size of the input (in bytes) - this is what fixes the padding

 problem
 x,
 0 // Output is ignored, therefore the output size is zero

)

 Figure 1: Governance.externalCall (Governance.sol#L1062-L1075)

 The Solidity documentation warns:

 The low-level call, delegatecall, and callcode will return success if the calling account is
 non-existent, as part of the design of EVM. Existence must be checked prior to calling if
 desired.

 As a result, if the destination does not contain code, Governance.externalCall will return
 success. Calls with non-empty data are likely to be made with the intention of executing
 code, while in this case no code can be executed.

 Exploit Scenario
 Bob proposes a transaction that is meant to transfer tokens. The destination is incorrectly
 set. Bob’s transaction is accepted and executed. As a result, Bob incorrectly assumes that
 the tokens transfer succeeded.

 © 2019 Trail of Bits Celo Assessment | 25

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

 Recommendation
 Check the contract’s existence prior to every low-level call with non-empty data, using the
 EXTCODESIZE opcode.

 Avoid low-level calls. If unavoidable, carefully review the Solidity documentation , especially
 the entire Warnings section.

 © 2019 Trail of Bits Celo Assessment | 26

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

 5. Race condition in the ERC20 approve function may lead to token the�t
 Severity: High Difficulty: High
 Type: Timing Finding ID: TOB-CELO-05
 Target: GoldToken.sol, StableToken.sol

 Description
 A known race condition in the ERC20 standard affecting the approve function could lead to
 the theft of tokens.

 The ERC20 standard describes how to create generic token contracts. Among others, an
 ERC20 contract defines these two functions:

 ● transferFrom(from, to, value)

 ● approve(spender, value)

 These functions give permission to a third party to spend tokens. Once the function
 approve(spender, value) has been called by a user, spender can spend up to the value
 of the user’s tokens by calling transferFrom(user, to, value).

 This schema is vulnerable to a race condition when the user calls approve a second time on
 a spender that has already been allowed. If the spender sees the transaction containing the
 call before it has been mined, the spender can call transferFrom to transfer the previous
 value and still receive the authorization to transfer the new value.

 Exploit Scenario
 1. Alice calls approve(Bob, 1000) . This allows Bob to spend 1,000 tokens.
 2. Alice changes her mind and calls approve(Bob, 500) . Once mined, this will

 decrease to 500 the number of tokens that Bob can spend.
 3. Bob sees the second transaction and calls transferFrom(Alice, X, 1000) before

 approve(Bob, 500) has been mined.
 4. If Bob’s transaction is mined before Alice’s, he can transfer 1,000 tokens from the

 initial call. But once Alice’s transaction is mined, Bob can call transferFrom(Alice,
 X, 500) . Bob will have transferred 1,500 tokens, even though this was not Alice’s
 intention.

 Recommendation
 One common workaround is to implement increaseAllowance and decreaseAllowance
 from OpenZeppelin . Allowance can also revert if it sets the allowance from a non-empty
 value to another non-empty value.

 Ensure users are aware of this extra functionality, and encourage them to make use of it
 when appropriate.

 © 2019 Trail of Bits Celo Assessment | 27

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d1158ea68c597075a5aec4a77a9c16f061beffd3/contracts/token/ERC20/ERC20.sol#L104-L138

 6. Quick buy and sell allows vote manipulation
 Severity: High Difficulty: High
 Type: Timing Finding ID: TOB-CELO-06
 Target: BoundedDeposit.sol, Validators.sol, Governance.sol

 Description
 Celo relies on a voting system, which allows anyone to vote with any weight at the last
 minute. As a result, anyone with a large fund can manipulate the vote.

 The voting mechanism of Celo relies on staking. There is no incentive for users to stake
 tokens well before the voting ends. Users can buy a large amount of tokens just before
 voting ends and sell them right after it. As a result, anyone with a large fund can decide the
 outcome of the vote without being a market participant.

 As all the votes are public, users voting earlier will be penalized, because their votes will be
 known by the other participants. An attacker can know exactly how much currency will be
 necessary to change the outcome of the voting, just before it ends.

 Exploit Scenario
 The system is deployed and requires one validator. Bob and Eve both register to become
 the new validator. Bob votes for $5,000 for himself. Eve votes for Bob with $10,000 as a
 validator. All the users expect Bob to win, and no one adds more votes. At the last minute,
 Eve changes her vote to become the new validator. As a result, Eve wins.

 Recommendation
 Blockchain-based online voting is a known challenge. No perfect solution has been found
 so far.

 Consider implementing a weighted stake (with the weight decreasing over time) to
 incentivize users to vote earlier. While it will not prevent users with unlimited resources to
 manipulate the vote at the last minute, it will make the attack more expensive.

 An alternative to mitigate the issue is to require users to have a minimal staking period.

 © 2019 Trail of Bits Celo Assessment | 28

 7. Linked list compromise through incorrect insertion
 Severity: Low Difficulty: Low
 Type: Data Validation Finding ID: TOB-CELO-07
 Target: LinkedList.sol

 Description
 LinkedList is a library implementing a linked list data structure. A lack of validation in the
 insertion function allows an attacker to corrupt the list.

 insert(list, key, previousKey, nextKey) inserts key between previousKey and
 nextKey in list :

 function insert (
 List storage list,
 bytes32 key ,
 bytes32 previousKey ,
 bytes32 nextKey

)
 public

 {
 require (key != bytes32 (0), "Key must be defined");
 require (! contains (list, key), "Can' t insert an existing element");

 Element storage element = list.elements[key];
 element.exists = true ;

 if (list.numElements == 0) {
 list.tail = key;
 list.head = key;

 } else {
 require (

 previousKey != bytes32 (0) || nextKey != bytes32 (0),
 "Either previousKey or nextKey must be defined"

);

 element.previousKey = previousKey;
 element.nextKey = nextKey;

 if (previousKey != bytes32 (0)) {
 require (

 contains (list, previousKey),
 "If previousKey is defined, it must exist in the list"

);
 Element storage previousElement = list.elements[previousKey];
 require (

 previousElement.nextKey == nextKey,
 "previousKey must be adjacent to nextKey"

);
 previousElement.nextKey = key;

 © 2019 Trail of Bits Celo Assessment | 29

 } else {
 list.tail = key;

 }

 if (nextKey != bytes32 (0)) {
 require (contains (list, nextKey), "If nextKey is defined, it must exist in the list");
 Element storage nextElement = list.elements[nextKey];
 require (nextElement.previousKey == previousKey, "previousKey must be adjacent to

 nextKey");
 nextElement.previousKey = key;

 } else {
 list.head = key;

 }
 }

 list.numElements = list.numElements. add (1);
 }

 Figure 1: LinkedList.insert (LinkedList.sol#L33-L85)

 Missing validation allows an attacker to insert a new key equal to previousKey , nextKey , or
 both. As a result, the added element will point to itself, creating a loop in the linked list.

 If the new key is equal to previousKey , and nextKey is set to 0, the head of the list will
 point to the new element. As a result, iterating over the list elements will always return the
 same element.

 Figure 2 shows an example of how this can be exploited:

 contract Attack {
 using LinkedList for LinkedList.List;

 LinkedList.List private list;

 function exploit () public {
 list. insert ("AA" , 0 , 0);
 list. insert ("BB" , "AA" , 0);
 list. insert ("CC" , "CC" , 0);

 }

 function getKeys () public view returns (bytes32 [] memory){
 return list. getKeys ();

 }

 function contains () public view returns (bool){
 return list. contains ("CC");

 }

 function size () public view returns (uint){
 return list.numElements;

 }
 }

 Figure 2: Attack.sol

 © 2019 Trail of Bits Celo Assessment | 30

 After calling exploit , getKeys() will return ‘CC’ three times.

 This issue does not directly affect the Celo codebase, as LinkedList.insert is either not
 directly callable, or the issue is mitigated by the caller.

 Appendix D contains an Echidna test that triggers the bug.

 Exploit Scenario
 The Celo team updates the contracts and uses LinkedList instead of SortedLinkedList to
 store the validators’ votes. Eve adds her candidate to the list’s head and points the next
 candidate to itself. As a result, only Eve’s candidate appears in the list and Eve’s candidate
 wins.

 Recommendation
 Prevent key to being equal to previousKey and nextKey in LinkedList.insert .

 Use Echidna to test the correct state transitions of the linked list implementations.

 © 2019 Trail of Bits Celo Assessment | 31

 8. Missing validation of message signatures
 Severity: Informational Difficulty: Medium
 Type: Cryptography Finding ID: TOB-CELO-08
 Target: Multiple contracts

 Description
 The ecrecover usages do not follow security best practices. As a result, an incorrect
 validation schema might be introduced in the future.

 Multiple Celo contracts use ecrecover to validate supplied cryptographic signatures. In all
 identified instances, a call to this function is not checked for failure, which is indicated by a
 return value of zero. There are also no checks to prevent signature malleability attacks. As
 stated by Solidity documentation :

 If you use ecrecover, be aware that a valid signature can be turned into a different valid
 signature without requiring knowledge of the corresponding private key. In the
 Homestead hard fork, this issue was fixed for transaction signatures (see EIP-2), but the
 ecrecover function remained unchanged.

 This is usually not a problem unless you require signatures to be unique or use them to
 identify items. OpenZeppelin have a ECDSA helper library that you can use as a wrapper
 for ecrecover without this issue.

 Figure 1 lists the impacted functions. Note that even in cases where a user-supplied
 address is checked against a signer’s address (e.g., in getSignerOfAddress and
 delegateRole), a user-supplied address of zero would pass this check.

 ● getSignerOfAddress in common/Signatures.sol#L12-L26
 ● delegateRole in governance/BondedDeposits.sol#L218-L246
 ● withdraw in identity/Escrow.sol#L132-L161
 ● validateAttestationCode in identity/Attestations.sol#L529-L554

 Figure 1: List of functions with inadequate validation of message signatures.

 Exploit Scenario
 The Celo team updates the codebase and allows 0 to be a valid signer address. As a result,
 anyone can pass the signature check by providing incorrect parameter to ecrecover .

 Recommendation
 Short term, whenever validating signatures, use OpenZeppelin’s ECDSA helper library , and
 consistently validate that the returned value is not equal to an address of zero.

 © 2019 Trail of Bits Celo Assessment | 32

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#mathematical-and-cryptographic-functions
http://eips.ethereum.org/EIPS/eip-2#specification
https://docs.openzeppelin.com/contracts/2.x/api/cryptography#ecdsa
https://docs.openzeppelin.com/contracts/2.x/api/cryptography#ecdsa

 Long term, add tests to the codebase that validate the proper handling of invalid
 signatures.

 © 2019 Trail of Bits Celo Assessment | 33

 9. Gas cost of precompiled transfer contract is unclear
 Severity: Informational Difficulty: High
 Type: Undefined Behavior Finding ID: TOB-CELO-09
 Target: core/vm/contracts.go

 Description
 The precompiled Transfer contract has an unclear gas cost. The undefined behavior might
 lead to cheaper-than-expected execution or incorrect client implementations.

 Although the contract defines an amount of required gas, it is never explicitly debited from
 the transaction. Figure 2 demonstrates this with a missing call to debitRequiredGas , which
 is the function responsible for debiting the amount of gas returned in Figure 1.

 func (c * transfer) RequiredGas (input [] byte) uint64 {
 return params.TxGas

 }

 Figure 1: /core/vm/contracts.go#L459-L461

 func (c * transfer) Run (input [] byte , caller common.Address, evm * EVM, gas uint64)
 ([] byte , uint64 , error) {

 celoGoldAddress, err : = GetRegisteredAddressWithEvm (params.GoldTokenRegistryId,
 evm)

 if err != nil {
 return nil, gas, err

 }

 if caller != * celoGoldAddress {
 return nil, gas, fmt. Errorf ("Unable to call transfer from unpermissioned

 address")
 }
 from : = common. BytesToAddress (input[0 : 32])
 to : = common. BytesToAddress (input[32 : 64])
 var parsed bool
 value, parsed : = math. ParseBig256 (hexutil. Encode (input[64 : 96]))
 if ! parsed {

 return nil, gas, fmt. Errorf ("Error parsing transfer: unable to parse value
 from " + hexutil. Encode (input[64 : 96]))

 }
 // Fail if we're trying to transfer more than the available balance
 if ! evm.Context. CanTransfer (evm.StateDB, from, value) {

 return nil, gas, ErrInsufficientBalance
 }

 gas, err = evm. TobinTransfer (evm.StateDB, from, to, gas, value)

 return input, gas, err
 }

 Figure 2: /core/vm/contracts.go#L463-L488

 © 2019 Trail of Bits Celo Assessment | 34

 The associated gas computation is unclear and missing from documentation, which may
 lead to errors in the future.

 However, the codebase is not at immediate risk, as gas ends up being debited later in a call
 to TobinTransfer .

 Exploit Scenario
 Bob implements a fork of another Ethereum client to work with the Celo codebase. Bob’s
 precompiled transfer contract takes into account the gas amount in Figure 1, while Celo’s
 does not, resulting in a consensus split.

 Recommendation
 Short term, update the requiredGas function in /core/vm/contracts.go#L459-L461 to
 return a value of zero.

 Long term, write a specification of each new precompiled contract, and add tests to the
 codebase to check that they are followed.

 © 2019 Trail of Bits Celo Assessment | 35

 10. Unsafe Solidity type conversion
 Severity: Informational Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-10
 Target: BondedDeposits.sol

 Description
 The BondedDeposit contract performs multiple type conversions without first checking the
 type’s maximum value.

 The code identified in the figures below take a value of one type and convert it to another,
 without validating that the conversion is safe (i.e., doesn’t truncate the integer). Because
 none of the instances identified are exploitable, this is only an informational-severity issue.

 function updateBondedDeposit (
 Account storage account,
 uint256 value ,
 uint256 noticePeriod

)
 private

 {
 Deposit storage bonded = account.deposits.bonded[noticePeriod];
 require (value != bonded.value);
 uint256 weight;
 if (bonded.value == 0) {

 bonded.index = uint128(account.deposits.noticePeriods.length) ;
 bonded.value = uint128(value) ;
 account.deposits.noticePeriods. push (noticePeriod);
 weight = getDepositWeight (value, noticePeriod);
 account.weight = account.weight. add (weight);
 totalWeight = totalWeight. add (weight);

 } else if (value == 0) {
 weight = getDepositWeight (bonded.value, noticePeriod);
 account.weight = account.weight. sub (weight);
 totalWeight = totalWeight. sub (weight);
 deleteDeposit (bonded, account.deposits, DepositType.Bonded);

 } else {
 uint256 originalWeight = getDepositWeight (bonded.value, noticePeriod);
 weight = getDepositWeight (value, noticePeriod);

 uint256 difference;
 if (weight >= originalWeight) {

 difference = weight. sub (originalWeight);
 account.weight = account.weight. add (difference);
 totalWeight = totalWeight. add (difference);

 } else {
 difference = originalWeight. sub (weight);
 account.weight = account.weight. sub (difference);
 totalWeight = totalWeight. sub (difference);

 }

 bonded.value = uint128(value) ;

 Figure 1: BondedDeposits.sol#L579-L634

 © 2019 Trail of Bits Celo Assessment | 36

 function updateNotifiedDeposit (
 Account storage account,
 uint256 value ,
 uint256 availabilityTime

)
 private

 {
 Deposit storage notified = account.deposits.notified[availabilityTime];
 require (value != notified.value);
 if (notified.value == 0) {

 notified.index = uint128(account.deposits.availabilityTimes.length) ;
 notified.value = uint128(value) ;
 account.deposits.availabilityTimes. push (availabilityTime);
 account.weight = account.weight. add (notified.value);
 totalWeight = totalWeight. add (notified.value);

 } else if (value == 0) {
 account.weight = account.weight. sub (notified.value);
 totalWeight = totalWeight. sub (notified.value);
 deleteDeposit (notified, account.deposits, DepositType.Notified);

 } else {
 uint256 difference;
 if (value >= notified.value) {

 difference = value. sub (notified.value);
 account.weight = account.weight. add (difference);
 totalWeight = totalWeight. add (difference);

 } else {
 difference = uint256 (notified.value). sub (value);
 account.weight = account.weight. sub (difference);
 totalWeight = totalWeight. sub (difference);

 }

 notified.value = uint128(value) ;

 Figure 2: BondedDeposits.sol#L644-L675

 function createAccount ()
 external
 returns (bool)

 {
 require (isNotAccount (msg . sender) && isNotDelegate (msg . sender));
 Account storage account = accounts[msg . sender];
 account.exists = true ;
 account.rewardsLastRedeemed = uint96(block.number) ;
 return true ;

 }

 Figure 3: BondedDeposits.sol#L167-L173

 Exploit Scenario
 Celo implements a code change that does not account for the identified unsafe type
 conversions, resulting in an exploitable issue within one of the Celo contracts.

 © 2019 Trail of Bits Celo Assessment | 37

 Recommendation
 Short term, ensure that all unsafe type conversions (e.g., going from a larger integer to a
 smaller integer) are validated, by first checking that the original number does not exceed
 the maximum value of the desired type.

 Long term, consider eliminating unnecessary type conversions from the codebase.

 © 2019 Trail of Bits Celo Assessment | 38

 11. Oracle exchange rates can be manipulated by calling
 removeExpiredReports
 Severity: High Difficulty: Low
 Type: Access Control Finding ID: TOB-CELO-11
 Target: SortedOracles.sol

 Description
 A lack of access control affecting report removal functionality allows for the manipulation
 of exchange rates.

 The function removeExpiredReports deletes expired oracle reports, which can change an
 oracle’s median rate and update its exchange rate. Because this function is public, users
 are free to call it whenever the exchange rate will be updated in their favor.

 function removeExpiredReports (address token , uint256 n) external {
 require (

 token != address (0) &&
 timestamps[token].tail != address (0) &&
 n < timestamps[token].numElements

);
 for (uint256 i = 0 ; i < n; i ++) {

 address oldest = timestamps[token].tail;
 uint128 timestamp = timestamps[token].elements[oldest].numerator;
 // solhint-disable-next-line not-rely-on-time
 if (uint128 (now). sub (timestamp) >= uint128 (reportExpirySeconds)) {

 removeReport (token, oldest);
 } else {

 break ;
 }

 }
 }

 Figure 1: SortedOracles.sol#L120-L136

 function removeReport (address token , address oracle) private {
 SortedFractionMedianList.Element memory originalMedian =

 getMedianElement (rates[token]);
 rates[token]. remove (oracle);
 timestamps[token]. remove (oracle);
 emit OracleReportRemoved (token, oracle);
 emitIfMedianUpdated (token, originalMedian);

 }

 Figure 2: SortedOracles.sol#L280-L286

 Exploit Scenario
 An oracle’s exchange rate is 650. Eve knows that calling removeExpiredReports(token, 2)
 would remove the last two expired reports, causing the median price to change and the
 oracle’s exchange rate to increase to 680. Eve creates a single Ethereum transaction that

 © 2019 Trail of Bits Celo Assessment | 39

 places a buy order on the exchange, calls removeExpiredReports(token, 2) , and then
 places a sell order, resulting in an immediate profit.

 Recommendation
 Short term, only allow privileged addresses (e.g., an owner address) to call
 removeExpiredReports .

 Long term, consider requiring that validators automatically call removeExpiredReports as
 the first transaction of every block.

 Alternatively, if this is considered to be an expected arbitrage opportunity, it must be
 properly documented to ensure all users are aware of it.

 © 2019 Trail of Bits Celo Assessment | 40

 12. Compromise of a single oracle allows limited control of the price
 Severity: High Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-12
 Target: SortedOracles.sol , SortedFractionMedianList.sol

 Description
 By compromising only one oracle, an attacker can control the median rate within a certain
 range.

 SortedOracle computes the median of all the price oracles. If the number of oracles is
 odd, the median is the center value of the ordered list of the rates. If an attacker
 compromises one oracle, they can control the median within a range.

 Exploit Scenario
 3 oracles are available:

 ● O 0 with a price of 603
 ● O 1 with a price of 598
 ● O 2 which is compromised by Eve

 Eve is able to set the median rate to any value in the range [598, 603]. Eve can adjust the
 rate when buying and selling to make a profit.

 Recommendation
 There is no simple fix for this issue. Consider on-chain monitoring of the exchange and
 oracle contracts to report any suspicious activity.

 Long term, assume that an attacker may be able to compromise some of the oracles. The
 price computation should be robust in case of partial compromise.

 © 2019 Trail of Bits Celo Assessment | 41

 13. Arithmetic rounding leads to non-constant product
 Severity: High Difficulty: Low
 Type: Data Validation Finding ID: TOB-CELO-13
 Target: Exchange.sol

 Description
 StableToken uses the constant-product-market-maker model. The model relies on the
 product of the StableToken and GoldToken buckets being constant. Due to a rounding
 imprecision, the product does not stay constant.

 The central equation of the stability model is the constant of the bucket product:

 Figure 1: Stability documentation

 For a purchase of gold, the equation can be reformulated as:

 goldBucket * stableBucket == (goldBucket - goldBought) * (stableBucket

 + StableSold)

 The function getBuyTokenAmount returns the amount of tokens to receive for a given
 amount of tokens sold:

 © 2019 Trail of Bits Celo Assessment | 42

https://docs.celo.org/celo-codebase/protocol/stability/doto

 function getBuyTokenAmount (
 uint256 sellAmount ,
 bool sellGold

)
 external
 view
 returns (uint256)

 {
 uint256 sellTokenBucket;
 uint256 buyTokenBucket;
 (buyTokenBucket, sellTokenBucket) = getBuyAndSellBuckets (sellGold);

 uint256 x = spread.denominator. sub (spread.numerator). mul (sellAmount);
 uint256 numerator = x. mul (buyTokenBucket);
 uint256 denominator = sellTokenBucket. mul (spread.denominator). add (x);

 return numerator. div (denominator);
 }

 Figure 2 : Exchange.sol#L159-L176

 Rounding imprecision is introduced by the division: numerator.div(denominator) . As a
 result, Figure 1’s equation does not hold.

 Each buy and sell can introduce a slight change in the bucket’s product result, leading the
 conversion between StableToken and GoldToken to be incorrect.

 Exploit Scenario
 Bob wants to sell 10 gold tokens. The current gold bucket is 100, and the stable bucket is
 100. The product of the two buckets is 1,000. Bob receives 9 stable tokens. The new gold
 bucket is 110, and the new stable bucket is 1010. The result of their product is 1,010. As a
 result, the market did not keep a constant product.

 Recommendation
 Consider allowing only buy and sell orders that do not lead to loss of precision.

 Use Manticore to ensure the correctness of the market model computation.

 © 2019 Trail of Bits Celo Assessment | 43

 14. Lack of validation in update allows for SortedFractionMedianList
 compromise
 Severity: High Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-14
 Target: SortedFractionMedianList.sol

 Description
 A lack of validation in SortedFractionMedianList.update allows a malicious oracle to
 compromise the token's rate list.

 SortedFractionMedianList allows oracles to insert new elements or update existing ones.
 The following checks are present in SortedFractionMedianList.insert :

 require ((lesserKey != address (0) || greaterKey != address (0)) || list.numElements == 0);
 require (contains (list, lesserKey) || lesserKey == address (0));
 require (contains (list, greaterKey) || greaterKey == address (0));

 Figure 1: SortedFractionMedianList.sol#L99-L101

 However, these checks are missing in SortedFractionMedianList.update :

 function update (
 List storage list,
 address key ,
 uint128 numerator ,
 uint128 denominator ,
 address lesserKey ,
 address greaterKey

)
 public

 {
 Element storage element = list.elements[key];
 // TODO: abstract repeated checks
 require (

 key != address (0) && key != lesserKey && key != greaterKey && contains (list, key),
 "key was null or equal to lesserKey or equal to greaterKey or already in DLL"

);
 // TODO(asa): Optimize by not making any changes other than value if lesserKey and

 greaterKey
 // don't change.
 // TODO(asa): Optimize by not updating lesserKey/greaterKey for key
 remove (list, key);
 (lesserKey, greaterKey) = getLesserAndGreater (

 list,
 numerator,
 denominator,
 lesserKey,
 greaterKey

);
 _insert (list, element, key, numerator, denominator, lesserKey, greaterKey);

 © 2019 Trail of Bits Celo Assessment | 44

 }

 Figure 2: SortedFractionMedianList.sol#L167-L195

 As a result, it is possible to compromise the list through the following scenarios:

 ● lesserKey and greaterKey both equal to 0
 ● A nonexistent lesserKey
 ● A nonexistent greaterKey

 For example, submitting a price with a nonexistent greaterKey will lead to the creation of a
 new list, with only the newly added element. The tail of the list will point to this element.

 Exploit Scenario
 Eve is a malicious oracle. Eve compromises the rate’s list and manipulates the median
 computation.

 Recommendation
 Add in update the same checks present in insert
 (SortedFractionMedianList.sol#L99-L101)

 Use Echidna to test the robustness of the linked lists.

 © 2019 Trail of Bits Celo Assessment | 45

https://github.com/crytic/echidna

 15. Exchange fallback function will lead to trapping ether
 Severity: Medium Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-15
 Target: Exchange.sol

 Description
 The Exchange contract’s fallback function allows the contract to receive Ether. Ether sent to
 this contract will be trapped.

 Note that the exchange’s fallback function is payable:

 function () external payable {}

 Figure 1 : Exchange.sol#L61

 No function in Exchange allows the caller to withdraw or transfer their ether (or
 GoldToken). As a result, their ether is trapped.

 Exploit Scenario
 Bob sends 100 Ether through the fallback function by mistake. Bob’s ether is lost.

 Recommendation
 Remove payable from the fallback function.

 Use crytic.io or Slither to detect the most common Solidity flaws.

 © 2019 Trail of Bits Celo Assessment | 46

https://cryptic.io/
https://github.com/crytic/slither/tree/master/slither

 16. Incorrect access control allows anyone to burn tokens’ reserve
 Severity: Informational Difficulty: High
 Type: Access Control Finding ID: TOB-CELO-16
 Target: Reserve.sol

 Description
 A lack of access control on the Reserve contract’s burn function allows anyone to burn
 tokens from the reserve.

 Reserve.burn is callable by anyone, as shown in Figure 1:

 /**
 * @notice Burns all tokens held by the Reserve.
 * @param token The address of the token to burn.
 */
 function burnToken (address token) external isStableToken (token) returns (bool) {

 IStableToken stableToken = IStableToken (token);
 require (stableToken. burn (stableToken. balanceOf (address (this))), "reserve token burn

 failed");
 return true ;

 }

 Figure 1 : Reserve.sol#L135-L143

 The codebase is not at immediate risk, as Reserve is not allowed to burn StableToken
 tokens. After adding other stable tokens or updating the StableToken, the burn function
 can lead to a loss of funds.

 Additionally the contract has the private mintToken function that is never called, but could
 allows anyone to mint tokens.

 Exploit Scenario
 The Celo team adds a new stable token. The token allows its users to burn their balances.
 Eve calls burn on the reserve’s tokens and empties the reserve’s balance.

 Recommendation
 Remove the burn function or add the onlyOwner modifier. Consider removing the private
 mintToken function.

 Use Slither printers to review that each contract has only required functions.

 © 2019 Trail of Bits Celo Assessment | 47

https://github.com/crytic/slither/

 17. Missing validation in contract initializations
 Severity: Low Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-17
 Target: Multiple contracts

 Description
 Multiple contracts are missing adequate validation in their initialization functions. For
 example, the following contracts do not check that registryAddress isn’t equal to zero:

 ● GasPriceMinimum
 ● BondedDeposits
 ● Governance
 ● Attestations
 ● Escrow
 ● Exchange
 ● Reserve
 ● StableToken

 The following validations are also missing:

 ● The Exchange contract does not validate that spreadDenominator and
 reserveFractionDenominator are not equal to zero.

 ● The Reserve contract does not validate that tobinTaxStalenessThreshold is
 greater than zero, even though the setTobinTaxStalenessThreshold function
 does.

 ● The StableToken contract does not validate that name_ and symbol_ are not blank,
 and that decimals_ does not equal zero.

 Exploit Scenario
 The Celo team deploys a new version of the Attestations contract. Due to missing
 initialization validation and a bug in a deployment script, registryAddress is set to zero,
 and attestations no longer work.

 Recommendation
 Short term, apply all of the missing validations listed above.

 Long term, introduce additional software tests to check that initialization validation is
 adequately enforced across all contracts.

 © 2019 Trail of Bits Celo Assessment | 48

 18. Celo identity attestation vulnerable to SIM-swapping attacks
 Severity: High Difficulty: High
 Type: Authentication Finding ID: TOB-CELO-18
 Target: SMS-based attestation

 Description
 The Celo blockchain relies on SMS for user identity attestations. SMS-based authentication
 schemes are known to be insecure, due to their susceptibility to “SIM-swapping” attacks.
 This makes Celo’s mapping of mobile numbers to Ethereum addresses less trustworthy,
 and can lead to users unknowingly sending tokens to an attacker’s address.

 After a user submits an attestation request, a randomly selected validator sends a
 challenge code (“secret message”) to the user’s mobile number over SMS. If the user
 submits a correct challenge code in return, this is treated as a proof that the user’s
 Ethereum address is associated with that mobile number. Other Celo users can then
 perform a lookup of the user’s Ethereum address by providing the user’s mobile number.

 Mobile numbers offer a weak form of identity and should not be relied on for user
 authentication, because they can be transferred to other mobile accounts and providers.
 Attackers regularly exploit this vulnerability to take over mobile numbers and defeat
 SMS-based authentication schemes. Unauthorized mobile number transfers are commonly
 referred to as SIM-swapping or “SIM-porting” attacks.

 Many mobile providers offer customers additional security features to protect against
 unauthorized number transfers. However, these features are optional and may not always
 withstand social engineering efforts and insider threats. Recent stories of successful
 SIM-swapping attacks illustrate the problem:

 ● The Most Expensive Lesson Of My Life: Details of SIM port hack
 ● ‘Sim swap’ gives fraudsters access-all-areas via your mobile phone
 ● Many Bengalureans lose cash to sim card swap fraud

 Exploit Scenario
 Bob wants to use Celo. Eve runs a SIM-swapping attack against Bob, allowing them to
 submit a valid attestation and change the Ethereum address associated with Bob’s mobile
 number. As a result, Eve receives all the funds sent to Bob.

 Recommendation
 Electronic identity verification is a challenging problem that does not have one simple
 solution. Consider more secure forms of electronic identity, such as email addresses or
 domain names.

 © 2019 Trail of Bits Celo Assessment | 49

https://medium.com/coinmonks/the-most-expensive-lesson-of-my-life-details-of-sim-port-hack-35de11517124
https://www.theguardian.com/money/2015/sep/26/sim-swap-fraud-mobile-phone-vodafone-customer
https://timesofindia.indiatimes.com/city/bengaluru/many-bengalureans-lose-cash-to-sim-card-swap-fraud/articleshow/58387867.cms

 If Celo still intends to use SMS to identify Celo users, consider educating users on the
 dangers of SIM-swapping attacks and encouraging them to add security PINs to their
 mobile accounts.

 © 2019 Trail of Bits Celo Assessment | 50

 19. Oracle’s median can be compromised with zero value
 Severity: High Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-19
 Target: SortedOracles.sol, FractionUtil.sol

 Description
 A lack of validation allows an oracle to report a price of zero (0/0) in any place of the sorted
 price’s list. As a result, a malicious oracle can set the median to zero.

 report lets oracles add new values to the sorted price’s list:

 function report (
 address token ,
 uint128 numerator ,
 uint128 denominator ,
 address lesserKey ,
 address greaterKey

)
 external
 onlyOracle (token)

 {
 SortedFractionMedianList.Element memory originalMedian = getMedianElement (rates[token]);
 rates[token]. insertOrUpdate (msg . sender , numerator, denominator, lesserKey, greaterKey);

 Figure 1: SortedOracles.sol#L148-L159

 Values are fractions. isLessThanOrEqualTo and isGreaterThanOrEqualTo ensure that the
 element is inserted at the correct position:

 function isLessThanOrEqualTo (
 Fraction memory x,
 Fraction memory y

)
 internal
 pure
 returns (bool)

 {
 return x.numerator. mul (y.denominator) <= y.numerator. mul (x.denominator);

 }

 Figure 2: FractionUtil.sol#L191-L200

 function isGreaterThanOrEqualTo (
 Fraction memory x,
 Fraction memory y

)
 internal
 pure
 returns (bool)

 {

 © 2019 Trail of Bits Celo Assessment | 51

 return x.numerator. mul (y.denominator) >= y.numerator. mul (x.denominator);
 }

 Figure 3: FractionUtil.sol#L157-L166

 There is no check to ensure that the fraction is not 0/0. If the value is 0/0, both
 isLessThanOrEqualTo and isGreaterThanOrEqualTo always return true.

 As a result, an oracle can set 0/0 at any place in the sorted price’s list and compromise the
 median.

 A median of 0/0 will lead, among others, to:

 ● An empty stableBucket , which will lead the attacker to buy the entire gold tokens
 reserve supply for spread*stable stable tokens. If spread is 1, the reserve can be
 bought with 1 stable token

 ● The impossibility to execute computeTobinTax

 Exploit Scenario
 There are 50,000 gold tokens in the reserve, worth $5,000,000. Eve is a malicious oracle.
 Eve changes the median to zero, buys the 50,000 gold tokens with 1 stable token and sells
 everything on a third-party market.

 Recommendation
 Short term, prevent the contract from accepting either a numerator and denominator of 0.

 Long term, use Echidna and Manticore to ensure that invalid prices cannot be added to the
 list. Moreover, consider oracles as untrusted users, and validate and monitor their inputs.

 © 2019 Trail of Bits Celo Assessment | 52

https://github.com/crytic/echidna
https://github.com/trailofbits/manticore

 20. Exchange susceptible to front-running
 Severity: High Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-20
 Target: Exchange.sol

 Description
 The Exchange contract’s exchange function allows one to buy and sell tokens. Attackers can
 make a profit by front-running price updates.

 Ethereum transactions are not instantaneously validated. An attacker can observe price
 updates before they have been accepted by the network. As a result, an attacker can place
 a buy/sell order just before an update and profit from the price change.

 The ability for an attacker’s transaction to get accepted before the original depends on the
 network state and the gas price of each transaction. However, an attacker can maintain
 control over the outcome by offering a high gas price to increase their chance of success.

 Exploit Scenario
 Eve sees an upcoming price update that is going to increase the on-chain price of gold
 tokens. Eve buys 1,000 gold tokens before the transaction. The price is then updated. Eve
 benefits from the price’s increase.

 Recommendation
 This issue is inherent in the nature of on-chain exchange and is present in several similar
 platforms. Be sure that users are aware of the risk, and properly document the arbitrage
 opportunity.

 Reference
 ● Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus Instability in

 Decentralized Exchanges

 © 2019 Trail of Bits Celo Assessment | 53

https://arxiv.org/abs/1904.05234
https://arxiv.org/abs/1904.05234

 21. On-chain mitigation does not prevent reserve from becoming
 under-collateralized
 Severity: High Difficulty: Undetermined
 Type: Data Validation Finding ID: TOB-CELO-21
 Target: Reserve.sol

 Description
 A missing on-chain mitigation to ensure the reserve’s collateralization can lead to the
 system becoming under-collateralized.

 To keep stability, the Reserve contract must hold more gold tokens’ worth of dollar than the
 current supply of stable tokens. If the reserve’s balance drops too low, it is assumed that
 Governance holders will increase the balance. No on-chain mechanism ensures that the
 reserve holds enough tokens.

 One of the on-chain mechanisms to prevent an under-collateralized state is the tax to be
 applied to every transaction:

 function computeTobinTax () private view returns (uint256) {
 address sortedOraclesAddress = registry. getAddressForOrDie (SORTED_ORACLES_REGISTRY_ID);
 ISortedOracles sortedOracles = ISortedOracles (sortedOraclesAddress);
 uint256 reserveGoldBalance = address (this).balance;
 uint256 stableTokensValueInGold = 0 ;

 for (uint256 i = 0 ; i < _tokens. length ; i ++) {
 uint256 stableAmount;
 uint256 goldAmount;
 (stableAmount, goldAmount) = sortedOracles. medianRate (_tokens[i]);
 uint256 stableTokenSupply = IERC20Token (_tokens[i]). totalSupply ();
 uint256 aStableTokenValueInGold = stableTokenSupply. mul (goldAmount). div (stableAmount);
 stableTokensValueInGold = stableTokensValueInGold. add (aStableTokenValueInGold);

 }

 // The protocol calls for a 0.5% transfer tax on Celo Gold when the reserve ratio < 2.
 // The protocol aims to keep half of the reserve value in gold, thus the reserve ratio
 // is two when the value of gold in the reserve is equal to the total supply of stable

 tokens.
 if (reserveGoldBalance >= stableTokensValueInGold) {

 return 0 ;
 } else {

 return 5 ;
 }

 }

 Figure 1: Reserve.sol#L187-L210

 © 2019 Trail of Bits Celo Assessment | 54

 However, this tax will be applied only once the reserve has less value in gold token than the
 total supply of stable coins. There is an assumption that the reserve will have access to
 other collaterals, but this assumption is not verified on-chain. As a result, tokens holders
 must trust the Governance holders to preserve the collateralization of the system.

 Exploit Scenario
 The reserve’s gold tokens are equal to $5,000,000. The total supply of stable coin is worth
 $4,500,000. The price of gold tokens drops 20%. The Governance holders do not act, and
 the system becomes under-collateralized. As a result, token holders panic and withdraw
 their funds. The withdrawals increase the under-collateralization and lead to an
 unrecoverable system.

 Recommendation
 Short term, consider lowering the amount of gold tokens from which the tax fee is
 triggered. Monitor the price to ensure the reserve is always over-collateralized with a given
 threshold.

 Long term, investigate solutions to reduce dependency on the Governance holders.

 © 2019 Trail of Bits Celo Assessment | 55

 22. Attestation validator selection takes place in a single transaction
 Severity: High Difficulty: High
 Type: Timing Finding ID: TOB-CELO-22
 Target: Attestations.sol

 Description
 By exploiting the deterministic validator selection process that takes place during an
 attestation request, an attacker can request an attestation when they know that a validator
 under their control would be chosen.

 According to Celo’s documentation :

 As mentioned previously, when requesting new attestations, random validators are
 selected to perform phone number verification. This selection needs to be unpredictable
 to prevent Eve from creating an attestation for a phone number she doesn’t control.
 Suppose, for example, that instead validators were selected in a round robin fashion. Eve
 could request an attestation when it was the turn of a validator she controls to perform
 verification. Instead of sending an SMS to the phone number (since she doesn’t own it)
 she could just produce the correct verification code since she has access to the validator’s
 private key.

 In an attempt to mitigate this issue, Celo uses a reveal-and-commit scheme that is meant to
 provide a source of entropy for the Attestations contract to use. When it is a validator’s turn
 to offer entropy, a commitment to a value is made such that it is to be revealed during their
 next turn, while the validator’s previous commitment is revealed and used during the
 current block.

 However, this issue is not adequately mitigated by the proposed scheme. As highlighted in
 Figure 1 and Figure 2, an attestation request and random validator selection both happen
 within a single transaction. This makes it possible for an attacker to predict which validator
 would be selected if they were to call request .

 function request (
 bytes32 identifier ,
 uint256 attestationsRequested ,
 address attestationRequestFeeToken

)
 external

 {
 require (

 attestationRequestFees[attestationRequestFeeToken] > 0 ,
 "Invalid attestationRequestFeeToken"

);
 require (

 IERC20Token (attestationRequestFeeToken). transferFrom (

 © 2019 Trail of Bits Celo Assessment | 56

https://docs.celo.org/celo-codebase/protocol/identity/randomness

 msg . sender ,
 address (this),
 attestationRequestFees[attestationRequestFeeToken]. mul (attestationsRequested)

),
 "Transfer of attestation request fees failed"

);

 require (attestationsRequested > 0 , "You have to request at least 1 attestation");

 if (accounts[msg . sender].attestationRequestFeeToken != address (0x0)) {
 require (

 ! isAttestationTimeValid (accounts[msg . sender].mostRecentAttestationRequest) ||
 accounts[msg . sender].attestationRequestFeeToken == attestationRequestFeeToken,

 "A different fee token was previously specified for this account"
);

 }

 // solhint-disable-next-line not-rely-on-time
 accounts[msg . sender].mostRecentAttestationRequest = uint96 (now);
 accounts[msg . sender].attestationRequestFeeToken = attestationRequestFeeToken;

 IdentifierState storage state = identifiers[identifier];

 addIncompleteAttestations (attestationsRequested, state.attestations[msg . sender]);

 Figure 1: Attestations.sol#L152-L188

 function addIncompleteAttestations (
 uint256 n ,
 AttestationsMapping storage state

)
 internal

 {
 IRandom random = IRandom (registry. getAddressForOrDie (RANDOM_REGISTRY_ID));

 bytes32 seed = random. random ();
 address [] memory validators = getValidators ();

 uint256 currentIndex = 0 ;
 address validator;

 while (currentIndex < n) {
 seed = keccak256 (abi . encodePacked (seed));
 validator = validators[uint256 (seed) % validators. length];

 Figure 2: Attestations.sol#L610-L626

 Exploit Scenario
 An attacker deploys a contract that calculates which validator would be chosen if request
 were to be called, and waits until a validator under their control is selected. Several forged
 attestations are then generated and completed, compromising the identity of multiple
 users on the Celo network.

 © 2019 Trail of Bits Celo Assessment | 57

 Recommendation
 Due to the deterministic nature of blockchain transactions, there is no perfect on-chain
 solution to this problem.

 Short term, remove the validator selection from request and perform the selection in a
 separate transaction. A more effective mitigation would be to:

 ● Ask for a number in request , n > 0, and store n and the original block.number of
 the transaction

 ● Create a select_validator function that uses blockhash(original block.number
 + n). Ensure that blockhash does not return 0

 Note that this solution is vulnerable to a malicious validator controlling the value of
 blockhash . Other schemas might be considered (e.g., requiring seeds from multiple
 validators).

 Long term, use a monitoring solution to detect suspicious behavior such as a single user
 making many attestation requests.

 © 2019 Trail of Bits Celo Assessment | 58

 23. MultiSig contract is missing address validation
 Severity: High Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-23
 Target: MultiSig.sol

 Description
 A missing modifier call can lead MultiSig to have the zero address as an owner.

 Both addOwner and replaceOwner can be set to update the list of owners.

 function addOwner (address owner)
 public
 onlyWallet
 ownerDoesNotExist (owner)
 notNull (owner)
 validRequirement (owners. length + 1 , required)

 Figure 1: MultiSig.sol#L131-L136

 function replaceOwner (address owner , address newOwner)
 public
 onlyWallet
 ownerExists (owner)
 ownerDoesNotExist (newOwner)

 {
 for (uint i= 0 ; i < owners. length - 1 ; i ++)

 if (owners[i] == owner) {
 owners[i] = newOwner;
 break ;

 }
 isOwner[owner] = false ;
 isOwner[newOwner] = true ;
 emit OwnerRemoval (owner);
 emit OwnerAddition (newOwner);

 }

 Figure 2: MultiSig.sol#L165-L180
 replaceOwner lacks the notNull modifier. As a result, the zero address can become an
 multisig owner through an incorrect update.

 Exploit Scenario
 The Celo team changes the owner of the MultiSig contract. Due to a bug in a deployment
 script, the only owner address is set to zero and access to the contract cannot be
 recovered.

 Recommendation
 Short term, add the notNull(newOwner) modifier to replaceOwner .
 Long term, use Manticore and Echidna to ensure that a multisig’s owner can never be the
 zero address.

 © 2019 Trail of Bits Celo Assessment | 59

https://github.com/trailofbits/manticore
https://github.com/crytic/echidna

 24. Missing validation allows for Istanbul message forgery
 Severity: High Difficulty: Low
 Type: Data validation Finding ID: TOB-CELO-24
 Target: consensus/istanbul/core/core.go, consensus/istanbul/core/handler.go

 Description
 Missing validation allows an elected validator to send messages on behalf of any other
 validator.

 When decoding a payload to a message, c.validateFn is called:

 msg := new (message)
 if err := msg. FromPayload (payload, c.validateFn); err != nil {

 logger. Error ("Failed to decode message from payload" , "err" , err)
 return err

 }

 Figure 1: core/handler.go#L134-L142

 c.validateFn is set to c.checkValidatorSignature :

 c. validateFn = c. checkValidatorSignature

 Figure 2: core/core.go#L53

 checkValidatorSignature checks that the message has been signed by a validator, but
 does not check that the address of the message was the message’s sender.

 As a result, a validator can sign and send messages on behalf of other validators.

 Exploit Scenario
 Eve is a validator. Eve wants to prevent Bob’s transaction from being accepted. Every time
 Bob’s transaction is in a block to be committed, Eve sends fake RoundChange messages to
 all the validators. As a result, Eve prevents Bob’s transaction from being processed.

 Recommendation
 Short term, ensure that the message address is the message’s sender.

 Long term, thoroughly validate any field decoded from a user-controlled source.

 © 2019 Trail of Bits Celo Assessment | 60

 25. Missing validation allows for Istanbul message replay
 Severity: High Difficulty: Low
 Type: Data Validation Finding ID: TOB-CELO-25
 Target: consensus/istanbul/core/core.go, consensus/istanbul/core/handler.go

 Description
 Missing validation allows anyone to replay broadcasted messages. As a result, an attacker
 can replay RoundChange messages to prevent a round from being processed.

 When decoding a payload to a message, c.validateFn is called:

 msg := new (message)
 if err := msg. FromPayload (payload, c.validateFn); err != nil {

 logger. Error ("Failed to decode message from payload" , "err" , err)
 return err

 }

 Figure 1: core/handler.go#L134-L142

 c.validateFn is set to c.checkValidatorSignature:

 c. validateFn = c. checkValidatorSignature

 Figure 2: core/core.go#L53

 checkValidatorSignature checks that the message has been signed by a validator, but
 does not check that the address of the message was the signer.

 As a result, anyone, even nodes that are not validators, can replay broadcasted messages.

 Exploit Scenario
 A round change is made. Eve collects all the messages from the round change. Once the
 new round starts, Eve continuously sends the collected messages to all the validators,
 preventing the new round from processing.

 Recommendation
 Short term, ensure that the message is signed by the sender.

 Long term, thoroughly validate any field decoded from a user-controlled source.

 © 2019 Trail of Bits Celo Assessment | 61

 26. Future messages can crash a node through out-of-memory condition
 Severity: High Difficulty: Medium
 Type: Data Validation Finding ID: TOB-CELO-26
 Target: consensus/istanbul/core/handler.go, consensus/istanbul/core/backlog.go

 Description
 Validators store messages related to future blocks. There is no limit on the number of
 messages stored. As a result, an attacker can spam a node until it reaches an
 out-of-memory condition.

 Messages returning the errFutureMessage error are stored for future processing:

 // Store the message if it's a future message
 testBacklog := func (err error) error {

 if err == errFutureMessage {
 c. storeBacklog (msg, src)

 }

 return err
 }

 switch msg.Code {
 case msgPreprepare:

 return testBacklog (c. handlePreprepare (msg, src))
 case msgPrepare:

 return testBacklog (c. handlePrepare (msg, src))
 case msgCommit:

 return testBacklog (c. handleCommit (msg, src))
 case msgRoundChange:

 return testBacklog (c. handleRoundChange (msg, src))

 Figure 1: handler.go#L157-L174

 There is no limit on the number of messages stored:

 func (c * core) storeBacklog (msg * message , src istanbul . Validator) {
 logger := c.logger. New ("from" , src, "state" , c.state)

 if src. Address () == c. Address () {
 logger. Warn ("Backlog from self")
 return

 }

 logger. Trace ("Store future message")

 c.backlogsMu. Lock ()

 © 2019 Trail of Bits Celo Assessment | 62

 defer c.backlogsMu. Unlock ()

 backlog := c.backlogs[src]
 if backlog == nil {

 backlog = prque. New (nil)
 }
 switch msg.Code {
 case msgPreprepare:

 var p *istanbul.Preprepare
 err := msg. Decode (&p)
 if err == nil {

 backlog. Push (msg, toPriority (msg.Code, p.View))
 }
 // for msgRoundChange, msgPrepare and msgCommit cases

 default :
 var p *istanbul.Subject
 err := msg. Decode (&p)
 if err == nil {

 backlog. Push (msg, toPriority (msg.Code, p.View))
 }

 }
 c.backlogs[src] = backlog

 Figure 2: backlog.go#L78-L110

 As a result, an attacker can spam a node with messages classified as future messages,
 filling the entire memory of the node and making it crash.

 Exploit Scenario
 Bob is a validator. Eve wants to prevent Bob from participating. Eve spams Bob with future
 requests and makes Bob’s node crash.

 Recommendation
 Short term, limit the number of requests per source stored in the backlog.

 Long term, use gofuzz to check the robustness of the nodes.

 © 2019 Trail of Bits Celo Assessment | 63

https://github.com/google/gofuzz

 27. A malicious or unreachable proposer can trap the system
 Severity: High Difficulty: High
 Type: Denial of Service Finding ID: TOB-CELO-27
 Target: consensus/istanbul/core/handler.go,
 consensus/istanbul/core/roundchange.go, consensus/istanbul/core/core.go

 Description
 A proposer not sending a PREPREPARE message will prevent the system from processing a
 new block.

 Only the proposer can start a round. If the validators do not receive a PREPREPARE
 message, it triggers a timeout, and executes handleTimeoutMsg :

 func (c * core) handleTimeoutMsg () {
 // If we're not waiting for round change yet, we can try to catch up
 // the max round with F+1 round change message. We only need to catch up
 // if the max round is larger than current round.
 if !c.waitingForRoundChange {

 maxRound := c.roundChangeSet. MaxRound (c.valSet. F () + 1)
 if maxRound != nil && maxRound. Cmp (c.current. Round ()) > 0 {

 c. sendRoundChange (maxRound)
 return

 }
 }

 lastProposal, _ := c.backend. LastProposal ()
 if lastProposal != nil && lastProposal. Number (). Cmp (c.current. Sequence ()) >= 0 {

 c.logger. Trace ("round change timeout, catch up latest sequence" , "number" ,
 lastProposal. Number (). Uint64 ())

 c. startNewRound (common.Big0)
 } else {

 c. sendNextRoundChange ()
 }

 Figure 1: handler.go#L182-L200

 The validators will start the round change process. Once enough validators reach the
 RoundChange state, startNewRound is executed with roundView.Round == 0 .

 } else if num == c.valSet. MinQuorumSize () && (c.waitingForRoundChange ||
 cv.Round. Cmp (roundView.Round) < 0) {

 // We've received the minimum quorum size ROUND CHANGE messages, start a new round
 immediately.

 c. startNewRound (roundView.Round)

 Figure 2: roundchange.go#L101-L103

 © 2019 Trail of Bits Celo Assessment | 64

 startNewRound will return, without effect, as:

 ● lastProposal.number == currentSequence -1

 ● round == 0

 func (c * core) startNewRound (round * big . Int) {
 var logger log.Logger
 if c.current == nil {

 logger = c.logger. New ("old_round" , - 1 , "old_seq" , 0)
 } else {

 logger = c.logger. New ("old_round" , c.current. Round (), "old_seq" ,
 c.current. Sequence ())

 }

 roundChange := false
 // Try to get last proposal
 lastProposal, lastProposer := c.backend. LastProposal ()
 if c.current == nil {

 logger. Trace ("Start to the initial round")
 } else if lastProposal. Number (). Cmp (c.current. Sequence ()) >= 0 {

 diff := new (big.Int). Sub (lastProposal. Number (), c.current. Sequence ())
 c.sequenceMeter. Mark (new (big.Int). Add (diff, common.Big1). Int64 ())

 if !c.consensusTimestamp. IsZero () {
 c.consensusTimer. UpdateSince (c.consensusTimestamp)
 c.consensusTimestamp = time.Time{}

 }
 logger. Trace ("Catch up latest proposal" , "number" ,

 lastProposal. Number (). Uint64 (), "hash" , lastProposal. Hash ())
 } else if lastProposal. Number (). Cmp (big. NewInt (c.current. Sequence (). Int64 ()- 1)) == 0

 {
 if round. Cmp (common.Big0) == 0 {

 // same seq and round, don't need to start new round
 return

 Figure 3: core.go#L208-L233

 As a result, the proposer will not change. If the proposer never sends a PREPREPARE
 message, the system will be trapped.

 Exploit Scenario
 Eve is a malicious proposer. Eve never sends the PREPREPARE message and prevents the
 Celo blockchain from accepting new blocks.

 Recommendation
 Short term, change the proposer if they never send a PREPREPARE message and a timeout
 occurs.

 Long term, review the IBFT state transaction to ensure that no other states can cause the
 system to reach an infinite loop.

 © 2019 Trail of Bits Celo Assessment | 65

 28. Integer over�low allows for arbitrary priorities in stored message
 Severity: Informational Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-28
 Target: backlog.go

 Description
 An integer overflow in backlog.toPriority allows an attacker to set arbitrary priorities for
 its stored messages.

 toPriority computes the priorities of stored messages, according to their sequence,
 round, and type:

 func toPriority (msgCode uint64 , view * istanbul . View) int64 {
 if msgCode == msgRoundChange {

 // For msgRoundChange, set the message priority based on its sequence
 return - int64 (view.Sequence. Uint64 () * 1000)

 }
 // FIXME: round will be reset as 0 while new sequence
 // 10 * Round limits the range of message code is from 0 to 9
 // 1000 * Sequence limits the range of round is from 0 to 99
 return - int64 (view.Sequence. Uint64 ()* 1000 + view.Round. Uint64 ()* 10 +

 uint64 (msgPriority[msgCode]))
 }

 Figure 1: backlog.go#L173-L182

 The sequence and the round are user-controlled. Due to the lack of integer overflow
 protection or value range validation, the attacker can set arbitrary high priority.

 Recommendation
 Short term, check for overflows in backlog.Priority .

 Long term, ensure that the messages are properly validated (e.g., round < 4).

 © 2019 Trail of Bits Celo Assessment | 66

 29. Liveness depends on local clock synchronization
 Severity: Low Difficulty: High
 Type: Denial of Service Finding ID: TOB-CELO-29
 Target: IBFT protocol

 Description
 Nodes in Celo’s consensus model treat messages differently depending on their local Unix
 time. Nodes relying on an insecure time mechanism can be isolated from the network.

 Celo does not offer an in-protocol method of time synchronization. Users relying on an
 insecure time mechanism, such as NTP, can have their local time spoofed. This presents for
 an attacker with some network access a compelling vector to induce liveness failures.

 Exploit Scenario
 An attacker runs a rogue NTP server on the same network as some Celo nodes, advertising
 a time off by decades. These nodes set their local time accordingly and start ignoring
 messages sent by honest nodes, thinking they are out of date and inaccurate.

 Recommendation
 Short term, document this as a known issue so users are aware that they must keep
 accurate local time when using Celo.

 Long-term, investigate moving away from consensus protocols that require a global clock.

 © 2019 Trail of Bits Celo Assessment | 67

 30. Use of static constants for gas is error-prone
 Severity: Informational Difficulty: High
 Type: Configuration Finding ID: TOB-CELO-30
 Target: consensus/istanbul/*, contract_comm/*

 Description
 The Celo codebase relies heavily on static constants for the gas given to a transaction. If the
 gas is insufficient, the call will always fail, and the user will not be able to adjust it.

 For example, the gas provided to get the validators list is 10,000,000:

 maxGasForGetValidators := uint64 (10000000)
 // TODO(asa) - Once the validator election smart contract is completed, then a more

 accurate gas value should be used.
 _, err := contract_comm. MakeStaticCall (params.ValidatorsRegistryId, validatorsABI,

 "getValidators" , [] interface {}{}, &newValSetAddresses, maxGasForGetValidators, header,
 state)

 Figure 1: validators.go#L120-L122

 getValidators uses the D'Hondt algorithm to compute the list of validators. The number
 of validators is bounded by maxElectableValidators:

 function getValidators () external view returns (address [] memory) {
 // Only members of these validator groups are eligible for election.
 uint256 numElectionGroups = maxElectableValidators;
 if (numElectionGroups > votes.list.numElements) {

 numElectionGroups = votes.list.numElements;
 }
 address [] memory electionGroups = votes.list. headN (numElectionGroups);
 // Holds the number of members elected for each of the eligible validator groups.
 uint256 [] memory numMembersElected = new uint256 [](electionGroups. length);
 uint256 totalNumMembersElected = 0 ;
 bool memberElectedInRound = true ;
 // Assign a number of seats to each validator group.
 while (totalNumMembersElected < maxElectableValidators && memberElectedInRound) {

 memberElectedInRound = false ;
 uint256 groupIndex = 0 ;
 FractionUtil.Fraction memory maxN = FractionUtil. Fraction (0 , 1);
 for (uint256 i = 0 ; i < electionGroups. length ; i = i. add (1)) {

 bool isWinningestGroupInRound = false ;
 (maxN, isWinningestGroupInRound) = dHondt (maxN, electionGroups[i],

 numMembersElected[i]);
 if (isWinningestGroupInRound) {

 memberElectedInRound = true ;
 groupIndex = i;

 }
 }

 Figure 2: Validators.sol#L629-L652

 © 2019 Trail of Bits Celo Assessment | 68

 This function has a high gas cost, which can change over time. If its execution gas cost is
 greater than 10,000,000, the static call in validators.go will fail.

 Other static gas constants exist in:

 ● consensus/istanbul/backend/engine.go#495
 ● consensus/istanbul/backend/engine.go#505
 ● consensus/istanbul/backend/engine.go#519
 ● contract_comm/currency.go#188
 ● contract_comm/currency.go#206
 ● contract_comm/currency.go#234
 ● contract_comm/gas_price_minimum.go#132
 ● contract_comm/gas_price_minimum.go#153
 ● contract_comm/gas_price_minimum.go#175
 ● contract_comm/random.go#123
 ● contract_comm/random.go#156
 ● contract_comm/random.go#170
 ● contract_comm/validators.go#103
 ● contract_comm/validators.go#122
 ● contract_comm/validators.go#135

 Exploit Scenario
 The number of validators to be elected becomes significantly high. As a result,
 getValidators require more than 10,000,000 gas, and the nodes are not able to fetch the
 validators list.

 Recommendation
 Short term, consider either:

 ● Creating a config file that will contain the gas limit
 ● Allowing unlimited gas cost for the calls from the system. This requires carefully

 reviewing the calls to prevent denial of service attacks

 Long term, carefully evaluate the evolution of the gas bound of the contracts.

 © 2019 Trail of Bits Celo Assessment | 69

 31. Missing error check can lead to incorrect randomness commitment
 Severity: Medium Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-31
 Target: random.go

 Description
 A missing error check can lead to an incorrect random value being committed by a
 validator.

 When a validator attempts to generate a new commitment,
 GenerateNewRandomnessAndCommitment calls the Random contract’s computeCommitment
 function. If an error occurs during the call to computeCommitment , randomness is not
 updated, and err is overwritten in the next line when the VM’s state database is updated.
 This makes it impossible for the program to ever check for and handle the original error.

 This unchecked error can result in committing a random value of zero, which is later
 revealed and then used as a source of on-chain randomness.

 // GenerateNewRandomnessAndCommitment generates a new random number and a corresponding
 commitment.
 // The random number is stored in the database, keyed by the corresponding commitment.
 func GenerateNewRandomnessAndCommitment (header * types . Header , state vm . StateDB , db
 * ethdb . Database , seed [] byte) (common . Hash , error) {

 commitment := common.Hash{}
 randomness := crypto. Keccak256Hash (append (seed, header.ParentHash. Bytes ()...))
 // TODO(asa): Make an issue to not have to do this via StaticCall
 _, err := contract_comm. MakeStaticCall (params.RandomRegistryId,

 computeCommitmentFuncABI, "computeCommitment" , [] interface {}{randomness}, &commitment,
 gasAmount, header, state)

 err = (*db). Put (commitmentDbLocation (commitment), header.ParentHash. Bytes ())
 if err != nil {

 log. Error ("Failed to save last block parentHash to the database" , "err" , err)
 }
 return commitment, err

 }

 Figure 1: random.go#L150-L162

 Exploit Scenario
 When a validator attempts to generate a new commitment, the call to the Random
 contract’s computeCommitment function fails. As a result, the validator commits a value of
 zero, thereby weakening the security of anything that relies on the Random contract as a
 source of on-chain randomness (e.g., attestation validator selection).

 © 2019 Trail of Bits Celo Assessment | 70

 Recommendation
 Short term, perform an error check immediately after calling the Random contract’s
 computeCommitment function. If an error is returned, log the error and immediately return
 it to the caller so it can be properly handled.

 Long term, add tests to the codebase that validate proper error handling in
 GenerateNewRandomnessAndCommitment .

 © 2019 Trail of Bits Celo Assessment | 71

 32. Unhandled errors can lead to invalid node state
 Severity: Undetermined Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-32
 Target: Multiple Go files

 Description
 The Celo Go codebase does not consistently perform error checking, which can lead to
 nodes entering invalid states.

 While none of the identified instances in Figure 1 were found to be exploitable, missing
 error handling is dangerous and can lead to new issues being introduced in the future.

 The instances listed in Figure 1 were found by running gosec on the in-scope Go source
 files.

 ● accounts/keystore/key.go#L204
 ● accounts/keystore/key.go#L201
 ● miner/worker.go#L511
 ● miner/worker.go#L653
 ● miner/worker.go#L980
 ● miner/worker.go#L985
 ● miner/worker.go#L1062
 ● accounts/keystore/key.go#L200
 ● core/types/block.go#L122
 ● core/types/block.go#L359
 ● core/types/transaction.go#L218
 ● light/lightchain.go#L174
 ● light/txpool.go#L215
 ● light/txpool.go#L478
 ● light/txpool.go#L551
 ● light/txpool.go#L554
 ● light/txpool.go#L564
 ● core/blockchain.go#L199
 ● core/blockchain.go#L744
 ● core/blockchain.go#L974
 ● core/blockchain.go#L993
 ● core/blockchain.go#L1495
 ● core/chain_indexer.go#L463
 ● core/chain_indexer.go#L492
 ● core/chain_indexer.go#L501
 ● core/genesis.go#L266
 ● core/genesis.go#L267
 ● core/headerchain.go#L182
 ● core/headerchain.go#L511
 ● core/tx_pool.go#L485
 ● core/tx_pool.go#L963
 ● core/tx_pool.go#L1184
 ● core/tx_pool.go#L1191
 ● p2p/discover/udp.go#L292
 ● p2p/discover/udp.go#L333
 ● p2p/discover/udp.go#L343

 © 2019 Trail of Bits Celo Assessment | 72

https://github.com/securego/gosec

 ● p2p/discover/udp.go#L365-L368
 ● p2p/discover/udp.go#L540
 ● p2p/discover/udp.go#L541
 ● p2p/discover/udp.go#L664-L668
 ● p2p/discover/udp.go#L681
 ● p2p/discover/udp.go#L699
 ● p2p/discover/udp.go#L736
 ● p2p/discover/udp.go#L742
 ● consensus/istanbul/backend/announce.go#L242
 ● consensus/istanbul/backend/announce.go#L334
 ● consensus/istanbul/backend/backend.go#L162
 ● consensus/istanbul/backend/engine.go#L855
 ● consensus/istanbul/backend/engine.go#L889
 ● consensus/istanbul/backend/snapshot.go#L148
 ● consensus/istanbul/core/commit.go#L81
 ● consensus/istanbul/core/core.go#L364
 ● consensus/istanbul/core/core.go#L365
 ● consensus/istanbul/core/handler.go#L123
 ● consensus/istanbul/core/prepare.go#L58
 ● eth/downloader/downloader.go#L439
 ● eth/downloader/downloader.go#L443
 ● eth/downloader/downloader.go#L445
 ● eth/downloader/downloader.go#L1694
 ● signer/core/abihelper.go#L180
 ● signer/core/abihelper.go#L195
 ● signer/core/abihelper.go#L202
 ● core/vm/contracts.go#L170
 ● core/vm/evm.go#L233
 ● core/vm/evm.go#L234
 ● core/vm/evm.go#L255
 ● core/vm/evm.go#L258
 ● core/vm/evm.go#L444
 ● core/vm/evm.go#L479
 ● core/vm/instructions.go#L394
 ● core/vm/instructions.go#L395
 ● core/vm/interpreter.go#L196
 ● core/vm/interpreter.go#L198
 ● core/vm/interpreter.go#L256
 ● consensus/istanbul/utils.go#L35
 ● p2p/dial.go#L308
 ● p2p/peer.go#L289
 ● p2p/peer.go#L295
 ● p2p/server.go#L418
 ● p2p/server.go#L1038
 ● p2p/server.go#L1051

 Figure 1: Instances of missing error checks.

 Exploit Scenario
 A modification to the codebase makes one of the identified missing error checks
 exploitable, resulting in one or more nodes entering an invalid state.

 Recommendation
 Short term, perform consistent error handling. If a failed operation would result in an
 invalid node state, divert program control flow and return early.

 © 2019 Trail of Bits Celo Assessment | 73

 Long term, add documentation and testing for node error handling and crash recovery
 strategies. In addition, consider adding gosec to Celo’s continuous integration pipeline.

 © 2019 Trail of Bits Celo Assessment | 74

https://github.com/securego/gosec

 33. Proposed blocks can be out of sequence
 Severity: Undetermined Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-33
 Target: preprepare.go

 Description
 When broadcasting a PREPREPARE message, the sendPreprepare function first validates
 that the proposed block’s number matches the message’s sequence number. This prevents
 another node from broadcasting an out-of-order block. However, a similar check does not
 exist in handlePreprepare for the message processing from other nodes. This makes it
 possible for a malicious node to broadcast proposals for out-of-order blocks, which does
 not conform to the protocol that Celo intends to implement.

 func (c * core) sendPreprepare (request * istanbul . Request) {
 logger := c.logger. New ("state" , c.state)

 // If I'm the proposer and I have the same sequence with the proposal
 if c.current. Sequence (). Cmp (request.Proposal. Number ()) == 0 && c. isProposer () {

 curView := c. currentView ()
 preprepare, err := Encode (&istanbul.Preprepare{

 View: curView,
 Proposal: request.Proposal,

 })
 if err != nil {

 logger. Error ("Failed to encode" , "view" , curView)
 return

 }

 c. broadcast (&message{
 Code: msgPreprepare,
 Msg: preprepare,

 })
 }

 }

 Figure 1: preprepare.go#L26-46, which contains the validation that is missing from
 handlePreprepare .

 Exploit Scenario
 A malicious proposer proposes an out-of-order block, which—if accepted—can have an
 undetermined impact on the state of the network.

 Recommendation
 Short term, perform consistent validation of all incoming messages. Do not assume
 client-side validation will prevent an attacker from crafting malicious messages.

 © 2019 Trail of Bits Celo Assessment | 75

 Long term, add tests to the codebase that check for proper data validation in
 handlePreprepare .

 © 2019 Trail of Bits Celo Assessment | 76

 34. Integer over�low allows for early revocation of payments
 Severity: Medium Difficulty: High
 Type: Data validation Finding ID: TOB-CELO-34
 Target: Escrow.sol

 Description
 An integer overflow affecting the revoke function allows users to revoke their payments at
 any moment.

 revoke allows users to revoke payment that were not already withdrawn:

 function revoke (
 address paymentId

)
 external
 nonReentrant
 returns (bool)

 {
 EscrowedPayment memory payment = escrowedPayments[paymentId];
 require (payment.sender == msg . sender , "Only sender of payment can attempt to revoke

 payment.");
 require (

 // solhint-disable-next-line not-rely-on-time
 now >= (payment.timestamp + payment.expirySeconds),
 "Transaction not redeemable for sender yet."

);

 Figure 1: Escrow.sol#L185-L198

 If payment.timestamp + payment.expirySeconds overflows, the user can revoke the
 payment at any moment. As a result, the user can create a payment with an arbitrary long
 expiration period and then revoke the payment before the expected deadline.

 Exploit Scenario
 Eve creates a payment with an expiration period of 2 256 -1. She justifies the long expiration
 to Bob by saying that it will never expire. Bob tries to withdraw the payment, but Eve
 front-runs the transaction and revokes it. As a result, Bob is unable to redeem the original
 transaction.

 Recommendation
 Short term, ensure that an overflow will not occur when revoke is later called by checking
 the payment’s timestamp and expirySeconds in Escrow.transfer .

 Long term, use SafeMath for all arithmetic operations.

 © 2019 Trail of Bits Celo Assessment | 77

 35. Attestation validator can add their address to any identity
 Severity: Medium Difficulty: High
 Type: Data Validation Finding ID: TOB-CELO-35
 Target: Attestations.sol

 Description
 Attestation validations require only one validator. As a result, a validator can validate their
 own attestation request and associate their address with any SMS number.

 To validate an identity, a user must go through the attestation validation process. This
 process requires one of the validators to confirm the user’s identity using an SMS-based
 challenge. The validation requires only one validator to confirm the identity. If a validator is
 compromised or malicious, they can validate their own attestation request and successfully
 associate their address with any SMS number.

 Exploit Scenario
 Eve is a malicious validator. Eve calls request with her own address and Bob's identifier.
 Eve ensures that she is selected as the validator and validates the request. Eve's address is
 added to Bob's identity.

 Recommendation
 Short term, consider adding a minimal number (>1) of required validators.

 Long term, monitor on-chain attestation validations to detect any suspicious activity.

 © 2019 Trail of Bits Celo Assessment | 78

 A. Vulnerability Classifications
 Vulnerability Classes

 Class Description

 Access Controls Related to authorization of users and assessment of rights

 Auditing and Logging Related to auditing of actions or logging of problems

 Authentication Related to the identification of users

 Configuration Related to security configurations of servers, devices, or
 software

 Cryptography Related to protecting the privacy or integrity of data

 Data Exposure Related to unintended exposure of sensitive information

 Data Validation Related to improper reliance on the structure or values of data

 Denial of Service Related to causing system failure

 Error Reporting Related to the reporting of error conditions in a secure fashion

 Patching Related to keeping software up to date

 Session Management Related to the identification of authenticated users

 Timing Related to race conditions, locking, or order of operations

 Undefined Behavior Related to undefined behavior triggered by the program

 Severity Categories

 Severity Description

 Informational The issue does not pose an immediate risk, but is relevant to security
 best practices or Defense in Depth

 Undetermined The extent of the risk was not determined during this engagement

 Low The risk is relatively small or is not a risk the customer has indicated is
 important

 Medium Individual user information is at risk, exploitation would be bad for

 © 2019 Trail of Bits Celo Assessment | 79

 client’s reputation, moderate financial impact, or possible legal
 implications for client

 High Large numbers of users, very bad for client’s reputation, or serious
 legal or financial implications

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploit was not determined during this engagement

 Low Commonly exploited, and public tools exist or can be scripted that
 exploit this flaw

 Medium Attackers must write an exploit or need an in-depth knowledge of a
 complex system

 High The attacker must have privileged, insider access to the system, may
 need to know extremely complex technical details, or must discover
 other weaknesses to exploit this issue

 © 2019 Trail of Bits Celo Assessment | 80

 B. Code Quality Recommendations
 The following recommendations are not associated with specific vulnerabilities. However,
 they enhance code readability and may prevent the introduction of vulnerabilities in the
 future.

 Stability
 ● Check for the return value of mint (stability/Exchange.sol#L144) and burn

 (stability/Reserve.sol#L228). The lack of return value check might lead to
 unpredicted behavior in the case of a code update.

 Governance
 ● Document that expired proposals not queued have their deposits lost. The loss

 of deposit might not be known by the proposal’s owners.
 ● Add the nonReentrant modifier to execute (Governance.sol#L597) , vote

 (Governance.sol#L534) and propose (Governance.sol#L371). Allowing proposals
 to execute these functions can lead to unintended behavior.

 consensus/istanbul/core/backlog.go
 ● Check for nil pointers after decoding messages in storeBacklog

 (backlog.go#L98, backlog.go#L105). While messages are already checked for nil
 pointers prior to being added to the backlog, it is a better practice to enforce the
 checks locally.

 © 2019 Trail of Bits Celo Assessment | 81

 C. Slither delegatecall upgradeable proxy checks
 The Celo codebase allows upgrading most of the contracts through the use of the
 delegatecall proxy pattern. This pattern is error-prone . Incorrect setup or upgrade can
 break the contracts.

 Trail of Bits used slither-check-upgradeability with a custom script to ensure that common
 upgradeable mistakes were not present. The tool looks for issues related to incorrect
 storage memory layout and checks that there is no function ID collision between the proxy
 and the contracts.

 import logging
 from slither import Slither
 from slither.tools.upgradeability.compare_variables_order import
 compare_variables_order_proxy
 from slither.tools.upgradeability.compare_function_ids import compare_function_ids
 from slither.tools.upgradeability.check_initialization import check_initialization

 logging.basicConfig()
 logging.getLogger("Slither-check-upgradeability").setLevel(logging. INFO)
 logging.getLogger("Slither").setLevel(logging. INFO)

 slither = Slither('.' , truffle_ignore_compile = True)

 proxy = slither.get_contract_from_name('Proxy')
 proxy_targets = [c.name for c in slither.contracts if proxy in c.inheritance]
 proxy_targets = [c[: - len ('Proxy')] for c in proxy_targets]

 check_initialization(slither)

 for target in proxy_targets:
 print ('######################')
 print (f'Check { target } ')

 compare_function_ids(slither, target, slither, proxy.name)

 compare_variables_order_proxy(slither, target, slither, proxy.name)

 Figure 1: Custom script to check contract upgradeability

 INFO:CheckInitialization:No missing call to an init function found
 INFO:CheckInitialization:Check the deployment script to ensure that these functions are
 called:
 Attestations needs to be initialized by initialize(address,uint256,address[],uint256[])
 GasPriceMinimum needs to be initialized by
 initialize(address,uint256,uint256,uint256,uint256,uint256,uint256,uint256)
 BondedDeposits needs to be initialized by initialize(address,uint256)
 MultiSig needs to be initialized by initialize(address[],uint256)
 SortedOracles needs to be initialized by initialize(uint256)
 Escrow needs to be initialized by initialize(address)
 HasInitializer needs to be initialized by initialize(uint256)

 © 2019 Trail of Bits Celo Assessment | 82

https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
https://github.com/trailofbits/slither/wiki/Upgradeability-Checks

 Exchange needs to be initialized by
 initialize(address,address,uint256,uint256,uint256,uint256,uint256,uint256)
 GoldToken needs to be initialized by initialize()
 GasCurrencyWhitelist needs to be initialized by initialize()
 Validators needs to be initialized by initialize(address,uint256,uint256,uint256,uint256)
 Governance needs to be initialized by
 initialize(address,address,uint256,uint256,uint256,uint256,uint256,uint256,uint256)
 Registry needs to be initialized by initialize()
 Reserve needs to be initialized by initialize(address,uint256)
 StableToken needs to be initialized by
 initialize(string,string,uint8,address,uint256,uint256,uint256)

 Figure 2: List of initialize functions that must be called per contract

 Trail of Bits recommends that Celo:

 ● Ensure that Slither is up to date, as Trail of Bits continuously improves these
 upgradability checks

 ● Run slither-check-upgradeability before any deployment or upgrade of
 contracts

 ● Check the deployment scripts for correct initialize function calls

 © 2019 Trail of Bits Celo Assessment | 83

 D. Property testing of LinkedList
 Trail of Bits used Echidna to perform property testing of Celo’s LinkedList implementation.
 The following test shows how to trigger TOB-CELO-007 .

 pragma solidity ̂ 0 . 5 . 8 ;

 contract LinkedList {
 struct Element {

 bytes32 previousKey;
 bytes32 nextKey;
 bool exists;

 }

 struct List {
 bytes32 head;
 bytes32 tail;
 uint256 numElements;
 mapping (bytes32 => Element) elements;

 }

 List list;

 /**
 * @notice Inserts an element into a doubly linked list.
 * @param key The key of the element to insert.
 * @param previousKey The key of the element that comes before the element to insert.
 * @param nextKey The key of the element that comes after the element to insert.
 */
 function insert (

 bytes32 key ,
 bytes32 previousKey ,
 bytes32 nextKey

)
 public

 {
 require (key != bytes32 (0), "Key must be defined");
 require (! contains (key), "Can' t insert an existing element");

 Element storage element = list.elements[key];
 element.exists = true ;

 if (list.numElements == 0) {
 list.tail = key;
 list.head = key;

 } else {
 require (

 previousKey != bytes32 (0) || nextKey != bytes32 (0),
 "Either previousKey or nextKey must be defined"

);

 element.previousKey = previousKey;
 element.nextKey = nextKey;

 if (previousKey != bytes32 (0)) {
 require (

 © 2019 Trail of Bits Celo Assessment | 84

https://github.com/crytic/echidna

 contains (previousKey),
 "If previousKey is defined, it must exist in the list"

);
 Element storage previousElement = list.elements[previousKey];
 require (

 previousElement.nextKey == nextKey,
 "previousKey must be adjacent to nextKey"

);
 previousElement.nextKey = key;

 } else {
 list.tail = key;

 }

 if (nextKey != bytes32 (0)) {
 require (contains (nextKey), "If nextKey is defined, it must exist in the list");
 Element storage nextElement = list.elements[nextKey];
 require (nextElement.previousKey == previousKey, "previousKey must be adjacent to

 nextKey");
 nextElement.previousKey = key;

 } else {
 list.head = key;

 }
 }

 require (list.numElements + 1 >= list.numElements, "SafeMath: addition overflow");
 list.numElements += 1 ;

 }

 /**
 * @notice Inserts an element at the tail of the doubly linked list.
 * @param key The key of the element to insert.
 */
 function push (bytes32 key) public {

 insert (key, bytes32 (0), list.tail);
 }

 /**
 * @notice Removes an element from the doubly linked list.
 * @param key The key of the element to remove.
 */
 function remove (bytes32 key) public {

 Element storage element = list.elements[key];
 require (key != bytes32 (0) && contains (key));
 if (element.previousKey != bytes32 (0)) {

 Element storage previousElement = list.elements[element.previousKey];
 previousElement.nextKey = element.nextKey;

 } else {
 list.tail = element.nextKey;

 }

 if (element.nextKey != bytes32 (0)) {
 Element storage nextElement = list.elements[element.nextKey];
 nextElement.previousKey = element.previousKey;

 } else {
 list.head = element.previousKey;

 }

 delete list.elements[key];

 require (list.numElements - 1 <= list.numElements, "SafeMath: subtraction underflow");

 © 2019 Trail of Bits Celo Assessment | 85

 list.numElements -= 1 ;
 }

 /**
 * @notice Updates an element in the list.
 * @param key The element key.
 * @param previousKey The key of the element that comes before the updated element.
 * @param nextKey The key of the element that comes after the updated element.
 */
 function update (

 bytes32 key ,
 bytes32 previousKey ,
 bytes32 nextKey

)
 public

 {
 require (key != bytes32 (0) && key != previousKey && key != nextKey && contains (key));
 remove (key);
 insert (key, previousKey, nextKey);

 }

 /**
 * @notice Returns whether or not a particular key is present in the sorted list.
 * @param key The element key.
 * @return Whether or not the key is in the sorted list.
 */
 function contains (bytes32 key) public view returns (bool) {

 return list.elements[key].exists;
 }

 /**
 * @notice Returns the keys of the N elements at the head of the list.
 * @param n The number of elements to return.
 * @return The keys of the N elements at the head of the list.
 */
 function headN (uint256 n) public view returns (bytes32 [] memory) {

 require (n <= list.numElements);
 bytes32 [] memory keys = new bytes32 [](n);
 bytes32 key = list.head;
 for (uint256 i = 0 ; i < n; i ++) {

 keys[i] = key;
 key = list.elements[key].previousKey;

 }
 return keys;

 }

 /**
 * @notice Gets all element keys from the doubly linked list.
 * @return All element keys from head to tail.
 */
 function getKeys () public view returns (bytes32 [] memory) {

 return headN (list.numElements);
 }

 /*****************
 * Echidna tests *
 *****************/

 function echidna_test_tail_previous_key () public returns (bool) {

 © 2019 Trail of Bits Celo Assessment | 86

 return list.elements[list.tail].previousKey == 0 ;
 }

 function echidna_test_head_next_key () public returns (bool) {
 return list.elements[list.head].nextKey == 0 ;

 }

 function echidna_test_no_loops () public returns (bool) {
 return list.elements["test"].nextKey != "test" ;

 }
 }

 Figure 1: echidna_LinkedList.sol

 Trail of Bits produced the following output by running:

 echidna-test echidna_LinkedList.sol

 Analyzing contract: echidna_LinkedList.sol:LinkedList
 echidna_test_no_loops: failed!💥

 Call sequence:

 push("1za\225\141\233#\200\231\241\161\173o\SYN\240?\NAK\207\235\255\166k\244\214\156\149
 \221\DLE\221\ETX\ETX\150")

 insert("test\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\
 NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL","test\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NU
 L\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL","test\NUL\NUL\NUL\NUL\
 NUL\N
 UL\NUL")

 echidna_test_tail_previous_key: passed! 🎉
 echidna_test_head_next_key: passed! 🎉

 Unique instructions: 1246
 Unique codehashes: 1

 Figure 2: Echidna output

 © 2019 Trail of Bits Celo Assessment | 87

 E. Detecting correct inheritance initialization with Slither
 The Celo codebase relies heavily on inheritance and the correct call of initialization
 functions. Some of the contracts need their derived contracts to call a specific function at
 initialization. For example, UserRegistry requires the contract to call setRegistry . Due to
 the size of the codebase, errors are possible.

 Trail of Bits developed a Slither script to ensure the correct initialization throughout the
 codebase:

 from slither import Slither

 slither = Slither('.' , truffle_ignore_compile = True)

 targets = {
 'UsingRegistry' : 'setRegistry(address)' ,
 'Ownable' : '_transferOwnership(address)'

 }

 no_issue_found = True
 for contract_name, function_to_call_signature in targets.items():

 contract_targeted = slither.get_contract_from_name(contract_name)
 for contract_derived in contract_targeted.derived_contracts:

 function_to_call =
 contract_derived.get_function_from_signature(function_to_call_signature)

 for f in contract_derived.functions:
 if not f.is_implemented:

 continue
 if f.name.startswith('initialize'):

 if not function_to_call in f.all_internal_calls():
 print (f' { f.canonical_name } does not call { function_to_call } ')
 no_issue_found = False

 if no_issue_found:
 print ('No issue found')

 Figure 1: Slither script

 This script will ensure that all contracts inheriting from UsingRegistry and Ownable define
 an initialize function that calls setRegistry and _transferOwnership .
 Other inheritance checks can be added to targets .

 © 2019 Trail of Bits Celo Assessment | 88

https://github.com/trailofbits/slither/

