
InspireCT
Computational Thinking Practices

For adults, Computational Thinking is a set of practices used in computing
to frame problems, create solutions, express ideas, and understand the
impact of technology in our world.

For kids, Computational Thinking is finding ways to skillfully bring together
what humans are good at and what computers are good at.

What might CT look like in your classroom? Check out these examples of
CT integration!

CT Practice Essential
Questions

As a creator, I
can…

As a community
member, I can…

As a
programmer, I
can…

Data
Collection and
Analysis

Collecting
information
and
finding
connections
and
patterns.
Computers
can
make it easier
and faster.

- What
information
can I keep
track of or
collect from my
world?
- How can a
computer help
me make
predictions or
see patterns
with data?

- Decide what data
is useful to
collect.
- Identify patterns
in data.
- Use data to
make predictions
or explore
cause-and-effect
relationships.
- Find the mean,
mode, and median
for a data set.
- Use data to
communicate an
idea or to make an
argument.

- Explain to
someone else how
information is
represented,
stored, and
transformed by a
computer.
- Collect, share,
and find patterns
in data with a
team.
- Explain to
someone else why
computers are
useful when
sorting and
analyzing data.
- Consider how
data about my
community is
shared, collected,

- Create
programs that
use variables
to store and
modify data.
- Use
mathematical
and logical
operators to
calculate and
compare
pieces of data.
-Use input to
change the
outcome of
a program.



or protected.

Algorithm
Design

Creating an
algorithm, or a
series of
ordered steps,
in order to
complete a
task (kind of
like a recipe).

- What steps
should be
taken to
complete this
task?
- Is this the
best answer?
- Can this
algorithm be
applied to
other tasks?
- Can this
problem be
solved?

- Describe your
favorite sandwich
and write an
algorithm to tell
someone else
how to make it.
- Design a board
game and write
instructions for
how to play.
- Write an
algorithm to
explain part of a
natural
environment or
system.

- Share and explain
how an algorithm
I’ve written can be
used by someone
else.
- Compare
different
algorithms
for completing the
same task and
make an argument
for which is best.
- Examine the
impacts of an
algorithm’s design
on my family or
community.

- Use events and
sequencing to
decide on the
order of steps in
code and what
will begin the
algorithm.
- Use conditional
and binary logic
to program
decision-
making.
- Use loops to
repeat parts of a
program.
- Use sensor
data to
automate part of
an algorithm.
- Create an
algorithm that
works for
many tasks of a
certain type –
for example,
finding a path
out of any maze.

Abstracting
and
Modularizing

Extracting
essential
details and
repeatable
patterns from
a more
complex
system.

- What patterns
can I find?
- What details
can be
simplified to
find a solution?
- Can this
solution work
for my
community?
- How can
patterns or
parts from one
system or
solution be
used in

- Describe how I
might use patterns
to express an
idea.
- Create a visual of
an idea or system
and decide which
details should be
included and
which should be
left out.
- Create a diagram
to break a larger
task down into
smaller pieces and
explain the

- Read a text,
summarize its
meaning, and
share the most
important parts.
- Check to make
sure my idea or
solution can work
for people other
than myself.
- Solve a problem
collaboratively
by identifying tasks
that can be
handled by
different members

- Organize
different parts of
the code (for
example in
Scratch) and
explain the
reasoning.
- Identify a
program
function that is
used multiple
times and save it
to reuse.
- Program an
interactive
model of a



another? connection
between the parts.

- Examine a
problem to look
for similarities,
repetition, or
conditional
relationships.

of a team. system to
experiment with
changes over
time or test a
hypothesis.
- Modify, remix,
or incorporate
portions of an
existing program
into my work, to
develop
something new
or add more
advanced
features.

Debugging

Testing a
solution
and working
through
problems
as they arise.

- What is not
working the
way I would
like it to?
- How can I
test a smaller
part of the
problem?

- Revise a model
or idea over time
to show changes
in understanding.
- Break down
different parts of
something created
to determine
which parts are
not working.

- Clearly articulate
the problem
to a friend.
- Modify ideas after
getting
feedback.
- Suggest changes
to a classmate’s
model, plan, or
idea.

- Isolate different
parts of a
program or
solution in order
to figure out
what’s causing
the issue.
- Add comments
to code to
confirm
understanding.
- Explain choices
made during
program
development
using code
comments,
presentations,
and
demonstrations.

These practices were summarized from a variety of sources, including: SF CS4All, NYC CS4All, ISTE/CSTA
CT Standards, “A K-6 Computational Thinking Curriculum Framework: Implications for Teacher Knowledge”
by Angeli et al, K12CS Framework, Computing Progression Pathways (UK), CSTA CS Standards.

https://www.csinsf.org/pk-12-scope--sequence.html
https://blueprint.cs4all.nyc/outcomes/
https://drive.google.com/open?id=1lw5-_fZYqbjFLcWH_6DZnrHU2jOxxviJ
https://drive.google.com/open?id=1lw5-_fZYqbjFLcWH_6DZnrHU2jOxxviJ
https://k12cs.org/
https://drive.google.com/open?id=1g5xZnewQbzY8jIa8vqrC4Gkd81hlv-mT
https://www.csteachers.org/page/standards

