

Formal Verification of Celo Governance Protocol
Thomas Bernardi, Nurit Dor, Anastasia Fedotov, Shelly

Grossman, Alexander Nutz, Lior Oppenheim, Or Pistiner,

Mooly Sagiv, John Toman, James Wilcox

1. Summary
This report presents work and conclusions based on a collaboration between Celo and Certora using the
Certora Prover to formally verify security rules of Celo’s governance protocol. We provided Celo with the
Certora Prover, which is a tool for formally verifying that smart contracts satisfy specifications written in a
language called Specify.

The cLabs team working on Celo worked with Certora to build specifications of the protocol. The main
focus of the specifications was to ensure a set of invariants provided by the cLabs team holds in all
possible cases. The Certora Prover tool verified that the implementation of the Celo protocol satisfies these
specifications. The Certora prover was integrated into the CI system in order to guarantee that future
updates to the code will not create new violations.

The project consisted of two phases. During the first phase, from July 30th 2019 through August 25th 2019,
specifications were developed for the first major iteration of the protocol: the specifications developed
during this period continue to be used to verify later versions of the code. The latest commit that was
monitored is 9d2ec0d9399a6959565062f57efa037d03fd4fbc.
Following significant rewrites to some of the contracts inspected (BondedDeposits becoming Accounts and
LockedGold), we started the second phase of the project including specification writing for Election and
ReleaseGold contracts. The latest commit that was monitored is
a46ce55ebd3867fa69290bf3be040846d433525d.

The Certora Prover proved the Celo Governance protocol implementation to be correct with respect to the
formal rules written. During the verification process, the Certora Prover discovered a number of bugs in the
code listed in Table 1.​ All the high severity issues were promptly corrected prior to releasing the
protocol, and the fixes were verified to satisfy the specifications.​ Section 2 formally defines high level
specifications of the protocol. The actual checked rules are available from the Celo git repository. Section 3
elaborates more on several of the interesting bugs found.

www.certora.com

Table 1: List of main bugs discovered

Bug Affected code Description Severity Fix

Break
sortedness of
list

SortedLinkedList -
An unbounded
linked list of keys
sorted according to
values

The sortedness of the
list can be violated by
providing invalid
arguments to the insert
function
 (Section 3.1).

High Proper check that
the arguments are
consistent with the
current state of the
list.

Front running
& asset loss
in elections

Elections - activation
and revocation of
votes

A rounding error in
computing voting units
from arguments. Other
accounts could lose
their assets. This can
also lead to self-loss of
assets (Section 3.2).

High Increase precision of
stored and computed
vote units.

Asset loss ReleaseGold Total balance
computation neglected
the pending
withdrawals. This can
cause asset loss
(Section 3.3).

High Fixed total balance
computation

Illegal
group’s
voting state

Elections - reward
distribution

System should not
distribute rewards to a
group without votes.

Low.
(Triggering this
bug is
impossible in
the current Go
client.)

Add additional
requirements to the
Solidity code to
guarantee that this
cannot happen even
in future versions of
Go code.

Redundant
code

Election Redundant subtraction
operation of an always
zero value.

Low Code removed.

Dead code LockedGold Unused nested
structures.

Low Code removed

Precision FixidityLib - a library
for fixed decimal

A potential precision
loss during

Low The product of the
fractional parts

www.certora.com

point numeric
computations

multiplication, due to
scaling down of the
fractional parts that
could nullify their
contribution to the
product.

cannot overflow, so
no need to scale
down the fractional
parts before
multiplying.

1.1. Technology overview

The Certora Prover is based on well-studied techniques from the formal verification community.
Specifications define a set of rules that call into the contract under analysis and make various assertions
about their behavior. These rules, together with the contract under analysis, are compiled to a logical
formula called a verification condition, which is then proved or disproved by the solver Z3. If the rule is
disproved, the solver also provides a concrete test case demonstrating the violation.
The rules of the specification play a crucial role in the analysis. Without good rules, only very shallow
properties can be checked (e.g. that no assertions in the contract itself are violated). To make effective use
of Certora Prover, users must write rules that describe the high-level properties they wish to check of their
contract. Certora Prover cannot make any guarantees about cases that fall outside the scope of the rules
provided to it as input. Thus, in order to understand the results of this analysis, one must carefully
understand the specification’s rules.

1.2. Disclaimer

The Certora Prover takes as input a contract and a specification and formally proves that the contract
satisfies the specification in all scenarios. Importantly, the guarantees of the Certora Prover are scoped to
the provided specification, and any cases not covered by the specification are not checked by the Certora
Prover.

We hope that this information is useful, but provide no warranty of any kind, express or implied. The
contents of this report should not be construed as a complete guarantee that the Celo system is secure in
all dimensions. In no event shall Certora or any of its employees be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the
results reported here.

www.certora.com

2. High Level Specification
2.1. Accounts
The Accounts contract provides infrastructure for the management of different roles of addresses in the
Celo network. Some roles for addresses are signers (3 kinds: Attestation, Voting, and Validation; we refer
to these as ​SignerType​s below) and wallets. An account can authorize an address for a signing role on its
behalf. An account can also set a wallet address.

The following attributes are used in the verification process:

isAccount(address x) : bool

True when address x is a valid account

walletAddress(address x) : address

The wallet (receiving) address of address x

authorizedBy(address x) : address

Returns the address that authorizes address x

signerOftype(SignerType ty, address x) : address

Returns the address that address x authorized for type ty.

The following operation is used in the verification process:
addSigner(SignerType ty, address x, signer d)

Authorize address d to be a signer of type ty for address x

✅ Valid account invariant
An address that has a wallet or a signer of any type, must be an account.

∀address x,d, x≠d,x≠0,d≠0. walletAddress(x) = d ⟹ isAccount(x)

∀address x,d, x≠d,x≠0,d≠0.∀SignerType ty. signerOftype(ty,x) = d ⟹ isAccount(x)

✅ Valid authorization account invariant
An address can be authorized only by a valid account.
 ∀address d. d≠0. authorizedBy(d)≠0 ⟹isAccount(authorizedBy(d))

A valid account can only be authorized-by itself
 ∀address x,d, x≠0,d≠0.

(isAccount(d) authorizedBy(d) = x) ⟹ x = d⋀

✅ Valid signer invariant
If address d has any signer permission for account x then d is authorized by x.

www.certora.com

∀address x,d. x≠d,x≠0,d≠0.∀SignerType ty.
signerOftype(ty,x) = d ⟹ authorizedBy(d) = x

✅ Unique authorized by
An address can be authorized by at most one account.
∀address x,y,d. y≠0,x≠0,d≠0.∀SignerType ty,ty’

(signerOftype(ty,x) = d signerOftype(ty’,y) = d) ⟹ x=y⋀

✅ Multiple signers
An account may have multiple signers of different types.
{pairwise_distinct(x,d,d’,0) ty≠ty’} addSigner(ty, x, d) ; addSigner(ty’, x, d’)⋀
{authorizedBy(d) = authorizedBy(d’) = x}

Here we use ​Hoare triples​ of the form ​{p} C {q}​, which means that if program C executes starting
in any state satisfying ​p​, then it will end in a state satisfying ​q​.

✅ Persistent authorized by
Once an address was authorized by an account, this authorization can no longer be changed.

∀address x,d. x≠d,x≠0,d≠0. authorizedBy(d) = x ⟹ ​Next​ authorizedBy(d) = x
Here ​Next​ is a temporal operator which denotes the next state after any operation of the
contract.

2.2. LockedGold

LockedGold contract manages Celo Gold that is not available for spending. It provides mechanisms for the
user to deposit Celo Gold and lock it in the contract, enabling participation in elections and governance.
The contract manages conditions for unlocking Celo Gold and withdrawing it for other usages.

Attributes:

totalNonvotingLockedGold() : uint

Returns the total amount of non-voting locked gold in contract

nonvotingLockedGold(address account) : uint

Returns the total amount of non-voting locked gold for an account

pendingWithdrawals(address account, uint i) :uint

Returns the amount of pending withdrawal for account available at the i-th entry

totalPendingWithdrawals(address account) : uint

Returns the total amount of pending withdrawal for account

pendingReleased(address account, uint i) : bool

True when index i of pending withdrawals of account is available for withdrawal

www.certora.com

https://en.wikipedia.org/wiki/Hoare_logic

totalBalance(address account) : uint

Returns the total amount of assets of account, including pending withdrawals,
non-voting locked gold and balance.

unlockingPeriod() : uint

Returns the waiting time before withdrawal

Operations:
lock(address account, uint value)

Deposit value to account’s non-voting locked gold.

unlock(address account, uint value) : uint

Move value from account’s non-voting into account’s pending locked gold, returns
a new entry of pending withdrawal

withdraw(address account, uint value)

Transfer of value from account’s pending locked gold to account’s balance.

✅ Integrity of non-voting locked gold:

The current total non-voting locked gold is the sum of non voting locked gold of all accounts.
totalNonvotingLockedGold = ∑ address account. nonvotingLockedGold(account)

✅ Fixed ​totalBalance ​over time​ (except on​ ​slash, decrementNonVotingAccount,
incrementNonVotingAccountBalance)
Total balance of an account does not change by locked-gold operations.
totalBalance(account) = x ⟹ ​Next​ totalBalance(account) = x

✅ No impact on assets by other accounts
 ​Methods performed by different addresses cannot affect each other’s locked gold

{a≠b old = nonvotingLockedGold(a)} b.op() {old = nonvotingLockedGold(a)}⋀
This rule fetches the value of nonvotingLockedGold(a) and ensures that it does not
change across any execution of b.op().

✅ No premature withdrawal
Withdraw is possible only after unlocking period
Once ​i=unlock(account,x) => x ​≤​ nonvotingLockedGold(account) +
totalPendingWithdrawals(account) ​Until ​pendingReleased(account,i)

This is a rather complex property. It states that during the unlock period, ​x​ cannot exceed the total
amount of locked and pending gold. Notice the use of ​Once ​and ​Until ​temporal operators.

www.certora.com

✅ Withdrawal possible
totalPendingWithdrawals(account) = x ⟹ ​Eventually​ withdraw(account, x)

✅ Only an account can have pending withdrawals
totalPendingWithdrawals(account) > 0 ⟹ Accounts.isAccount(account)

This rule connects the security of multiple contracts as ​isAccount ​is an attribute of the Accounts
contract.

2.3. Elections

This contract manages the voting processes and election of validators.
The following attributes and operations are used in the verification process:

unitsForGroup(address group) : uint

Returns the voting units for group (without increased precision)

votesForGroup(address group) : uint

Returns the value of assets for group including rewards

unitsForGroupByAccount(address group, address account) : uint

Returns the total voting units for group by account

votesForGroupByAccount(address group, address account) : uint

Returns the value in assets of voting units for group by account

pendingVotesForGroup(address group) : uint

Returns the pending votes for group

pendingVotesForGroupByAccount(address group, address account) : uint

Returns the pending votes for group by account

totalBalance(address account) : uint

Returns the total amount of assets of account, including
LockedGold.totalBalance(account), pending votes and value of voting units of
account to all groups

Operations:
revokeActive(address group, address account, address value) : uint

revoke value amount of assets for group by account

✅ Integrity of voting units
unitsForGroup(group) = ∑ address account. unitsForGroupByAccount(group,account)

✅ Integrity of total assets

www.certora.com

votesForGroup(group) = ∑ address account. votesForGroupByAccount(group,account)

✅ Integrity of pending votes
pendingVotesForGroup(group) = ∑ address account.
pendingVotesForGroupByAccount(group,account))

✅ Integrity of total assets with respect to voting units

A group’s total asset is more than its voting units
unitsForGroup(group) ≤ votesForGroup(group)

✅ Emptiness
A group with no voting units can not have any assets
unitsForGroup(group) = 0 ⟹ votesForGroup(group) = 0

This rule discovered the illegal group’s voting state issue on ​distributeEpochRewards ​in case that
rewarding a group with no votes.

✅ Whole assets
An account holding all voting units if and only if it has all assets of the group
unitsForGroupByAccount(group, account) = unitsForGroup(group) ⟺
votesForGroupByAccount(group, account) = votesForGroup(group)

✅ totalBalance​ only increases over time (except on ​forceDecrementVotes​)
totalBalance(account) <= ​Next​ totalBalance(account)

✅ Additivity of revoking active votes
This is specified in terms of code equivalence denoted by​ P1 ～ P2.

revokeActive(group, account, x) ; revokeActive(group, account, y) ～
revokeActive(group, account, x+y)
This requires that for every initial state ​s, ​revoking active votes of​ x ​before revoking​ y ​has the
same effect of revoking​ x + y ​simultaneously starting from​ s.

2.4. Release Gold

This contract manages an amount of Celo Gold “granted” to an address (beneficiary) that is released over
a defined schedule.
The following attributes and operations are used in the verification process. Notice that these operations
have side effects on the state of the contract. For example, a successful withdrawal updates the remaining
balance.

www.certora.com

withdraw(uint x): bool

A successful withdrawal of x gold

totalWithdrawn(): uint

Amount of withdrawn

totalBalance(): uint

Total amount of assets

totalReward(): uint

Total amount of rewards given

releasedTotalAmount(): uint

Total released

MAX_WITHDRAWL​:​ uint

Total amount of gold granted

✅ Additivity to avoid frauds and lock

withdrawal of x+y can be performed either all at once or gradually.
withdraw(x); withdraw(y) ～ withdraw(x+y)

Here ​x​ and ​y​ takes arbitrary values as opposed to testing which checks particular instances of ​x​ and
y​. Notice that this property compares two programs: one with two consecutive withdrawals and one
with a single withdrawal.
In the left side the withdrawal of ​y​ is performed after the withdrawal of ​x​ and in the right side, the
sum of ​x​ and ​y​ is withdrawn in a single call. Notice that both programs start in the same initial state.

✅ Max limit to avoid frauds (except on slashing)
Total of amount to be withdrawn is limited by ​MAX_WITHDRAWL
∀uint x. withdraw(x) ⟹ totalWithdrawn() + x ≤ MAX_WITHDRAWL​ + ​totalReward()

✅ Withdraw not locked (except on revocation)
Eventually withdrawal up to a total of ​MAX_WITHDRAWL​ ​will be possible. Notice that this is a temporal
property which must hold after some time.
∀uint x. 0 < x ≤ totalBalance()​ ​- totalWithdrawn() ⟹ ​Eventually​ withdraw(x)

Notice the usage of the operator ​Eventually​ which means that at some point in the future it will be
possible to withdraw ​x. This is a special case of ​linear temporal logic.

✅ No premature withdrawal
Withdrawal of more than the total released gold at the current time is impossible

www.certora.com

https://en.wikipedia.org/wiki/Linear_temporal_logic

∀uint x. withdraw(x) ⟹ x ≤ releasedTotalAmount() - totalWithdrawn()

✅ totalBalance ​only increases over time (except on slashing)
totalBalance() <= ​Next​ totalBalance()

This rule discovered the asset loss​ ​bug in ReleaseGold.

✅ releasedTotalAmount​ only increases over time
releasedTotalAmount() <= ​Next​ releasedTotalAmount()

LinkedList and SortedLinkedList

The LinkedList and SortedLinkedList are libraries used throughout the codebase. The below rules were
checked on the “Sorted” implementations (bytes32 key, uint256 key, and address key) but could be easily
adapted to check the non-sorted variation alone.
Attributes:

contains(uint key): bool

True if list contains element key

greater(uint key): uint

Successor of key in the list

lesser(uint key): uint

Predecessor of key in the list

tail: uint

Tail element of the list

head: uint

Head element of the list

numElements: uint

Number of elements in the list

✅ key. contains(key) (greater(key) ey ead) lesser(key) ey ail))∀ ⇒ (= 0 ⇔ k = h ⋀ (= 0 ⇔ k = t

✅ ead umElementsh = 0⇔ n = 0

✅ ead ailh = 0⇔ t = 0

✅ ∃key. contains(key)) head = ontains(head) ail = ontains(tail))(⇒ (/ 0 ⋀ c ⋀ t / 0 ⋀ c

✅ contains(0)¬

✅ (SortedLinkedList)key. contains(key) alue(tail) alue(key) alue(head)∀ ⇒ v ≤ v ≤ v

✅ For successful insert, remove (LinkedList):
○ New value of key is the provided value

www.certora.com

○ next key of new/updated key is either 0, or another element in the list
○ previous key of new/updated key is either 0, or another element in the list

✅ For successful insert, remove (SortedLinkedList):
○ For newly inserted/updated key, alue(lesser(key)) alue(key) alue(greater(key))v ≤ v ≤ v

○ (if it’s a real key and not 0)ey.next.prev eyk = k

○ (if it’s a real key and not 0)ey.prev.next eyk = k

✅ Insert succeeds if and only if all its preconditions hold:
○ ey =k / 0

○ ey = esser ey = reater contains(key)k / l ⋀ k / g ⋀ ¬

○ umElements AXINTn < M

○ esser = reater = umElementsl / 0 ⋁ g / 0 ⋁ n = 0

○ esser ontained(lesser)l = 0 ⋁ c

○ reater ontained(greater)g = 0 ⋁ c

○ sg.value =m / 0

○ Either the lesser key is “correct” or the greater key is “correct”, where “correct” refers to it
really being the correct adjacent element of the new key in terms of order.

✅ For successful remove (SortedLinkedList):
○ Removed key is no longer contained in the list
○ Value of removed key is nullified (set to zero)
○ Relevant pointers of next and previous keys are updated, and only them:

■ next will point to esser(key)l reater(key)g

■ previous will point to reater(key)g esser(key)l

■ and do not changereater(greater(key))g esser(lesser(key))l

✅ Remove succeeds only if key is contained in the list
✅ Irrelevant elements’ values do not change in either insert, update or remove, so sortedness is

preserved

StableToken

StableToken is a standard ERC20 token that is used to implement cUSD. It allows its users to adjust
balances to inflation. We verified it against Certora’s standard ERC20 token specification. Under the
assumption that the inflation factor and rate stay constant at 1, this token satisfies the standard
specification.

www.certora.com

3. Description of the high severity bugs
The process of running the tool and analyzing the resulting bug reports uncovered the following concerns:

3.1 LinkedList and SortedLinkedList

● It is possible to invalidate the sortedness of the list by providing invalid ​lesserKey ​and ​greaterKey
values. This could make the new key the maximal element even though it is not. After applying a
patch, the rules hold.

● Clients of ​AddressLinkedList ​or ​AddressSortedLinkedList ​must not insert directly from the internal
list library, since this will skip the expansion of the address to a proper ​bytes32 ​key.

3.2 Election

The election contract supports distributing rewards to voters of a group that participated in the validation
process. In order to distribute rewards in a fast manner and according to each voter’s voting units, the
contract stores:

● groupAssets -​total assets of a group which includes assets invested by voters and rewards
distributed to the group.

● totalVotingUnits - ​total voting units of users to the group.
● A mapping from users to voting units

The contract’s conversion function unitsToVotes, from voting units to assets is:

unitsToVotes(u) = groupAssets * u / totalVotingUnits

And the inverse function for converting assets to voting units :

votesTounits(x)​ ​= totalVotingUnits * x / groupAssets

The bug arises from rounding error in Solidity, when a voter withdraws part of her assets, the system
converts to units and rounds down to integers, and updates the system with the computed units.

Let’s take for example, a group with 50 voting units, two voters (out of more), and 150 rewards given to that
group and follow the case where one voter withdraws part of her assets:

Step A’s voting units B’s voting units totalVotingUnits totalAssets

Start 10 units
worth 40 assets

40 units
worth 160 assets

50 units 200 (50 from
voting, 150 from
reward)

user A withdraws 19
assets - converted to
4 units due to
rounding error
(instead of 4.75)

www.certora.com

state after withdrawal 6 units
worth 23 assets
(instead of 21)

40 units
worth 157 assets
(instead of 160)

46 units 181 assets

In this scenario A received 2 assets on account of other shareholders of the group causing a front-running
violation.

Another vulnerability from this bug is when depositing x assets, the calculated voting units may be worth
less than expected. For example, if member C chooses to add 19 assets to the start point where the total
assets is 200 and total voting units is 50. Due to the rounding error C receives 4 units (instead of 4.68) and
now the group has 54 voting units with 219 assets. However C can now withdraw only 16 assets
(​16=floor(4*219/54)​, thus losing 3 assets.

This bug becomes more problematic as the ratio between ​totalUnits to totalAssets is bigger. It was fixed by
storing units as a high precision integer.

3.3 Release Gold

The Release Gold contract tracks the total balance of assets it holds (Through getTotalBalance()), which
also includes the assets that are being locked in the Locked Gold and Election contracts on its behalf.
When the Release Gold contract sees that there are no more assets on its total balance, it terminates the
contract. Specifically, it deletes the refund address that should get the remaining grant if the beneficiary is
revoked.

However, the Release Gold contract disregards assets that are in a "pending withdrawal" state within the
Locked Gold contract, when it is calculating its total balance. This might cause the Release Gold contract to
mistakenly terminate itself, although there are still assets that are bound to it. Thus, for example, if an
already revoked user withdraws all the assets he is entitled to from the Release Gold contract, while there
are still unaccounted-for assets in a "pending withdrawal" state, then those assets will be lost indefinitely,
since the refund address that should have gotten them does not exists anymore.

The bug was trivially fixed by including all the assets in the “pending withdrawal” queue in the calculation of
the total balance of the Release Gold contract.

www.certora.com

4. Conclusion
Certora Prover’s verification increased confidence in the security of the Celo Governance protocol and
smart contracts. During the process, several flaws in earlier versions of the implementation were
discovered and fixed by the cLabs team. The rules that were proven by the Certora prover were integrated
into the CI system to guarantee correctness of future updates. We thank the cLabs team for their
collaboration on this project.

www.certora.com

