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EXECUTIVE SUMMARY

Sediment cores were extracted from the impounded basin above St. Croix Falls, Wisconsin
(SCF) and Lake St. Croix (LSC) along the Minnesota-Wisconsin border to examine changes in
trophic status of the basins over the last 150 years. High activities of 137Cs werc observed in
sediment at depths greater than 1.2 meters in cores extracted from the SCF basin suggesting that
over 1.2 meters of sediment had been deposited in less than 40 years. Cores extracted from Lake
St. Croix near Bayport, MN, Lakeland, MN and Afton, MN were found to contain sediments
deposited prior fo settlement (i.e, before 1850). Deposition and accumulation rates were an order
of magnitude lower in LSC and similar to estimates obtained by the Wisconsin Department of
Natural Resources for Squaw Lake near Somerset, WI.

Sedimentation patterns within the SCF basin appear {0 be correlated with stream discharge
(esp., during the autumnal period of leaf abscission). Peaks in organic matter, carbonates and
chlorophyll and midge community characteristics (density, species richness, composition) appear
to track stream flow patterns during the fall of the year when allochthonous organic matter enters
the tributaries and mainstem of the St. Croix River.

Increases in organic matter, carbonates and chlorophyllous pigments and shifts in benthic
midge communities within the more recently deposited sediments of both basins provide evidence
of cultural eutrophication over the last 40-50 years. These changes are consistent with large-scale
forest harvest and conversion to agriculture within the watershed since settlement and urbanization
and development along the river corridor over the last 20 years.
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INTRODUCTION

Biological monitoring has become an important aspect of water quality management and a
variety of monitoring tools have been developed to facilitate examination of the resource from
different spatial and temporal perspectives. Microbiological methods have been developed to
search for the presehce or likelihood of pathogenic organisms, multi-metric approaches have been
developed to examine structural and functional characteristics of invertebrate and fish communities
and measures of habitat fragmentation and fractality have been developed to examine the effects of
disturbance on a landscape scale (Hunsacker and-Carpenter 1990; Johnson et al. 1993).

Traditional physical and chemical methods provide point-in-time assessments of water
quality conditions, often missing hydrologic events which cause many water quality problems
(Karr 1991). Biological methods provide a means of integrating water ciua]ity characteristics over
the life-histories of the organisms cxamined and all of the methods above provide some level of
integration both in space and time. However, few of these methods provide a longer-term picture
of water quality and biological responses.

Paleoecology is the sfudy of historical ecology and paleolimnology is the historical study of
the limnology of a lake basin. Major natural events (e.g., floods, landslides, fires) and
anthropogenic activities (e.g., deforestation, cuitivaﬁion, urban development) contribute material
and energy to downstream recciving systems within a drainage. Signatures of these large scale
processes may be found in sedimentary deposits of reservoir and lake basins which serve as sinks
within the drainage basin. The tools of palececology provide a holistic approach to resource
assessment through a study of the sediments deposited within a lake basin . Rates of sediment
accumulation, plant pigment concentrations and fossilized remains of plants and animals provide a
chronological history of the processes operating within the basin over long periods of time (Frey
1988: Pennington 1981; Smeltzer and Swain 1985; Walker 1993).

These techniques have been used by other authors in the study of climate change (Hofman

1983), descriptions of historical changes in floristic composition (Turner 1984; Watts 1584),
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documentation of changes in erosion and flora associated with settlement and development within a
basin (Davis 1976; Dearing 1991; Likens and Davis 1975) and trophic state changes over time
within Jake basins (Adams and Prentki 1986; Engstrom et al. 1985; Warwick 1980). Highand
variable sedimentation rates normally prevent the use of paleolimnological methods as biological
monitoring tools for water quality assessment in riverine systems (except see Klink 1989).
However, riverine impoundments may be viewed as sinks for erosional processes operating above
them within a watershed Walker (1993). Sediment within these sinks may thus provide a
chronological history of large-scale events shaping the landscape of the watershed.

This study was conducted to (1) examine differences in sediment accumulation rates
between the impoundment above Saint Croix Falls, Wi and Lake St. Croix, (2) describe changes
in the trophic state of both basins as reflected by organic matter, pigment and midge fossil remains
in the sediment and (3) describe the relationships between basin changes and historical changes in
{and and water-use above éach basin.

METHODS
Basin Descriptions and Historical Limnology

Lake sediment studies were conducted on cores extracted from the impoundment at St.
Croix Falis, WI (SCF) and in Lake St. Croix (LSC) on the Lower St. Croix National Scenic
Riverway (Fig 1; Appendix A). The upper basin is impounded by a dam constructed in the
narrows of the dalles on the St. Croix River in 1904. This impoundment has been managed for
hydropower production on a peaking mode for the last 90 years. Graczyk (1986) reported an
average annual strcam flow through the dam of 119 cms. The impounded basin is approximately 4
km long with a surface area of 127 hectares and 2 maximum depth of approximately 18 meters. A
typical sonar profile of the basin is shown in Figure 2a. This profile shows that the basin is
generally steep sided, particularly along the west bank with a gentle upward sloping east bank.
Watershed area above this basin is reported to be 16,162 square kitometers draining peatland and

bog areas in northeastern Minnesota and Northern Wisconsin (Grazcyk 1986).




Figure 1 (following page). Saint Croix Falls (SCF) and Lake Saint Croix (LSC) basins on the
Lower St. Croix National Scenic Riverway, Minnesota-Wisconsin. Municipalitiecs shown
on the map for reference include Saint Croix Falls, W1 (Sf); Stiliwater, MN (St); Hudson,
WI (Hu); Lakeland, MN (La}; and Prescott, WI (Pr). Geographic coordinates of coring
sites shown in Appendix A.
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Figure 2 (following page). Sonar profiles of the St. Croix Falls basin (a) and the Lake St. Croix
basin near Bayport, MN (b) (Not to scale).
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Lake St. Croix is a much larger basin (3,275 hectares) and serves as the outflow for the St.
Croix River to the Mississippi at Prescott, WI. Eyster-Smith, et al. (1991) provided an excellent
review of the development of this basin. The basin was formed from two events that occurred as a
result of glacial history. The first event was the development of an alluvial fan at the confluence of
the Chippewa River with the Mississippi River forming a natural dam. This dam partially
impounded the Mississippi leading to the development of Lake Pepin. Water impounded by this
fan extended back upstream to St, Paul and up the St. Croix River basin. The second event
contributing to the formation of this basin was the decrease in discharge of Glacial River Warren
which drained Lake Agassiz. Lower discharge in this river caused the formation of a river delta at
the headwaters of Lake Pepin forming the natural alluvial deposit at Point Douglas which
impounds Lake St. Croix. These events are estimated to have occurred c. 9500 YBP (Eyster-
Smith et al. 1991). The basin is 37 km long with four distinct sub-basins that receive the total
drainage of the St. Croix River toits confluence with the Mississippi River at Prescott, WI (Total
Drainage Area of 22,196 km?; Graczyk 1986). Average discharge into the lake is ¢. 142 cms
(Eystef~Smith 1977). The first sub-basin extends from just above Stillwater, MN to Hudson, WI,
the second from Lakeland, MN to just above Afton, MN, the third from Afton to the mouth of the
Kinnickinnic River, and the fourth from the Kinnickinnic R, to the confluence of the St. Croix
with the Mississippi River at Prescott. Sub-basin prof iles within Lake St. Croix are more gradual
with deep pools approximately 18-24m deep (Fig 2b).

Temperature, oxygen and conductivity profiles within the water column of the SCF and
LSC basins are shown with Secchi depths taken at the time of core extraction in Appendix A.
From these profiles (taken in early August, 1991) it can be seen that neither basin develops strong
summer stratification and both basins suffer from near anoxic to anoxic conditions at the sediment-
water interface. This was especially pronounced in the SCF basin were degassing was observed
as cores were extracted providing evidence of anaerobic decomposition. Despite reports of blue-

green algal blooms (Brook 1966). Secchi depths extended to over 1m at all but 1 site.
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Coring

Cores were extracted from the SCF basin on August 6 and August 7, 1991 and from the
LSC basin on August 9, 1991. Three cores approximately 1.5 meters long were extracted from
each basin using a 10cm diameter polycarbonate tube fitted with a piston and operated from a
pontoon platform on the lake surface by rigid zirconium drive rods. In addition, overlapping cores
were extracied from two locations within the SCF basin using a Livingstone piston corer (Cushing
and Wright 1965). Sediments taken with polycarbonate corers were extruded vertically in the field
at stratified intervals. These intervals increased with depth in each core (0-10cm depth - 1em
interval, 10-30cm depth - 2cm interval, >30cm depth - 4 cm interval). Overlapping Livingstone
cores were wrapped in plastic and tinfoil and extruded horizontally within the lab based on visual
delineation of discontinuities in texture and organic matter within the core. Extruded samples were
transferred to glass jars and stored under refrigeration until subsampled for analyses.
Dating and Sedimentation Rales

SCF sediment samples were initially examined using 210Pb as described below for the LSC
samples. However, high deposition rates and subsequent dilution of 210Pb within these sedimenis
precluded the use of this methodology to age sediments from this basin. In lieu of these results,
we chose to analyze SCF sediments for excess 137Cs activity to obtain a chronological marker
corresponding to the beginning of atmospheric testing of nuclear weapons in 1954 (Appleby et al.
1991: Pennington et al. 1973; Ritchie et al. 1973). . A high purity germanium gamma detector
was calibrated using normal standards (Standard #4353) and used to measure the 667 keV line
gamma emissions from 137Cs in sediment samples. These analyses were performed on 20g DW
sediment samples from each core for 4 hours in the laboratory of Dr. Daniel Steck (Physics
Department, St. Johns University, Collegeville, MN). Greater resources were allocated to dating

multiple sections of the core extracted from the SCF3 site since the last section of this core
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was collected down to bedrock (Appendix B). Only lower sections of cores SCF1 and SCF2 were
dated since 137Cs was found nearly to the bottom of the SCE3 core.

Lower sedimentation rates within LSC ailowed the use of 210Pb for more accurate dating
within the lower basin. LSC sediment cores were analyzed for excess 219Pb activity to determine
age and sediment accumulation rates for the past 120-140 years (Appendix B). Lead-210 was
measured at 12-14 depth intervals in each core through its grand-daughter product 210Po with 268Po
added as an internal yield tracer. The polonium isotopes were distilled from 1-3 g dry sediment at

550:C following pretreatment with concentrated HCI and plated directly (without HNO; oxidation)

onto silver planchets from a 0.5N HCL solution (modified from Eakins and Morrison 1976).
Activity was measured for 1-6 x 1058 with Si-depleted surface barrier detectors and an Ortec
Adcam™™ alpha spectroscopy system. Unsupported 219Pb was calculated by subtracting supported
activity from the total activity measured at each level; supported 210Pb was estimated from the
asymptotic activity at depth (the mean of the lowermost samples in each core). Dates and sediment
accumulation rates were determined according to the constant rate of supply (c.r.s.) model
(Appleby and Oldfield 1978) with confidence intervals calculated by first-order error analysis of
counting uncertainty (Binford 1990). First-order analysis, also called general error propagation, is
concerned with the precision and accuracy of sedimentary measurements and the nature of the
c.r.s. model and not that controlled by external forces such as depositional changes that violate
model assumptions, inaccuracies of stratigraphic sampling, or laboratory contamination. The
utility of 210Pb as a dating tool diminishes in sediments older than 100-120 years as due to the
natural decay of the isotope. Thus, dates of older sections of each core were estimated by
extrapolating from the cumulative dry mass and the mean sediment accumulation rate for the
bottom dated section of each core where sedimentation rates approach a constant low value

(Appendix B). Uncertainty around these estimates is high.
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Organic Matter and Carbonales

Organic matter and carbonate content of core sections was determined through loss on
ignition of 1-2cc subsamples based on the methodology of Dean (1974). Subsamples from each
core section were dried at 60°C for 48 hours, ashed at 530°C for 2 hours and volatilized at 1000°C
for 2 hours within tared porcelain crucibles, Gravimetric differences following each oven
treatment allowed for determination of the three fractions. Replicate analyses were conducted at
random within each core to assess the precision of our analyses.
Pigments

Homogenized subsamples from each core section were processed for chiorophyll
derivatives and percent native chlorophyll folioﬁin g the methodology of Sanger and Gorham
(1972), Swain (1985) and American Public Health Association et al. (1991). Spectrophotometric
determination of chlorophyllous pigments was done f ollowing 4 serial extractions of ¢, 2.5g WW
sediment subsamples using 90% acetone. Replicate analyses were performed at random within
each core to assess the precision of our analyses.
Midge Fossils

Sections of each core (n = 18-20) were selected for midge analysis based on stratigraphic
patterns displayed by carbonate, organic matter and chiorophyll content. At least 2 sections were
examined for major peaks and vaileys in the stratigraphy of these parameters. Midge fossils
(Diptera, Chironomidae) were subsampled from these sections after homogenization using a
modified syringe. Subsamples were washed over a set of nested sieves (final mesh size 80um) to
facilitate sorting. Sorted head capsules were mounted on microscope slides and identified to the
lowest possible taxon using the keys of Merritt and Cummins (1984), Simpson and Bode (1980)
and Wiederholm (1983) and the illustrations of Lawrenz (1975). In many cases fossils could be

identify to genus.
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RESULTS

Sediment Age and Deposition Rales

Sediments extracted from all three SCF cores were found to be less than 40 years old. All
three cores (except for the deepest section of core SCF3) were found to contain significant
quantities of 137Cs a radioactive isotope contributed via atmospheric fallout from bomb testing in
the 1950’s and 1960’s (Table 1; Appendix B). The sharp decrease in activity observed in the last
section of SCF3 suggests that this sediment was deposited before fallout from atmospheric testing
of atomic weapons which began in 1954. If we assume that (1) the drop in 137Cs at the SCF3 site
does correspond with the initiation of bomb testing in 1954, (2) there has been no vertical
redistribution of deeper sediments (>1m) in this basin and (3) 137Cs has not migrated to lower
sediment layers then 1.5-2.0 meters of sediment has been deposited within the SCF basin at our
three coring sites in less than 37 years! Thus, current estimates of sediment deposition within this
basin are estimated to range from 3 to over 6 cm/yr and accumulations are estimated to range from
1 to 4 mg/lem?yr.

In contrast to the high deposition observed for the SCF basin, rates of deposition from
LSC are approximately one order é)f magnitude lower (Table 1; Appendix B). This allowed the use
of 210Pb as a tool to age sediments within this basin. Using this method, cores (1.2-1.6m)
collected near Bayport, Lakeland and Afton were found to date back 150-250 years. Rates of
sediment loading were also much lower, ranging from 0.11 - 0.43 mg/cm¥yr. Supplemental
pollen analyses were conducted on selected sections of the LSC cores to confirm 210Pb dating.
Data from these counts indicate a decrease in white pine pollen (Pinus strobus) at c. 1850 and an
increase in Ambrosia sp. pollen at c. 1880 in all three LSC cores (Appendix B). These pollen
counts and dates correspond nicely with historical records of white pine harvest and the onset of

major agricultural development within the basin. The data also suggest differing effects of
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Table 1. Summary of sediment age, deposition rates and accumulation rates within each core
collected from SCF and 1.SC coring sites (detailed dating and deposition data in Appendix

B).
Coring Site Core Depth Age Deposition Rate ¥ Accumulation Rate*
{cm) (yrs) (cm/yr) (mg/cm?/yr)

SCF1 118 <37 >3.19 >1.28
SCE2 231 <37 >6.24 >4.05

SCF3 162 37 4.38 2.61

LSC1 122 157 0.78 0.43

LSC2 126 238 0.53 0.16

LSC3 106 169 0.63 0.17

*Estimated sediment loading rate (g DW/cm2/yr) for upper most sections from LSC. Estimates for SCF determined
by multiplying the average bulk density of sediments within SCF3 (g/cm3) (Appendix B) times the rate of
deposition (cm/yr) over the entire length of the dated core (last section estimated at 37 YBP).

settlement and development within the watershed on the three sub-basins within LSC. The

Bayport basin (LSC1) was found to have the highest deposition and accﬁmulation rates of the three

basins.

Organic Matter and Carbonates
Organic-matter content of sediment within the SCF cores ranged from less than 3% to over

25% and stratigraphy appeared to vary significantly among sections within each core (Fig’s 3a-c;

Appendix C). Three distinct increases in organic matter were observed within the sediments of

each core although the depths varied from site to site. Similar stratigraphy was noted for

carbonates which ranged from less than 0.5% to over 2.0% by weight within sediment samples
from the three cores at SCF. Peaks in carbonate content were observed to coincide with organic

matter peaks in all three cores (Fig's 3d-f; Appendix C).

In contrast to the highly variable organic matter and carbonate stratigraphy of the upper

basin, LSC sediments displayed much more gradual changes in these parameters (Fig’s 4a-f;

Appendix C). Organic matter content of sediments ranged from 8% to over 18% by weight while
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ic matter and carbonates observed from SCF1(a,d),

SCR2(b,¢) and SCF3(c,{) (Note arrow on SCF3 plots indicating period preceding bomb

testing - 1954).
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Figure 4 (following page). Percent organic matter and carbonates observed from LSCl(a,d),

LSC2(b,e) and LSC
1860).

3(c,f) (Note linés on figures indicating settlement period of 1840-
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Figure 5 (following page). Chlorophyll derivatives and percent native chlorophyll observed in
sediment samples from SCF1(a,d), SCF2(b.¢) and SCF3(c,) (Note line on SCF3 plots
indicating period preceding bomb testing - 1954).







Figure 6 (following page). Chlorophyll derivatives and percent native chlorophyll observed in
sediment samples from LSC1(a,d}, LSC2(b,¢) and LSC3(c,f) (Note lines on plots

indicating period of settlement 1840-1860).
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Figure 7 (following page). Midge community composition, total density and generic richness from
the SCF1 coring site.
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Figure 8 (following page). Midge community composition, total density and generic richness from
the SCF2 coring site.
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Figure 9 (following page). Midge community composition, total density and generic richness from
the SCF3 coring site (Note arrows on plots indicating period preceding bomb testing -

1954).
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in the LSC. Greater variability in this parameter within LSC versus SCF probably reflects year to
year variability in oxygen and temperature at the sediment water interface (both factors which
influence chlorophyll degradation). These data suggest that primary production within Lake St.
Croix has increased significantly since the cultural horizon and particularly over the last 40-50
years.

Midge Fossils

Midge densities and species richness in the SCF basin generally followed the patterns
observed for other measures (Fig's 7-9). Maximum density and richness values were observed in |
the same general areas of the core where organic matter, carbonates and chiorophyl! values were
high. Midge densities were also high in the SCF basin with most values exceeding 50 capsules per
cubic centimeter. Taxa richness values ranged from 7-18 per sample,

The composition of the midge community was fairly evenly distributed among the
Tanytarsini, Chironomini and Orthocladiinae (all ranging from 10-20% by number) in the SCF '
basin (Fig’s 7-9). Tanypodinae were somewhat less abundant (ranging from <5% to 20% by
number) in SCF cores. This is not surprising since this group is made up of predatory midges
who’s numbers are typically lower than herbivores, shredders and collectors lower in the food
chain (Merritt and Cummins 1984). Unlike LSC samples, the midge communities in this basin
were not dominated by Procladius sp. and Chironomus sp. but appeared to be more representative
of a riverine community (see Table 2). Orthocladiinae contributed a much larger proportion of total
numbers in these cores than in the cores collected from LSC. Changes in composition failed to
indicate a consistent pattern among cores and did not appear to be tightly correlated with changes in
midge densities or taxa richness.

Densities of midges in LSC were higher in deeper sections and decreased near the surface
of all three cores (Fig's 10-12; Appendix D). In addition, midge densities were uniformly lower in
the sediments of this basin than from those at SCF ranging from 1 to near 15 per cubic centimeter.

Taxa richness was also lower in LSC than in SCF ranging from 4 to 16 genera in a section and




Table 2. Midge assemblages found in the SCF and LSC basins on the St. Croix River.

*See Appendix D for detailed descriptions of midge genera.

GENERA SCF1 SCF2 SCF3 LSC1 LSC2 LSC3 BASIN
(% of Sections Observed)
Chironomus sp. 57.9 80.0 80.0 94.4 95.2 100.0 LSC
Cladopelma sp. 5.3 0.0 0.0 22.2 19.0 0.0 LSC
Clinotanypus sp. 0.0 0.0 0.0 5.6 0.0 0.0 LSC
Coelotanypus sp. 0.0 0.0 0.0 11.1 4.8 25.0 L.SC
Cryplotendipss sp. 0.0 0.0 0.0 5.6 0.0 5.0 LSC
Epoicociadius sp. 0.0 0.0 0.0 0.0 0.0 5.0 LSC
Hydrobasnus sp. 0.0 0.0 0.0 5.6 0.0 0.0 LSC
|Larsia sp. 0.0 0.0 0.0 0.0 0.0 5.0 LSC
Macropslopia sp. 0.0 0.0 0.0 0.0 4.8 10.0 LSC
Orthocladius sp. 0.0 0.0 0.0 5.6 4.8 0.0 .SC
Pagastia sp. 0.0 0.0 0.0 0.0 0.0 10.0 LSC
Paralauterbornisiia sp. 0.0 0.0 0.0 0.0 4.8 0.0 LSC
Procladius spp. 73. 65.0 35.0 100.0 100.0 95.0 LSC
Rheotanytarsus sp. 0.0 0.0 0.0 0.0 33.3 0.0 LSC
Tanypus sp. 0.0 0.0 0.0 5.6 0.0 0.0 LSC
Brillia sp. 5.3 0.0 0.0 0.0 0.0 0.0 SCF
Corynoneura sp. 78.9 45.0 60.0 33.3 14.3 10.0 SCF
Cricotopus sp. 94,7 100.0 100.0 88.9 57.1 35.0 SCF
Dicrotendipes sp. 84.2 85.0 40.0 50.0 52.4 30.0 SCF
Glyptotendipes sp. 63.2 55.0 55.0 38.9 14.3 25.0 SCF
Krenopelopia sp. 94.7 80.0 80.0 0.0 0.0 10.0 SCF
Lenziella sp. 78.9 60.0 55.0 44.4 57.1 45.0 SCF
Microtendipes sp. 52.6 95.0 30.0 5.6 0.0 10.0 SCF
Nilotanypus sp. 47.4 75.0 60.0 22.2 4.8 0.0 SCF
Nilothauma sp. 5.3 0.0 0.0 0.0 0.0 0.0 SCF
Nimbocera sp. 5.3 0.0 0.0 0.0 0.0 0.0 SCF
Paracladius sp. 5.3 5.0 0.0 0.0 0.0 0.0 SCF
Paramstriocnemus sp. 0.0 5.0 0.0 0.0 0.0 0.0 SCF
Paratanytarsus sp. 63.2 70.0 55.0 27.8 42.9 35.0 SCF
Phaenopsectra sp. 73.7 70.0 80.0 1.1 0.0 0.0 SCF
Polypedilum sp. 100.0 100.0 100.0 72.2 61.9 70.0 SCF
Robackia sp. 15.8 15.0 15.0 0.0 0.0 0.0 SCF
Stenochironomus sp. 10.5 20.0 15.0 5.6 0.0 0.0 SCF
Symposiocladius sp. 0.0 10.0 0.0 0.0 0.0 0.0 SCF
Synorthocladius sp. 10.5 5.0 25.0 0.0 0.0 0.0 SCF
Tanytarsus sp. 100.0 100.0 85.0 77.8 57.1 80.0 SCF
Tvetenia sp. 5.3 35.0 20.0 0.0 0.0 0.0 SCF
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Figure 10 (following page). Midge community composition, total density and generic richness
from the LSC1 coring site (Note lines on plots indicating period of settlement 1840-1860).
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Figure 11 (following page). Midge community composition, total density and generic richness
from the LSC2 coring site (Note lines on plots indicating period of settlement 1840-1860).
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Figure 12 (following page). Midge community composition, total density and generic richness
from the LSC3 coring site (Note lines on plots indicating period of settlement 1840-1860).




Section Middepth {cm)

11.0

35.0

84.0

104.0

—
oo
—

Section Middepth {(cm)

OO 0000 P Paubin (A LA (AY mb ek

BOOINICOR ONITNURO I A NGO
oooooooooooooooommmm

LSC3

AR R AR AR TS HHU R e
RN \\\\\\\ liliilll]lﬂlIIHIHEHHII!HEHIliIIEIIEI!IIHI
PR LR
ERNRNNANNNAY \
RN
L S S LRSI
N
r,m RN
RN
‘Q‘R\“\‘&‘\\

SRR
PN

m\Illil!llillllllllﬁl][llﬁllillllIHIEIIII
R

[HECEEERRRERER DAL ER R ER LR EREN S RO
EI]II!HiHlIillililllﬂllillllilIIIIIHII]H!IIH Sl

nm\\ \III!HHEIIIIEI]EI!IIillEIlIIIII[IEI]IIillil]ililll!lllil

[EFA EHEEAT AR VR MR RO e .
|§|IllilllﬁilllllﬂlilﬂEI!IIII]II]H!HHIH!IIilllll!ll =

mﬂllﬂliillﬂllllIEI]IIIHEI!IHHEIIEIIIIIIIIIIIIIH

%TANYTARSINI
%CHIRONOMINI
%ORTHOCLADINAE
%TANYPODINAE
%DIAMESINAE

AR ‘m‘l\‘h\iilillilIEI!IIIIl!lilIEI!IIIIilIiII!IlEIIiHF
‘mIiHEIIlilil!lﬂiI1EIIHIHIIII!lI!llIIlII!HlI!HiI!lIII|El|llil|!llili[|ill!|l!
\EIIII!HH!HIHIHEHNIIII!IIHH!IIHIW

\‘&.“\\"i\ “&u\‘i\ QRN EZZ2E (R LR i -
R RS mliillmlillilltl!illlllmlillll
' m\m m\ S IRTHITHS IR NEON -
R R m\&mIllllilliﬁllillilllllil!lllllw
1 b m W\EHIHHIHIIHIII :
U AN ‘@Illilifllliilllllllﬂilllllllillllillilllllili
0 20 40 60 80 100
% Composition
S ) —=
-~ AR}
C 1.0 AN
- i
——— C
TN 35.0 j
; =
| )
= 84.0 |
== ——
]
— 1040 S
2 4 6 8 10 12 2 4 6 8 10 12 14
Number CCJ Richness




30

varying both within a core and among cores within LSC. Richness at LSC1 appeared to be highest
in the middle portions of the core while those of LSC2 were highest in the upper sections,
Richness in the LSC3 core was highest in older sections. Procladius sp. and Chironomus sp
dominated the communities of all three LSC cores. At LSC3 the percent contribution of
Chironomini increased and Tanypodini decreased toward the surface. Tanytarsini also increased
slightly in their contribution to total abundance in more recent sections of the core.

Several midge genera were more prevalent in one of the two basins (Table 2). In general,
most of the taxa found in higher numbers in LSC cores are known to prefer littoral or profundal
habitat while those found in higher numbers in SCF cores prefer stream habitat (Appendix D).
These results are consistent with our observations of carbonate, organic matter and chiorophyli
stratigraphy and the hypothesis that depositional patterns within the upper impoundment may be
controlled largely by stream discharge. High stream discharge may cause a catastrophic drift
response in benthic invertebrates within the stream channel (Waters 1972). This response could
flush large numbers of lotic invertebrates into a basin where their remains would become mixed
with truly lentic forms.

Stratigraphic Plots

To provide an integrated picture of the sediment core analyses, stratigraphic plots were
created to display changes in sediment characteristics within each core (Fig’s 13-18). From these
plots, it is possible to see the general commespondence between changes in organic matter,
chlorophyll, and midge community characteristics within each core. Since all of the SCF cores
(except the last section of SCE3) are believed to be younger than 1954, stratigraphic patterns
observed in the SCF plots are representative of relatively short-term changes within the basin. In
all three cores, midge densities and the percentage of Tanytarsini appear to roughly follow changes
in percent native chlorophyll and organic matter in the core sediments which in-turn correspond
with autumnal stream flows through the dam (Fig 19). Thus, changes in deposition within the

SCF basin appear (o be strongly related to patterns of St. Croix River discharge.




Figure 13 (following page). Stratigraphy of the SCF1 coring site.
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Figure 14 (following page). Stratigraphy of the SCF2 coring site.
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Figure 15 (following page). Stratigraphy of the SCF3 coring site.
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Figure 16 (following page)- Stratigraphy of the LSC1 coring site.
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Figure 17 (following page). Stratigraphy of the LSC2 coring site.
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Figure 18 (following page). Stratigraphy of the LSC3 coring site.
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Mean October Discharge - 1950 to 1991
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1981

Year (A.D.) 1971
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0 4500 9000

Cubic Feet Per Second

tober from 1950 to 1991 at the St. Croix Falls

Figure 19. Mean monthly flows for the month of Oc
dam site (data from the United States Geological Survey, Reston Virginia).
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The LSC stratigraphic plots show the general trend of increasing chlorophyll and organic
matter values toward the surface of each core signalling the effects of cultural eutrophication. Total
midge densities in this basin are not as responsive 10 chlorophyll and organic matter. However,
Tanytarsini appear to somewhat track chiorophyll values as do the Chironomini at LSC3. The
percentage of Orthocladiinae appear to track deposition rates within the cores. It is interesting to
note that deposition rates within the upper two sub-basins (LSCI, LSCZ) have increased by a
factor of 2-3 from levels at the base of the cores while those of 1.SC3 have stayed the same Or
decreased. This probably reflects the proximity of these upper sub-basins to the delta of the river
where higher deposition rates would be expected.

DISCUSSION

The results of this study suggest that paleoecological tools may assist watershed managers
in interpretation of long-term water quality changes within riverine basins. Our data from the SCF
basin support the hypothesis that short-term variability in stream hydrology could influence inpuis
of organic matter and stream insects and subsequently change sediment carbonates and chiorophyll
as nutrients are released during decomposition. Sediment stratigraphy suggests long-term changes
in LSC since the period of settlement in the middle 1800°s. Forest harvest and agricultural
development within the basin are reflected by increases in sediment organic matter and carbonates
deep in the core while recent rapid increases in these parameters, chlorophyll and midge
community characteristics appears to be reflective of cultural eutrophication over the last 40-50
years.

Sedimentation characteristics within the SCF basin appear to be typical of those found in
most reservoir systems. Ina study of deposition in reservoirs across the United States, Ritchie
(1989) found an average deposition rate of 3.8 cmlyr (n=58). This rate corresponds well with the
estimates we obtained for the SCF basin (3-6 cm/yr). Ritchie also noted that the sediment and
organic matter accumulation rates within his reservoirs were more dependent on watershed and

reservoir characteristics (local scale) than regional or cultural factors. This fits with our hypothesis
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that stratigraphic patterns observed within this basin are tied to hydrologic characteristics of the St.
Croix River (pamcularly in the fall of the year). Rough correspondence is evident between
deposition patterns within the basin and discharge patterns during the fall of the year in the St.
Croix River. This correspondence may be attributed to changes in riparian canopies at this time of
the year. Leaf abscission contributes large quantities of leaf material to the tributaries and main
channels of most temperate stream ecosystems (Fisher and Likens 1973, Kauschik and Hynes
1971). High stream flows during this period would flush large quantities of coarse organic
material and associated invertebrates into the basin, producing the distinctive peaks in organic
matter and predominance of lotic midges within the sediment. Nutrient mobilization during the
initial stages of leaf decay within the basin may then stimulate primary production leading to higher
peaks in carbonates and chiorophyll values within the sediment.

Deposition patterns within LSC appeared to be controlled by processes operating within the
watershed over much longer periods of time. With the exception of percent native chlorophyll,
measured parameters generally indicated long gradual changes in the character of the basin over the
Jast 150-250 years. Sediment deposition and accumulation rates within this basin are well below
those observed in constructed reservoirs (Ritchie 1989} and are not dissimilar to current estimates
of accumulation reported for Squaw Lake (also within the drainage basin) (Garrison 1991).
However, distinct differences were apparent among the cores extracted from the three sub-basins
of LSC. LSC1 was extracted near the Eyster-Smith site at Bayport (Eyster-Smith 1977; Eyster-
Smith et al. 1991). This core displayed the higheét sediment deposition and accumulation rates of
the three sub-basins. These results are consistent with those obtained by Eyster-Smith et al.
(1991) and may be explained by the location of this site in relation to the St. Croix River delta
within Lake St. Croix. Deposition and accumulation rates decreased in a downstream direction at
our other coring sites near Lakeland, MN (LSC?2) and Afion, MN (LSC3). This downstream

gradient was also apparent for chiorophyll levels and midge community characteristics.
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Percent native chlorophyll appeared to vary overa short time frame at SCF and LSC. This
may be explained by year to year of even season to season differences in temperature and dissolved
oxygen at the sediment-watcr interface (Swain 1985). Chlorophyll is preserved under anaerobic
conditions while microbial activity under aerobic conditions promote its degradation (Hurley and
Armstron 1990). Thus, year to year changes in stratification patterns within each basin may
account for the large variability in this parameter.

The long-term trends exhibited by the cores of LSC are consistent with historicat
developments within the watershed over the last 150 years. Earopean settlement in the basin and
Jarge-scale harvest of the white pine forest began in the late 1840’s and early 1850’s. These
landscape level changes are revealed in the organic matter deposits within the LSC basin as peaks
in organic matter in lower sections of all three cores (80-90cm). The extensive log drives down the
St. Croix undoubtedly introduced a considerable foad of organic matter to LSC (Verry 1992) and
these activities within the basin are reflected in our core data. Further developrhent in the basin
proceeded in the late 1800°s and carly 1900’s with extensive agricultural production. This
development proceeded through most of this decade as is evidenced by the large-scale
fragmentation of remaining forest tracts within the watershed (Queen et al, 1993). In recent
decades, development along the riverway has placed ever increasing demands on the resource.
This led to the inclusion of the jower river as a scenic and recreational river of the National Scenic
and Wild Rivers Actin 1972.

Forest harvest, clearance of land for agriculture and urbanization and development along
the riverway have resulied in changes in both basins. Recent (over the last 40-50 years) rapid
increases in organic matter, carbonates and chlorophyll in LSC suggest increasing pressure on the
basin from cultural eutrophication. Similar observations have been made by other authors using
similar techniques. Moller and Scharf (1986) observed vertical increases in chlorophyl! a and
phaeopigments toward the surface of cores extracted from nine volcanic lakes in the Eifel region of

Germany. They attributed long-term changes in pigment concentrations to the effects of glaciation
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and more recent dramatic increases in pigments to anthropogenic eutrophication of these basins.
Adams and Prentki (1986) observed a sirong correlation between pigment concentrations in.the
sediments of Lake Mead, Nevada and management within the watershed. Chiorophyll values in
lake sediments were observed to stabilize at approximately the same time that tertiary sewage
treatment was implemented for effluent entering the basin. Garrison (1991) observed large
increases in organic matter and chlorophy!l a content of sediments from Squaw Lake, WI over the
period 1900 to the present. Post-1980 sediment accumulation rates were significantly higher (>
0.16 g/cm?/yr versus 0.02-0.06 glem?2/yr) than those observed prior to 1980. In addition, large
increases in organic matter and chlorophyll were noted from sediments aged after 1940 which
corresponds roughly to the major period of increase in the LLSC cores. Diatom cell influxes were
observed to increase dramatically during this same period of time. These changes in lake sediment
characteristics were attributed to cultural eutrophication of the lake basin from development within
the watershed.

Our observations are also supported by long-term monitoring of the basin by the Minnesota
Pollution Control Agency. The Carlson Trophic State Index which the agency uses to classify
jakes within the state, indicates that the LSC basin should be classified as eutrophic (Minnesota
Pollution Control Agency 1992). This was also the conclusion of Brook (1966), consultant for
Northern States Power Company. His reports of phytoplankton studies within the river and Lake
St. Croix suggest that blue-green algal blooms were common in the lake even prior to 1960,

Midge densities and richness appeared to track changes in organic matter, carbonates and
chiorophylt within the basins. In general, higher densities and richness values were observed in
sections of the core with higher organic matter and chlorophyll values. InLSC cores, the
percentage of Tanytarsini and Chironomini increased toward the surface while Tanypodinae
(primarily Procladius sp.) tended 1o contribute a larger percentage to total numbers in lower
sections. Orthocladiinae in LSC did not display a significant patiern over time but they were

relatively abundant within the SCF community. Differences in community composition between
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the two basins suggested a predominance of lotic forms in the SCF basin. This observation is
consistent with our hypothesis that organic matter, carbonates and chlorophyll values in the SCF
basin closely correlated with the hydrologic regime of the St. Croix River during the period of leaf
abscission. Midges are a prevalent component of stream drift (Waters 1972) and lotic forms would
be expected to wash in during freshets. |

Midges have been used historically to classify and evaluate the trophic status of lake basins
(Brundin 1958; Saether 1975 1979; Stahl 1969, Thienemann 1922). Brundin (1958) provided a
classification of lakes based on midge communities. In his classification the communities of
oligotrophic lakes would be dominated by Orthocladius, Heterotrissocladius and Tanytarsus.
Communities of mesotrophic lakes would be dominated by Stictochironomus and Sergentia and
communities of eutrophic lakes would be dominated by Bathophilus and Chironomus. Megard
(1964) found the midge fauna of Dead Man Lake, NM was dominated by Orthocladiinae and
Tanytarsini. According to european classifications, these groups should indicate oli gotrophic
conditions. However, Dead Man Lake is known to be a eutrophic basin. Megard concluded that
midge communnities are more indicative of oxygen stratification and concentrations in the profundal
zone of lakes than lake trophic status. In the SCF and LSC basins, neither basin had strong
thermal stratification and dissolved oxygen Jevels were observed to be at or near zero on the lake
bottom. In the SCF basin, we observed degassing (methane production from anaerobic
decomposition) of sediments as cores were being collected. Thus, oxygen levels in the sediments
of both basins are apparently very low. This may explain the high relative abundance of
Chironomus sp. in LSC sediments. Haemoglobin production and utilization by tﬁis midge is an
adaptation to low oxygen concentrations (Walker 1993). The low numbers of this genus in SCF
sediments may be due to absolute anoxic conditions in the sediment and a high deposition rate
which would smother benthic forms. The higher densities of midges observed in the SCF basin
may only reflect the high recruitment of lotic forms from catastrophic drift during storm flow

events.
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Midges have also been used to indicate deteriorating water quality conditions in lake
sediments subject to high contaminant concentrations. Warwick (1980) found a relationship
between lake pollution and morphological abnormalities from midges in the Bay of Quinte,
Ontario and Klink (1989) has found increased evidence of pollution induced abnormalities in
midges from the Rhine River of Europe. We did not observe a significant number of aberrations
that would suggest severe trace metal or organic contamination from our samples in either basin.
However, densities of midges in Lake St. Croix sediments are extremely Jow. Walker (1993)
reported normal midge densitics for temperate lakes exceeding 100 per cubic centimeter. Densities
in the sediments of Lake St. Croix were an order of magnitude below this value. These low
densities and the prevalence of Chirononiis sp- in collections suggests that the midge fauna may be
stressed by anoxia in Lake St. Croix.

Paleoecological evidence developed from this effort provides a chronological picture of
changes in the SCF basin 0\}er the last 40 years and LSC over the last 150 years. Considerable
change has been observed in the St. Croix River Basin since seftlement (middle 1800’s) and even
recently over the last 20 years since a plan was initiated to manage the river as part of the National
Scenic and Wild River System. Historical reconstruction of vegetation pattemns within this
watershed have revealed that pre-settlement forest acreage was over 2x higher than it is today (Mr.
Steve Warren, University of Minnesota, pers. comm.). This forest has been fragmented and
largely converted to cultivated agriculture which now comprises over 60% of the watershed in the
lower riverway (Queen et al. 1993). Increased urbanization within the river corridor over the last
20 years (Queen et al. 1993) and heavy utilization of the river for recreation also contribute point
and nonpoint sources of nutrients and contaminants to the basins along the river corridor.
Malischke et al. (1993) reported that all three of the major tributaries entering the Lower St. Croix
Nationa! Scenic Riverway (Apple River, Willow River, Kinnickinnic River) were impaired by
nonpaoint source water quality problems. These tributaries contribute sediment and nutrient loading

to the St. Croix and this material eventually finds its way into both basins. These large-scale
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changes in development and use both along the river corridor and in the whole watershed threaten

the ecological balance of the river and the basins. Proactive management and innovative

monitoring techniques such as those described in this study are needed to meet the challenges of

multiple-use management on the riverway.
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Location of Coring Sites and Lake Characteristics
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Paleoecology of St. Croix River Basins

Coring Site Locations*
Coring Site Degrees Longitude (W) Degrees Latitude (N)
SCF1 92.649 45.422
SCF2 92.649 45419
SCF3 92.651 45422
LSC1 92.764 45.018
LSC2 92.755 44.941
LSC3 92.764 44.876

%Site locations determined through compass bearings and triangulation by L.P. Queen (Department

of Forest Resources, University of Minnesota).
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Key for Basin Water Column Characteristics

Figure (a) - water column temperature profile based on readings every 5 meters on the date of core
extraction.

Figure (b) - water column dissolved oxygen profile based on readings every 0.5 meters on the
date of core extraction.

Figure (¢) - water column specific conductance profile based on readings every 0.5 meters on the
date of core extraction.

Figure (d) - water column Secchi depth readings taken on the date of core extraction from each
site.
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APPENDIX B

Dating Results and Accumulation Rates
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Cesium Dating Results from the SCF Basin

Site Depth Cs-137 Cs-137 Ra-226 Ra-226 Ra-228 Ra-228 K-40 K-40
cm Bg/kg Error Bqg/kg Error Bk/kq Error Bk/kq Error

1 116 39 5 32 5 600 40
2 70 23 3 26 4 600 30
2 125 33 5 2% 85 610 40
2 155 38 4 28 5 580 30
2 190 25 4 27 5 636 60
3 13 52 4 41 6 530 30
3 21 51 S 40 8 500 30
3 29 55 5 30 6 532 30
3 37 82 6 44 6 490 °~ 30
3 45 67 6 33 ) 440 30
3 52 55 5 36 5 533 30
3 60 37 3 28 4 640 30
3 68 43 4 27 4 450 30
3 76 41 4 28 6 540 30
3 88 33 4 26 5 610 30
3 109 35 4 25 4 560 30
3 129 27 3 29 5 530 30
38 4 32 5 620 30
Counting Statistics for Sections Other Than SCF3 @ 150cm
25 Percentile 40 33 27 522.5
Median 45 38.5 29 550
75 Percentile 52.25 52.75 33.75 610

Results of Direct Gamma Emitter Analyses

Data as reported by Dr. Daniel Steck, Department of Physics, St. John's
University, Collegeville, MN - 56321.
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Pb-210 Dating Resuits from the LSC Basin

LSC1
LSC1
LSC1
LSC1
LSC1
LSCH
LSC1
LSC1
LSC1
LSC1
C1

LSC3
LSC3
LSC3
LSC3
LSC3
LSC3
LSC3
LSC3
LSC3
LSC3

(cm) (cm)
0 1
8 9
16 18
24 26
32 34
40 42
48 50
62 66
78 82
94 98

(yr)

0.82

6.29
13.70
20.99
28.54
35.32
42.38
57.36
77.59
104.30
139.76

EXTRAPOLATED

2.56
2.80
3.24
3.71
4.33
4.99
6.05
7.77
13.85
27.68
79.07

)

8.18
15.71
22.84
29.16
35.46
43.00
49.90
56.42
61.62
96.74

4.15
4.81
5.62
6.58
7.78
9.61
11.72
14.22
16.58
42.60

Core Top Bottom Base Age Age Error Date A.D.
(+/-s.d.

1990.8
1985.3
1977.9
1970.6
1963.1
1956.3
1949.2
1934.2
1914.0
1887.3
1851.8

1975.9
1968.8
1962.4
1956.1
1948.6
1941.7
1935.2
1930.0
1894.9

Accumulation Accum. Error
(+/- s.d.)

(g/cm2/yr)
0.426
0.388
0.317
0.338
0.380
0.483
0.428
0.541
0.250
0.256

0.188

0.031
0.031
0.029
0.036
0.050
0.082
0.084
0.149
0.103
0.212

0.142
0.160
0.162
0.160
0.146
0.166
0.177
0.321
0.236
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Key for Headings of Midge Attribute Table

Habitat - defined as in Merritt and Cummins (1984) to describe the habitat preferred by the larvae
of a particular midge taxon.

Lotic - inhabits the substrate of streams and rivers.

Lentic - inhabits the littoral or profundal zone of lakes or ponds.

Littoral - inhabits the littoral fringe of lakes or ponds.

Macrophyte - prefers to inhabit macrophyte stems in the littoral zone of lakes and ponds.
Sand - prefefs to inhabit sandy bottom streams or lake shore areas,

Profundal - inhabits the deep sediments of lakes or ponds.

Habit - habitat utilization adaptation as defined in Merritt and Cummins (1984):

Burrower - adapted to inhabit bottom areas if streams and lakes by burrowing into wood or soft
substrata.

Sprawler - adapted for inhabiting the surface of botfom sediments and organic matter.

Clinger - morphological and behavioral adaptations to inhabit littoral zones of lakes and streams,

NA - not defined for that taxon.
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FFG - functional feeding group as defined in Merritt and Cummins (1984) to describe the
morphological and behavioral adaptations for food gathering.

SHR - shredders; adapted to collect and utilize coarse organic matter as a food source
CG - collector-gatherers; adapted to gather loose, fine organic matter from the substrate.

CF - collector-filterer; adapted to collect fine particulate organic matter from the water column using
constructed nets or morphological adaptations of mouthparts and scta.

SCR - scrapers; adapted to scrape attached algae and organic material from the substrate surface.

P - predator; adapted to overcome and devour living animals or capture prey and pierce the cuticle
to feed on animal soft tissues.

Par - parasites; adapted to parasitize other organisms,

Distribution - description of the general distribution of the taxon within North America (Merritt
and Cummins 1984},

No. of Species - approximate number of known species of a particular midge taxon in North
America (Merritt and Cummins 1984).

Tolerance - qualitative ranking of each taxon’s tolerance to organic pollution in stream
environments from Hilsenhoff (1987). Values range from 0 (low tolerance) to 10 (high
tolerance).

Basin - preference of a midge taxon to inhabit one or both basins (SCF or LSC) based on
percentage of occurrence from core sections.
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Midge Community Basin Preferences

TAXON SCF1 SCF2 SCF3 LSC1 LSC?2 LSC3 BASIN
(Percent Sections Found)
Robackia sp. 15.8 15.0 15.0 0.0 0.0 0.0 SCF
Stsnochironomus sp. 10.5 20.0 15.0 5.6 0.0 0.0 SCF
Symposiociadius sp. 0.0 10.0 0.0 0.0 0.0 0.0 SCF
Synorthocladius sp. 10.5 5.0 25.0 0.0 0.0 0.0 SCF
Tanylarsus sp. 100.0 100.0 95.0 77.8 57.1 80.0 SCF
Tvetenia sp. 5.3 35.0 20.0 0.0 0.0 0.0 SCF
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