
FlyCast
Autonomous Drone and Broadcast System

Alexander Pattison
School of Film and Animation

 Rochester Institute of Technology
1 Lomb Memorial Drive, Rochester, NY, USA

arp7860@rit.edu

Benjamin Zenker
School of Film and Animation

 Rochester Institute of Technology
1 Lomb Memorial Drive, Rochester, NY, USA

brz9605@rit.edu  

 
Abstract—An out-of-the-box solution to dynamic

broadcasting without the need of a multi-person crew
(cameraman, boom operator, etc). The drone intelligently works
alongside a single broadcast reporter and accurately frames,
shoots, and broadcast a live signal to a variety of media platforms
all without a drone pilot.

Due to various obstacles we’ve encountered over our
research, FlyCast is still very much a proof of concept and may
require a few more years for the hardware, software, legal, and
public acceptance of drones before the system could replace a
professional broadcast crew for everyday reporting.

I. INTRODUCTION
With media platforms such as Twitter and Facebook, instant

media coverage is an everyday occurrence. Today's news
outbreaks aren't first on the six o’clock news, but rather
thousands of on site photographs and 160 character excerpts.
Technology today such as Ustream and Periscope make live
broadcasting easier and more accessible than ever. Recent
events such as the Baltimore Riots and Nepal Earthquake were
first captured and streamed by amateurs surveying the field and
conducting interviews from their iPhone’s. Crowdsourcing
broadcast journalism is an important and ever growing field;
cost of entry is cheap and anyone with a modern phone can do
it. Yet the professional touch of a reporter and trained broadcast
crew is the best way to accurately present a story as it is
unfolding. Unfortunately, in some instances it is not until hours
later that professional crews arrived to broadcast on site. The
best solution is to either get more professional and dynamic
broadcast equipment to the masses or make the modern
professional broadcast journalist more portable than ever.
Combining this idea with the emerging field of
“Aerojournalism”, our senior project attempts to fill this gap.
With the creation of a hardware and software solution, our
drone autonomously frames and records broadcast quality
video. This not only adds the ability to capture dynamic scenes
never before possible with traditional broadcast and video
equipment, but also cuts the size of a modern broadcast crew to
one individual.

The basic workflow of our end product contains a
broadcaster using his or her backpack or hardcase to easily
transport the FlyCast System to the scene of the news. Upon
arrival he or she can easily setup the system and get to work,
reporting and broadcasting the news, while FlyCast does the
rest. FlyCast itself is made up of three components. The 3DR
Solo Quadcopter with gimbal, GoPro, and mounted screen for
live monitoring. A microphone with attached audio transmitter
and mounted Android device to send commands to the Solo.
Last, a base station consisting of the the Solo controller acting
as a video receiver, and an audio receiver. The two signals are
synced and broadcast live via an ElGato streaming box with
accompanying desktop application.

Our custom built Android app uses and builds upon many
preexisting features made accessible by 3DR’s open source
software development kit (SDK). Via the smartphone app, the
broadcaster is able to automatically launch the drone to hover
at eye level, and a predetermined distance away from the
reporter. They then have the ability to select various shooting
modes such as single shot, double “interview” shot, group shot,
landscape survey shot, and static movement mode. In single,
double, and group interview mode the drone will be locked a
fixed distance away from the reporter. The varying distance
will affect the camera field of view and therefore the framing
of the shot. Static mode locks the drone wherever it is
positioned, much like a virtual tripod. Finally, survey shot will
allow the drone to elevate 25, 50, and even 150 feet in the air to
survey the scene below for a set amount of time. After
surveying, it will safely return to the broadcaster and continue
reporting. Additionally, micro adjustments will be available for
the broadcaster to slightly adjust framing. While a “freeze”

Fig. 1. Visual representation of FlyCast workflow

button will always be visible on the app to lock the drone in
place safely above people's heads to prevent a collision when
imminent.

II. PREPARATION

A. Budget
The team’s goal over the summer was to acquire funds of

$2,500 in order to build a working prototype. $2,500 is a
sufficient amount as it is the price of all current required parts,
funds for spare equipment, and a 10% buffer if we go over our
parts only budget of about $2,250. This is a state approved
educational project that will be tax exempt and therefore NY
state and local tax is not included. Our final budget and
equipment list can be found in the Appendix. Despite a few
workflow and equipment changes we came in under budget by
about $300, with the entire project costing $2,146.

1) Applying to Grants
Our primary source of financing has been from the Chris A.

Mondiek Student Support Fund, offered to Motion Picture
Science students for use in their senior projects. We applied
and received this award on November 23, 2015, for a value of
$500.

2) Indiegogo Campaign
A secondary funding source was planned to come from a

future IndieGoGo campaign. Our team began the process of
creating a campaign in the Fall of 2015, but decided to cancel
our plans based on the variability in our project direction.
Some of the tasks we completed include creating application
wireframe and project timeline graphics. As long as our
product is still a proof-of-concept, an Indiegogo campaign is
not viable.

3) Educational Pricing
In order to accurately test the features provided by 3DR, we

needed the native camera gimbal. This purchase was made
using funds from our micro grant fund. Around the time of this
purchase, 3DR announced an Educational Program that allows
students researchers to purchase their products at reduced
costs. We were the first participants in this program, and
utilized the discount for our purchase of the gimbal.

B. Legal
Quadcopter technology is advancing at a pace that

government and law cannot keep up with. Only a few years
ago sub $1,000 drones would have been a fantasy. When we
started our research in the Spring of 2015 it was the wild west
in regard to the legal use of these devices. Our initial research
led us to believe that the current New York State laws and
Federal Aviation Administration (FAA) regulations in place,
state that a controlled flying vehicle cannot operate outdoors
within five miles from any airport and cannot fly above 400
feet. While these restrictions can be avoided by testing farther
off campus (due to RIT being within five miles from an
airport), a bit more research proved these regulations to not be
legally binding. FAA document Advisory Circular 91-57A
states that “Flying model aircraft solely for hobby or
recreational reasons does not require FAA approval. However,
hobbyists are advised to operate their aircraft in accordance
with the agency’s model aircraft guidelines.” Within this
document there is a provision that approves flight to happen
within five miles of an airport, as long as Air-Traffic control
has been notified beforehand. The Rochester International
Airport Air-Traffic Control Center confirmed these provisions
and was always notified a few hours before we performed tests
within their airspace.

Halfway through our year-long research project the FAA
initiated a mandatory “Small UAS (Unmanned Aerial System)
Registration” in which all owner of UAS’s, defined as a remote
controlled aerial vehicle weighing between 0.55 and 55
pounds, must register their personal information as well as
their vehicles information in a soon to be public database.
Ethics aside, failure to register can result in in a $250,000 fine
and up to three years in prison. Given these potential hefty
charges, we registered our 3DR Solo with the FAA for a fee of
$5.

III. HARDWARE RESEARCH AND DEVELOPMENT

A. First Flight Tests
After purchasing the 3DR Solo our first test was to get it

airborne to asses it’s performance in terms of stability, noise,
and video quality. We also wanted to get familiar with Solo’s
system and learn about the drone’s general usability. As

Fig. 2. The home screen of the FlyCast application

Fig. 3. FlyCast logo created for the Indiegogo campaign

Fig. 4. FlyCast’s UAS Certificate of Registration

advertised by 3DR, the machine was easy to set up. A simple
‘first flight’ video tutorial explained the controls of the system
and how to attach the propellers to the body of the drone.
According to 3DR, assembling the drone only takes about a
minute. The time required to connect the iPhone app to 3DR’s
WiFi and the drone to connect to a minimum number of
satellites to operate, can take up to five minutes depending on a
number of variables. Most notably is flight location and
weather condition. Early on we realized that due to today's
limitation in drone technology FlyCast would not be able to
permanently replace a broadcast cameraman. In addition to
needing a fairly large open space to operate, the drone can only
acquire a GPS signal on clear days where it has a direct line of
sight to the sky.

Flight number one using the 3DR solo, GoPro Hero 3+
Silver (without gimbal), and the native 3DR app being
manually controlled went better than expected. After
connecting to the app, the drone took just over two minutes to
connect to eight satellites (a minimum of six is required for
GPS enabled flight). Once airborne it was clear the audio was
going to be a much larger issue than anticipated. At 15 feet
away the sound of the hovering drone can only be described as
an angry swarm of bees. The aggressive sound instills a feeling
of uneasiness or danger, and was an issue that needed to be
addressed when constructing FlyCast’s audio components.

From a video and stability perspective the drone performed
worse than expected. The drone seemed to glide effortlessly in
the air, but that did not directly translate into smooth video.
The lack of a gimbal caused a vigorous shaking and ‘jello’
effect on screen. Interestingly enough the camera shake was
always present, while the jello effect seemed to impact random
portions of the video. Further research of GoPro’s camera
system and other reports [1] of similar issues by GoPro and
3DR users led us to believe that the issue was caused by how
the GoPro Hero 3+ automatically calculates and compensates
for correct exposure. The Hero has a fixed f/# and ISO,
therefore the only other variable that can be internally altered
for proper exposure is shutter speed. In direct sunlight the
GoPro needs a very high shutter speed to cut down on light.

This high shutter speed coupled with a vigorously shaking
drone resulted in a very noticeable rolling shutter artifact.

Test flight number two attempted to reduce the rolling
shutter artifact and smooth out the footage as much as possible.
As users of the GoPro Hero 3+ do not have control over
internal exposure settings other methods to needed to be
considered. First a lens hood was attached to the GoPro and to
further cut down on light the flight took place during sunset.
The video quality was drastically improved. Although the
shaking was still present there was no jello effect whatsoever
due to the lower shutter speed. Another costlier option to cut
down on light to achieve the same result, was to use GoPro
specific ND filters sold online. Finally, to cut down on camera
shake the footage was run through Adobe Premiere’s Warp
Stabilizer which resulted in much smoother video. The one
drawback with Warp Stabilizer is that the footage requires post
processing and therefore would not be live broadcasted. Our
later experiments show that post processing is not necessary
with the addition of a gimbal which reduces almost all camera
shake.
B. 3DR Weight Test

Our second experiment was a test of the 3DR’s weight
capacity in relation to its battery life. The Solo claims about 20
minutes of flight time with “average use” and a GoPro
attached, but states that time is decreased dramatically as
weight (typically in the form of a third party accessories or
gimbal) is added on [2]. A harness was constructed out of
dental floss and fishing weights to hold varying payloads
evenly distributed across the drone. The total flight time was
recorded at varying half pound weight values once the 3DR
app indicated that there was 10% or less battery life.
Additionally, in a tangential experiment, a four ounce weight
was added to the front of the drone to test its stabilization
abilities. This experiment aimed to give us insight as to how
heavy our add-on components can be, as well as where they
need to be placed, in relation to how much battery life we wish
to achieve.

Fig. 5. Flight test one

Fig. 6. Flight test two

In order to reduce the amount of variables affecting our
data all flights were performed on the same clear day with no
wind in a large grass field. The drone was set to take off and
hover at the set distance of 10 feet off the ground and hold its
position using a GPS lock. The timer started the moment the
drone left the ground and stopped once the 3DR app indicated
that the drone only had 10% battery left, at which point the app
urges the pilot to land immediately.

Our first flight confirmed 3DR’s claims as we achieved 17
minutes and 49 seconds of flight time while using 90% of the
batteries power. Using the described method above we added
two ounces of fishing weight to the front and rear of the drone,
totaling one half pound of added weight. For each iteration one
half pound was added and the total flight time recorded. Four
flights took place until a clear trend emerged showing that the
flight time to added weight relationship seemed to be linear.
Additionally, the tangential experiment in which the four ounce
weights were only placed on the nose of the drone showed that
the internal gyroscope compensated for the added weight and
continued to fly normally. Given this information and the
usability of FlyCast, we made sure our final configuration of
add-ons to the 3DR solo will not total more than one pound.
C. Reference Monitor Mount

The purpose of a small monitor mounted directly on the
nose of the drone is so that a broadcaster can be aware of his or
her surroundings as well as make any micro adjustments to
framing, via our app, during a live broadcast. Initial plans were
to use a small three inch LCD monitor typically used in car
back up camera systems. The mini HDMI out port on the
GoPro was originally planned to view a live output of what the
camera is recording. Unfortunately, this monitor
implementation had to be abandoned as the 3DR gimbal
utilized this port to stream the signal to the controller and 3DR
app. An attempt to use a splitter cable resulted in the video
stream only going to one source.

An alternative method, later tested and implemented, was
to use the 3DR Solo app solely for its live streaming
capabilities. After multiple tests we realized that third party
apps such as our own custom app, or an additional open source
3DR controller app called Tower, could control the drone while
at the same time the video signal could be streamed to another
device running 3DR’s app. Therefore, an iPhone 5S running
the 3DR Solo app was mounted to the nose of the drone and
live streaming footage from the GoPro via WiFi. At the same
time the broadcaster is sending control commands from

another device running our custom app. Flight tests proved this
to be effective live stream method with latency as low as 0.1
second. One drawback to this method is that the image on the
live view monitor is not a mirror image, but flipped along the
vertical y-axis. We looked for Android setting and software
tweaks to fix this but were unsuccessful.

D. Gimbal Test
After purchasing the gimbal, we performed a test flight to

experience the added stability it would provide to our video
stream. Even on a windy day with light precipitation, the drone
managed to keep a level camera regardless of how the drone
floated and moved through the air.

We performed a second gimbal test two weeks later which
allowed us to begin exploiting the full usability of both the
3DR Solo app and the 3DR Tower app. We tested simple
rotations and lateral movements, watching how well the drone
was able to keep our mock-reporter in frame. These
preliminary experiments provided inspiration for our GPS
accuracy test, which will be described in a later section.

At the conclusion of our second gimbal test, our drone
executed its auto-return-home function, which happens
anytime the drone battery goes below 10%. This function
caused our drone to crash full-speed into a large pine-tree, and
caused a setback in our testing workflow. We were then tasked
with getting new blades and testing each propeller motor,
making sure that all hardware components still functioned
properly.
E. GPS Accuracy and Comparison Tests

The aim of this test was to judge the accuracy of the GPS
signal transmitted between an android device and the 3DR Solo
controller. The mock-reporter would walk varying routes
(figure 9) with the drone either in a “lead” or “follow” mode in
which the drone would attempt to maintain a constant ten foot
distance between itself and the ‘reporter’.

Fig. 7. Results of the 3DR weight test

Fig. 8. Reference monitor and mounting system

1) GPS Comparison
The two devices in question were a Google Nexus 7 Tablet

(Version 2) and a Samsung Galaxy S5. Online reports have led
us to believe that certain Android devices have lackluster GPS
capabilities therefore resulting in potentially poor tracking [3].
By comparing two different devices, made by separate
manufactures, we aimed to distinguish any difference between
them. Each device ran through test one (figure 9) while in
autonomous “follow me” mode to note its responsiveness and
accuracy.

To our surprise, the Galaxy S5 performed much worse than
anticipated. From a usability standpoint the device was barely
able to run the Tower application used for testing. The app was
sluggish and often unresponsive, sometimes taking up to five
minutes to initiate any autonomous flight modes. Due to this
factor alone, we decided to move forward with solely using the
Nexus 7 for testing which experienced none of these issues.

2) GPS Accuracy
Once the Google Nexus 7 was chosen, the team moved

forward with the remaining tests. Test one was performed in
both a “lead” mode in which the reporter walked towards the
drone, as the drone would continuously fly backwards at the
same rate as the broadcaster. As well as “follow me” mode,
where the ‘reporter’ walks backwards with the drone moving
towards him.

3DR claims six feet of accuracy when using its autonomous
flight features, yet we did not find this to be the case. Both
flight modes would move the drone in bursts, and not in a
smooth motion. If the reporter moved eight feet back, the drone
would not maintain a constant ten foot distance but would
suddenly move after a set amount of time. “Lead” mode
seemed to be the preferred mode as it had a considerably lower
latency as compared to “follow me”. The former would
reposition the drone every second or two, while the latter
would only reposition the drone every four to five seconds.
While this choppy motion to the drone is not ideal the onboard
gimbal makes the apparent motion much less noticeable.

3DR also claims that while the accuracy of the GPS is only
six feet [4], that when using autonomous flight features the

subject will always be in frame. Later review of the footage
proved this to be correct, as rotational capabilities of the
gimbal aid in keeping to target in frame. While not a typical
medium shot used in broadcast today, this unique angle could
have many creative implications for broadcast in the future.

At the beginning of test two, our drone unexpectedly
experienced its third major crash. While the tests performed
have the drone ten feet from the subject and ten feet from the
ground these settings need to be manually entered into our test
application whose initial settings are 60 feet in the air and 40
feet from the subject. The drone initiated its autonomous mode
before these changes could be applied resulting a 60 foot fall
after hitting a nearby tree. The crash caused major damage to
the exterior shell and the drones external compass housed in
one of the legs. The 3DR Solo was completely disassembled
and each component was individually tested before being put
back together (figure 10).

F. Audio Quality Test
In order to cut down on noise caused by the quadcopter, a

Takstar SGC-598 directional microphone was chosen to be
used by the broadcaster. An audio quality test was required to
determine a minimum distance the quadcopter should be from
the reporter while not affecting audio quality and video
framing.

Indoor and outdoor audio tests were conducted and
multiple audio sources were measured. The onboard GoPro
audio hum averaged at -3dB, while there were no plans to use
this audio it was a good baseline to see how much we were
able to reduce the unwanted hum from the drone's propellers.
The directional microphone aimed at the subject's mouth, as
opposed to an omnidirectional microphone used by
conventional broadcasters, did a great job of reducing
background noise. Without the subject speaking and the drone
ten feet away, the audio levels coming from the microphone
average at -22dB. Surprisingly the distance between the
broadcaster and the drone did not have as much of an impact
on hum loudness as expected. During our tests the distance
between the drone and the subject ranged from 5 to 15 feet and
the dB level only fluctuate +/- 3dB. In order to further reduce

Fig. 9. GPS test paths

Fig. 10. Deconstructed 3DR Solo

the unwanted hum from the final live audio, the stream was
sent through ElGatos “hum removal”, which resulted in our
final hum level at -35dB.

G. 3D Printed Microphone Unit
FlyCast’s microphone unit contains three components that

need to be held by the reporter during broadcast. A directional
microphone, similar in size to microphones used by today's
broadcast reporter. An audio transmitter, used to wirelessly
transmit the audio signal to the base station where it will be
synced up with the the recorded video. And lastly, an android
device which is used to send commands to the drone while also
acting as a GPS locator to keep the broadcaster in frame. All
three objects need to be easily connected and easy to carry,
therefore a custom 3D printed handle was constructed. All
three objects were measured and drawn first on paper (figure
11) and later in Google SketchUp. Then a housing was digitally
built to connect all three pieces and to appear to be a single
unit. The goal was for the handle to appear as a large
microphone with a horizontally positioned phone / tablet
covering the broadcasters hand that would be holding the
handle. The broadcaster is then able to hold, and speak into, the
microphone with one hand while using the application with the
other. Multiple iterations of the handle were constructed and
printed using ABS plastic before a final design was ultimately
chosen (Figure 12).

IV. SOFTWARE RESEARCH AND DEVELOPMENT

A. HelloDrone Test
We began our software journey by exploring the resources

already provided to us through 3DR’s open source packages.
To begin building with their API, a suggested tutorial is
provided, detailing the instructions to build a “HelloDrone”
application [5]. HelloDrone allows for basic arm/disarm, take-
off/land, and built-in flight modes to be executed with a
stripped down user interface, as shown in Figure 13. We were
not able to successfully implement the HelloDrone application
through the provided tutorial. The tutorial was poorly written
and had many outdated code snippets, which led to buggy
software and hard-to-solve runtime errors. Instead, we
download the open source code of the completed HelloDrone
application from GitHub. Once downloaded, we were able to
compile the app and launch it to our android device.

The final step was to run the app and test the capabilities
that it provided to the drone. We attempted this multiple times
without any results, until one day it finally worked. Our theory
is that if the drone’s satellite signal was too weak, the drone
would not allow for any incoming connections, ie. the app.
Once working, this milestone verified that we had direct ability
to manage drone functionality within the Android development
environment, and deploy it to an android device.

B. DroneKit-Android Research
The next step was to begin implementing our own

functionality into the application. To do this, we started by
investigating how the current ‘flight modes’ operated. This was
a difficult task, as the implementation ran very deep, and each
module was highly de-coupled. Through our own search, and
through responses found in online forums [6], we realized that
each flight mode was being executed from the Ardupilot API, a
unique 3rd-party platform. This presented us with a dead-end,
since we found no ways to implement our own flight modes
using the DroneKit-Android API [7].
C. Tower Research

A new discovery was made by our team for a strategy that
allows software developers to create new flight modes, as long
as those systems are developed through 3DRs Tower app [8].
This was the holy grail that we had spent so long looking for.
The way 3DRs software platform is constructed: Tower is

Fig. 11. Microphone unit version I

Fig. 12. Microphone unit version II

Fig. 13. HelloDrone application

simply a GUI that allows actions to be executed through the
3DR Services app, which must always be running on the
smartphone that is controlling the drone. 3DR Services will
convert any commands into functions that the drone itself will
understand, and also integrates the items utilized from
Ardupilot. This discovery made us realize that originally, we
had not found the highest level interface for working with the
3DR drone. Further testing confirmed that the Tower App,
which is also open source, would give us the flexibility we
needed with enough pre-built functionality to be as efficient as
possible.

D. Development Environment
Android Studio was used as the development environment

for building our final android application. As well built as
Android Studio is, there were a few issues that caused
interruptions in our software construction workflow. During
the month of April, Android released a new version of Android
Studio that organizes project resources differently and uses
different compilers. This caused a major disruption to our
software, and we had to restart our build from scratch because
none of Tower’s resources functioned properly with the new
version of Android Studio. Another issue with Android Studio
is that when you deploy your software to a physical Android
device for testing, you can only have one test app at a time.
This was an issue when we were comparing the differences
between the native Tower-Dev, and our own FlyCast-Dev.
Every time we wanted to deploy one of these to our device, the
other would be deleted. Lastly, when we were developing a
new graphical user interface, we were not able to use an
emulator that matched our physical tablet. Every attempt to do
so would lead us to a prompt to update our version of Android
Studio, but we couldn’t do that since it would destroy our
software modules. In the end of the day, the learning curve of
Android studio was lower than expected and it had enough
power to do what we needed to create our custom application.

E. Final Application
The current release of our custom Android application is

built atop 3DRs Tower application. In order to take an iterative
software design approach while testing often, building and
deploying to our physical drone would not suffice. 3DR offers
a beautiful solution to this problem with a tool called
DroneKit-SITL (Software-in-the-Loop) that creates a virtual
instance of a drone in a local terminal. This virtual drone can
then be controlled with the help of a tool called MAVProxy,
which is a text-based Ground Control Station (GCS) that can

send commands to both DroneKit-SITL and a real drone (when
connected)(Figure 14,15).

In order to confirm that the best way to frame our app was
to build it atop Tower, we needed to make sure that we could
take a development version of Tower (Tower-Dev) and control
a drone with it. In the beginning, each test presented new
problems, and we were unsure if a Tower-Dev would ever be
able to control our drone or DroneKit-SITL. But enough
persistence, research, and tinkering proved successful - we
were able to control both our physical drone and DroneKit-
SITL through Tower-Dev.

Our Android application takes the basic functions accessed
by Tower and re-skins/re-purposes them for our custom use
case. The base Tower app put a large amount of control in the
hands of the user/pilot, but this is not ideal for our workflow.
We adjusted the functionality of the app to connect with the
drone and take-off in fewer steps and fewer ‘taps’, and
provided the user (broadcaster) with very few additional
controls aside from the broadcast modes. Our final broadcast
modes include: Single, Double, Group, Survey, and 3D Tripod.

Single mode acts in place of Tower’s “Follow Me” mode
but puts the drone at a very close proximity to the user. Double
and Group mimic this behavior but at further distances
respectively, from the user. Survey mode takes the drone to a
much further distance and height from the broadcaster, while
moving in a circular path around the broadcaster. Lastly, 3D
Tripod is equivalent to the Air-Brake. Being able to pause the
drone at any moment gives the broadcaster the ability to place
the camera anywhere in X, Y, and Z space. All of our final
source code can be viewed at the following GitHub repository:
[9].

Fig. 14. DroneKit-SITL virtual drone

Fig. 15. MAVProxy ground control station

F. Data Workflow Diagram
Due to changes in our monitor mount as well as other live

streaming concerns we decided to rework our data flow
diagram (DFD) multiple times. One of the first changes we
made was to send the live video feed from the 3DR Solo to an
additional smartphone in place of the monitor. This needed to
be done because the GoPro can only output video data to one
path at a time. We had not anticipated this and then had to
change the workflow. Besides the change in the monitor, the
most notable alteration between these diagrams is the addition
of a “base station” (figure 17). Due to hardware and software
limitations: our original idea of simultaneously controlling the
drone and live streaming the footage to YouTube, all from our
custom built app, was not feasible. Coupled with a better

understanding of the Solo’s hardware and data transfer
capabilities, the addition of a base station greatly simplified
FlyCast’s live streaming workflow. The HDMI out port on the
3DR controller, that would otherwise be unused by a FlyCast
operator, can be easily hooked up to a monitor for a live video
feed. With the use of an El Gato conversion box and software,
the feed can be ingested into a laptop on site and live stream
the footage directly to YouTube Live and Twitch. Online
reports claim that this workflow is achievable, and further
experiments have been conducted to confirm this. Finally,
slight changes to the audio workflow were made as we were
unable to mount an audio receiver directly to the Solo. Testing
showed that when mounted the receiver would interfere with
the Solo’s internal compasses resulting with a “Magnetic
Interference” error that would prevent the drone from taking
off as a safety feature. Our solution was to add the audio
receiver to the base station where it is synced up with the live
video stream via the ElGato streaming box (figure 18).

V. CONCLUSION
After 15 months of research and development, we

constructed an autonomous aerial workflow, consisting of three
connected components that work together to broadcast HD
news directly to video platforms YouTube Live and Twitch.
The ability to have an autonomous drone mounted camera that
can move in three dimensional space adds a unique element
never before seen in the broadcast field. Yet, due to various
obstacles we’ve encountered over our research, FlyCast is still
very much a proof of concept and may require a few more
years for the hardware, software, legal, and public acceptance
of drones before the system could replace a professional
broadcast crew for everyday reporting. While currently not a
full replacement to a professional broadcast workflow, this
very portable and sub $2,500 solution is viable alternative to
individuals or small groups who are currently reporting
breaking news from their mobile devices.

Fig. 16. FlyCast application screenshots

Fig. 17. Data workflow diagram version I and II

Fig. 18. Data workflow diagram version III

APPENDIX

ACKNOWLEDGMENT
We would like to thank Ricardo Figueroa (rrfppr@rit.edu),

our project advisor, for all of the great advice he have given us
over the last 15 months. Without his guidance and optimistic
outlook we would have never been able to accomplish our
goals.

Additionally, we would like to thank Dr. David Long, the
Motion Picture Science Program, and the RIT School of Film
and Animation for allowing us to conduct this research and
make FlyCast become a reality.

This project was made successful via funding through the
Chris A. Mondiek Student Support Fund and our parents with
whom we pass along our sincerest gratitude.

REFERENCES
1. http://www.goprofanatics.com/forum/gopro-hd-hero3-plus/5876-

aperture-control-go-pro-3-a.html
2. https://3dr.com/solo-gopro-drone-specs/
3. https://communityhealthmaps.nlm.nih.gov/2014/07/07/how-accurate-is-

the-gps-on-my-smart-phone-part-2/
4. https://3dr.com/kb/solo-gps/
5. http://android.dronekit.io/first_app.html
6. https://discuss.dronekit.io/t/creating-new-vehicle-modes/96
7. http://android.dronekit.io/javadoc/
8. https://github.com/DroidPlanner/Tower/wiki/Work-with-DroneKit-

Android
9. https://github.com/benz2012/FlyCast

