
Pum
p

erla
, O

a
kes &

 Lia
w

Lea
rning

 Ra
y

Lea
rning

 Ra
y

Max Pumperla,  
Edward Oakes  
& Richard Liaw

Foreword by Ion Stoica

Learning Ray
Flexible Distributed Python for Machine Learning

Compliments of



DATA

“A fantastic introduction 
to the Ray distributed 
computing framework 
from the perspective 
of three of its key 
contributors. The authors 
gracefully decompose 
the daunting topics of 
distributed computing 
and machine learning 
into a series of easy-
to-follow examples.”

—Patrick Ames
Principal Engineer, Amazon

“The definitive book on 
distributed systems 
applied to Machine 
Learning. This is an 
accessible introduction 
to building massively 
distributed data 
applications from 
the comfort of your 
Jupyter notebook.”

—Mark Saroufim
Staff Applied AI Engineer, PyTorch, Meta

Learning Ray

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia 

Get started with Ray, the open source distributed 
computing framework that simplifies the process of 
scaling compute-intensive Python workloads. With this 
practical book, Python programmers, data engineers, 
and data scientists will learn how to leverage Ray locally 
and spin up compute clusters. You’ll be able to use Ray to 
structure and run machine learning programs at scale.

Authors Max Pumperla, Edward Oakes, and Richard Liaw 
show you how to build machine learning applications 
with Ray. You’ll understand how Ray fits into the current 
landscape of machine learning tools and discover 
how Ray continues to integrate ever more tightly 
with these tools. Distributed computation is hard, 
but by using Ray you’ll find it easy to get started.

•	 Learn how to build your first distributed 
applications with Ray Core

•	 Conduct hyperparameter optimization with Ray Tune

•	 Use the Ray RLlib library for reinforcement learning

•	 Manage distributed training with the Ray Train library 

•	 Use Ray to perform data processing with Ray Datasets

•	 Learn how to work with Ray Clusters and 
serve models with Ray Serve

•	 Build end-to-end machine learning applications with Ray AIR

Max Pumperla is a data science professor, and a software engineer 
at Anyscale.

Edward Oakes is a software engineer and team lead at Anyscale.

Richard Liaw is a software engineer at Anyscale.

US $65.99	  CAN $82.99
ISBN: 978-1-098-11722-1

Pum
p

erla
, O

a
kes &

 Lia
w

ISBN: 978-1-098-135164



Welcome to Ray!
Ray is a powerful open-source framework used by leading industry 

players, including Uber, Netflix, Instacart, and Airbnb. It serves as the go-

to solution for these top practitioners, allowing them to modernize their 

machine learning platform and deliver a user-friendly abstraction layer 

over their AI infrastructure.  

In the fast evolving landscape of machine learning and artificial 

intelligence including Deep Learning and Generative AI, Ray provides 

a reliable foundation. To stay in the know, explore our latest examples 

and best practices in our documentation. You can also join our vibrant 

community on Slack or participate in discussions on our message boards.  

GET STARTED

bit.ly/raydocs

DISCUSSION BOARD JOIN US ON SLACK

bit.ly/discussray bit.ly/rayslackinvite

Visit anyscale.com to see how companies using Anyscale and Ray 
benefit from rapid time-to-market and faster iterations across the 
entire Al lifecycle.

Build on!   

https://bit.ly/raydocs
https://bit.ly/discussray
https://bit.ly/rayslackinvite




Max Pumperla, Edward Oakes, and Richard Liaw

Learning Ray
Flexible Distributed Python

for Machine Learning

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-098-13516-4

[LSI]

Learning Ray
by Max Pumperla, Edward Oakes, and Richard Liaw

Copyright © 2023 Max Pumperla and O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jessica Haberman
Development Editor: Jeff Bleiel
Production Editor: Katherine Tozer
Copyeditor: Piper Editorial Consulting, LLC
Proofreader: Kim Wimpsett

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

February 2023:  First Edition

Revision History for the First Edition
2023-02-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098117221 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Ray, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Anyscale. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098117221
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence


Für Alma





Table of Contents

Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xv

1. An Overview of Ray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
What Is Ray?                                                                                                                       2

What Led to Ray?                                                                                                           2
Ray’s Design Principles                                                                                                  4
Three Layers: Core, Libraries, and Ecosystem                                                           5

A Distributed Computing Framework                                                                           6
A Suite of Data Science Libraries                                                                                     8

Ray AIR and the Data Science Workflow                                                                   8
Data Processing with Ray Datasets                                                                            10
Model Training                                                                                                             12
Hyperparameter Tuning                                                                                              16
Model Serving                                                                                                               18

A Growing Ecosystem                                                                                                     20
Summary                                                                                                                           21

2. Getting Started with Ray Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
An Introduction to Ray Core                                                                                         24

A First Example Using the Ray API                                                                           25
An Overview of the Ray Core API                                                                             35

Understanding Ray System Components                                                                     36
Scheduling and Executing Work on a Node                                                             36
The Head Node                                                                                                             39
Distributed Scheduling and Execution                                                                     39

vii



A Simple MapReduce Example with Ray                                                                     41
Mapping and Shuffling Document Data                                                                   43
Reducing Word Counts                                                                                               45

Summary                                                                                                                           47

3. Building Your First Distributed Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Introducing Reinforcement Learning                                                                           49
Setting Up a Simple Maze Problem                                                                               50
Building a Simulation                                                                                                      55
Training a Reinforcement Learning Model                                                                  59
Building a Distributed Ray App                                                                                     62
Recapping RL Terminology                                                                                            66
Summary                                                                                                                           67

4. Reinforcement Learning with Ray RLlib. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
An Overview of RLlib                                                                                                     70
Getting Started with RLlib                                                                                              71

Building a Gym Environment                                                                                    71
Running the RLlib CLI                                                                                                73
Using the RLlib Python API                                                                                       75

Configuring RLlib Experiments                                                                                     82
Resource Configuration                                                                                              83
Rollout Worker Configuration                                                                                   83
Environment Configuration                                                                                       84

Working with RLlib Environments                                                                               85
An Overview of RLlib Environments                                                                        85
Working with Multiple Agents                                                                                   86
Working with Policy Servers and Clients                                                                 90

Advanced Concepts                                                                                                         93
Building an Advanced Environment                                                                         94
Applying Curriculum Learning                                                                                  95
Working with Offline Data                                                                                         97
Other Advanced Topics                                                                                               98

Summary                                                                                                                           99

5. Hyperparameter Optimization with Ray Tune. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
Tuning Hyperparameters                                                                                              102

Building a Random Search Example with Ray                                                      102
Why Is HPO Hard?                                                                                                    104

An Introduction to Tune                                                                                              105
How Does Tune Work?                                                                                              106

viii | Table of Contents



Configuring and Running Tune                                                                               110
Machine Learning with Tune                                                                                       115

Using RLlib with Tune                                                                                               115
Tuning Keras Models                                                                                                 116

Summary                                                                                                                         119

6. Data Processing with Ray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Ray Datasets                                                                                                                    122

Ray Datasets Basics                                                                                                    123
Computing Over Ray Datasets                                                                                 126
Dataset Pipelines                                                                                                        127
Example: Training Copies of a Classifier in Parallel                                             130

External Library Integrations                                                                                       134
Building an ML Pipeline                                                                                               136
Summary                                                                                                                         138

7. Distributed Training with Ray Train. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139
The Basics of Distributed Model Training                                                                 139
Introduction to Ray Train by Example                                                                       141

Predicting Big Tips in NYC Taxi Rides                                                                   141
Loading, Preprocessing, and Featurization                                                            142
Defining a Deep Learning Model                                                                            143
Distributed Training with Ray Train                                                                       144
Distributed Batch Inference                                                                                     147

More on Trainers in Ray Train                                                                                     148
Migrating to Ray Train with Minimal Code Changes                                          150
Scaling Out Trainers                                                                                                  152
Preprocessing with Ray Train                                                                                   153
Integrating Trainers with Ray Tune                                                                         154
Using Callbacks to Monitor Training                                                                      156

Summary                                                                                                                         156

8. Online Inference with Ray Serve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157
Key Characteristics of Online Inference                                                                     158

ML Models Are Compute Intensive                                                                        158
ML Models Aren’t Useful in Isolation                                                                     159

An Introduction to Ray Serve                                                                                      160
Architectural Overview                                                                                             160
Defining a Basic HTTP Endpoint                                                                            161
Scaling and Resource Allocation                                                                              163
Request Batching                                                                                                        165

Table of Contents | ix



Multimodel Inference Graphs                                                                                  166
End-to-End Example: Building an NLP-Powered API                                            170

Fetching Content and Preprocessing                                                                      172
NLP Models                                                                                                                172
HTTP Handling and Driver Logic                                                                          173
Putting It All Together                                                                                               175

Summary                                                                                                                         176

9. Ray Clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Manually Creating a Ray Cluster                                                                                 180
Deployment on Kubernetes                                                                                          182

Setting Up Your First KubeRay Cluster                                                                   183
Interacting with the KubeRay Cluster                                                                     184
Exposing KubeRay                                                                                                     186
Configuring KubeRay                                                                                                187
Configuring Logging for KubeRay                                                                          189

Using the Ray Cluster Launcher                                                                                  190
Configuring Your Ray Cluster                                                                                  190
Using the Cluster Launcher CLI                                                                              191
Interacting with a Ray Cluster                                                                                  191

Working with Cloud Clusters                                                                                      192
AWS                                                                                                                              192
Using Other Cloud Providers                                                                                   193

Autoscaling                                                                                                                     194
Summary                                                                                                                         194

10. Getting Started with the Ray AI Runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195
Why Use AIR?                                                                                                                195
Key AIR Concepts by Example                                                                                    197

Ray Datasets and Preprocessors                                                                               198
Trainers                                                                                                                        199
Tuners and Checkpoints                                                                                           201
Batch Predictors                                                                                                         203
Deployments                                                                                                               204

Workloads That Are Suited for AIR                                                                            207
AIR Workload Execution                                                                                          209
AIR Memory Management                                                                                       211
AIR Failure Model                                                                                                      212
Autoscaling AIR Workloads                                                                                     213

Summary                                                                                                                         213

x | Table of Contents



11. Ray’s Ecosystem and Beyond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215
A Growing Ecosystem                                                                                                   216

Data Loading and Processing                                                                                   216
Model Training                                                                                                           218
Model Serving                                                                                                             222
Building Custom Integrations                                                                                  225
An Overview of Ray’s Integrations                                                                          226

Ray and Other Systems                                                                                                 227
Distributed Python Frameworks                                                                             227
Ray AIR and the Broader ML Ecosystem                                                               228
How to Integrate AIR into Your ML Platform                                                       230

Where to Go from Here?                                                                                              231
Summary                                                                                                                         232

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235

Table of Contents | xi





Foreword

For the past decade, the computation demands of machine learning and data applica‐
tions have vastly outgrown the capabilities of a single server or a single processor,
including hardware accelerators such as GPUs and TPUs. This trend leaves us no
choice but to distribute these applications. Unfortunately, building such distributed
applications is notoriously difficult.

Over the past few years, Ray has emerged as the framework of choice to simplify
the development of such applications. Ray includes a flexible core and a set of
powerful libraries that enable the developers to easily scale a variety of workloads,
including training, hyperparameter tuning, reinforcement learning, model serving,
and batch processing of unstructured data. Ray is one of the most popular open
source projects and has been used by thousands of companies to implement every‐
thing from machine learning platforms to recommendation systems, fraud detection,
and training some of the largest models, including Open AI’s ChatGPT.

In this book, Max Pumperla, Edward Oakes, and Richard Liaw have done an out‐
standing job in providing a gentle and comprehensive introduction to Ray and its
libraries using easy to follow examples. At the end of this book, you will master
the key concepts and abstractions in Ray and be able to develop and quickly scale
end-to-end machine learning applications from your laptop to large on-premise
clusters or to the cloud.

— Ion Stoica
Cofounder of Anyscale and Databricks, and
Professor, UC Berkeley Berkeley, California

January 2023

xiii





Preface

Distributed computing is a fascinating topic. Looking back at the early days of
computing, one can’t help but be impressed by the fact that so many companies today
distribute their workloads across clusters of computers. It’s impressive that we have
figured out efficient ways to do so, but scaling out is also becoming more and more of
a necessity. Individual computers keep getting faster, and yet our need for large-scale
computing keeps exceeding what single machines can do.

Recognizing that scaling is both a necessity and a challenge, Ray aims to make dis‐
tributed computing simple for developers. It makes distributed computing accessible
to nonexperts and makes it possible to scale your Python scripts across multiple
nodes fairly easily. Ray is good at scaling both data- and compute-heavy workloads,
such as data preprocessing and model training—and it explicitly targets machine
learning (ML) workloads with the need to scale. While it is possible today to scale
these two types of workloads without Ray, you would likely have to use different APIs
and distributed systems for each. And managing several distributed systems can be
messy and inefficient in many ways.

The addition of the Ray AI Runtime (AIR) with the release of Ray 2.0 in August
2022 increased the support for complex ML workloads in Ray even further. AIR is
a collection of libraries and tools that make it easy to build and deploy end-to-end
ML applications in a single distributed system. With AIR, even the most complex
workflows can usually be expressed as a single Python script. That means you can run
your programs locally first, which can make a big difference in terms of debugging
and development speed.

Data scientists benefit from Ray because they can rely on a growing ecosystem of Ray
ML libraries and third-party integrations. Ray AIR helps you to quickly prototype
ideas and go more easily from development to production. Unlike many other dis‐
tributed systems, Ray has native support for GPUs as well, which can be particularly
important to roles like ML engineers. To support data engineers, Ray also has tight
integrations with tools like Kubernetes and can be deployed in multicloud setups.

xv



And you can use it as a unified compute layer to provide scaling, fault tolerance,
scheduling, and orchestration of your workloads. In other words, it’s well worth
investing in learning Ray for a variety of roles.

Who Should Read This Book
It’s likely that you picked up this book because you’re interested in some aspects
of Ray. Maybe you’re a distributed systems engineer who wants to know how Ray’s
engine works. You might also be a software developer interested in picking up a
new technology. Or you could be a data engineer who wants to evaluate how Ray
compares to similar tools. You could also be a machine learning practitioner or data
scientist who needs to find ways to scale experiments.

No matter your concrete role, the common denominator to get the most out of this
book is to feel comfortable programming in Python. This book’s examples are written
in Python, and an intermediate knowledge of the language is a requirement. Explicit
is better than implicit, as you know full well as a Pythonista. So, let us be explicit by
saying that knowing Python implies to me that you know how to use the command
line on your system, how to get help when stuck, and how to set up a programming
environment on your own.

If you’ve never worked with distributed systems before, that’s OK. We cover all the
basics you need to get started with that in the book. On top of that, you can run
most code examples presented here on your laptop. Covering the basics means that
we can’t go into too much detail about distributed systems. This book is ultimately
focused on application developers using Ray, specifically for data science and ML.

For the later chapters of this book, you’ll need some familiarity with ML, but we
don’t expect you to have worked in the field. In particular, you should have a basic
understanding of the ML paradigm and how it differs from traditional programming.
You should also know the basics of using NumPy and Pandas. Also, you should at
least feel comfortable reading examples using the popular TensorFlow and PyTorch
libraries. It’s enough to follow the flow of the code, on the API level, but you
don’t need to know how to write your own models. We cover examples using both
dominant deep learning libraries (TensorFlow and PyTorch) to illustrate how you can
use Ray for ML workloads, regardless of your preferred framework.

We cover a lot of ground in advanced ML topics, but the main focus is on Ray as a
technology and how to use it. The ML examples we discuss might be new to you and
could require a second reading, but you can still focus on Ray’s API and how to use it
in practice. Knowing the requirements, here’s what you might get out of this book:

xvi | Preface



• If you are a data scientist, Ray will open up new ways for you to think about•
and build distributed ML applications. You will know how to do hyperparameter
selection for your experiments at scale, gain practical knowledge on large-scale
model training, and get to know a state-of-the-art reinforcement learning library.

• If you are a data engineer, you will learn to use Ray Datasets for large-scale data•
ingesting, how to improve your pipelines by leveraging tools such as Dask on
Ray, and how to effectively deploy models at scale.

• If you are an engineer, you will understand how Ray works under the hood, how•
to run and scale Ray Clusters in the cloud, and how Ray can be used to build
applications that integrate with projects you know.

You can learn all of these topics regardless of your role, of course. Our hope is that by
the end of this book, you will have learned to appreciate Ray for all its strengths.

Goals of This Book
This book was written primarily for readers who are new to Ray and want to get the
most out of it quickly. We chose the material in such a way that you will understand
the core ideas behind Ray and learn to use its main building blocks. Having read
it, you will feel comfortable navigating more complex topics on your own that go
beyond this introduction.

We should also be clear about what this book is not. It’s not built to give you the most
information possible, like API references or definitive guides. It’s also not crafted to
help you tackle concrete tasks, like how-to guides or cookbooks do. This book is
focused on learning and understanding Ray and giving you interesting examples to
start with.

Software develops and deprecates quickly, but the fundamental concepts underlying
software often remain stable even across major release cycles. We’re trying to strike
a balance here between conveying ideas and providing you with concrete code exam‐
ples. The ideas you find in this book will ideally remain useful even when the code
eventually needs updating.

While Ray’s documentation keeps getting better, we do believe that books can offer
qualities that are difficult to match in a project’s documentation. Since you’re reading
these lines, we realize we might be knocking down open doors with this statement.
But some of the best tech books we know spark interest in a project and make you
want to dig through terse API references that you’d never have touched otherwise. We
hope this is one of those books.

Preface | xvii



Navigating This Book
We organized this book to guide you naturally from core concepts to more sophisti‐
cated topics of Ray. Many of the ideas explained come with example code that you
can find in the book’s GitHub repo.

In a nutshell, the first three chapters of the book teach the basics of Ray as a
distributed Python framework with practical examples. Chapters 4 to 10 introduce
Ray’s high-level libraries and show how to build applications with them. The last
chapter gives you a conclusive overview of Ray’s ecosystem and shows you where to
go next. Here’s what you can expect from each chapter:

Chapter 1, “An Overview of Ray”
Introduces you to Ray as a system composed of three layers: its core, its ML
libraries, and its ecosystem. You’ll run your first examples with Ray’s libraries in
this chapter to give you a glimpse of what you can do with Ray.

Chapter 2, “Getting Started with Ray Core”
Walks you through the foundations of the Ray project, namely, its core API. It
also discusses how Ray tasks and actors naturally extend from Python functions
and classes. You will also learn about Ray’s system components and how they
work together.

Chapter 3, “Building Your First Distributed Application”
Guides you through implementing a distributed reinforcement learning applica‐
tion with Ray Core. You will implement this app from scratch and see Ray’s
flexibility in distributing your Python code in action.

Chapter 4, “Reinforcement Learning with Ray RLlib”
Gives you a quick introduction to reinforcement learning and shows how Ray
implements important concepts in RLlib. After building some examples together,
we’ll also dive into more advanced topics like curriculum learning or working
with offline data.

Chapter 5, “Hyperparameter Optimization with Ray Tune”
Covers why efficiently tuning hyperparameters is hard, how Ray Tune works
conceptually, and how you can use it in practice for your machine learning
projects.

Chapter 6, “Data Processing with Ray”
Introduces you to the Ray Datasets abstraction of Ray and how it fits into the
landscape of other data processing systems. You will also learn how to work with
third-party integrations such as Dask on Ray.

xviii | Preface

https://oreil.ly/learning_ray_repo


Chapter 7, “Distributed Training with Ray Train”
Provides you with the basics of distributed model training and shows you how to
use Ray Train with ML frameworks like PyTorch. We also show you how to add
custom preprocessors to your models, how to monitor training with callbacks,
and how to tune the hyperparameters of your models with Tune.

Chapter 8, “Online Inference with Ray Serve”
Teaches you the basics of exposing your trained ML models as API endpoints
that can be queried from anywhere. We discuss how Ray Serve addresses the
challenges of online inference, cover its architecture, and show you how to use it
in practice.

Chapter 9, “Ray Clusters”
Discusses how you configure, launch, and scale Ray Clusters for your applica‐
tions. You’ll learn about Ray’s Cluster launcher CLI and autoscaler, as well as
how to set up clusters in the cloud. We’ll also show you how to deploy Ray on
Kubernetes and with other cluster managers.

Chapter 10, “Getting Started with the Ray AI Runtime”
Introduces you to Ray AIR, a unified toolkit for your ML workloads that
offers many third-party integrations for model training or accessing custom data
sources.

Chapter 11, “Ray’s Ecosystem and Beyond”
Gives you an overview of the many interesting extensions and integrations that
Ray has attracted over the years.

How to Use the Code Examples
You can find all the code for this book in its GitHub repository. In the GitHub repo
you’ll find a notebook folder with notebooks for each chapter. We built the examples
in such a way that you can either type along as you read or follow the main text and
run the code from GitHub at another time. The choice is yours.

For the examples we assume that you have Python 3.7 or later installed. At the time
of this writing, support for Python 3.10 for Ray is experimental, so we can currently
only recommend a Python version no later than 3.9. All code examples assume that
you have Ray installed, and each chapter adds its own specific requirements. The
examples have been tested on Ray version 2.2.0, and we recommend that you stick to
this version for the whole book.

Preface | xix

https://oreil.ly/learning_ray_repo


Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

<Text in angle brackets>
Should be replaced with user-supplied values or by values determined by context.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/learning_ray_repo.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

xx | Preface

https://oreil.ly/learning_ray_repo
mailto:bookquestions@oreilly.com


We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Ray by Max
Pumperla, Edward Oakes, and Richard Liaw (O’Reilly). Copyright 2023 Max Pum‐
perla and O’Reilly Media, Inc., 978-1-098-11722-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learning-ray.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Preface | xxi

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/learning-ray
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia


Acknowledgments
We’d like to acknowledge the whole team at O’Reilly for helping us make this book
possible. In particular, we’d like to thank our tireless editor, Jeff Bleiel, for invaluable
input and feedback. Many thanks to Jess Haberman for many fruitful discussions
and having an open mind in the early stages of the process. We’d also like to thank
Katherine Tozer, Chelsea Foster, and Cassandra Furtado, among many others at
O’Reilly.

Many thanks to all the reviewers for their valuable feedback and suggestions: Mark
Saroufim, Kevin Ferguson, Adam Breindel, and Jorge Davila-Chacon. We’d also like
to thank the many colleagues at Anyscale who helped us with the book in any
capacity, including Sven Mika, Stephanie Wang, Antoni Baum, Christy Bergman,
Dmitri Gekhtman, Zhe Zhang, and many others.

On top of that, we’d like to wholeheartedly thank the Ray contributors team and
the community for their support and feedback, as well as many key stakeholders at
Anyscale supporting this project.

I (Max) would also like to thank the team at Pathmind for their support in the early
phases of the project, especially Chris Nicholson, who has been more helpful over
the years than I could describe here. Special thanks go out to the Espresso Society
in Winterhude for helping me turn coffee into books, and an increasing array of
GPT-3-based tools for helping me finish half-sentences when the caffeine wore off.
I would also like to express my gratitude to my family for their encouragement and
patience. As always, none of this would have been possible without Anne, who always
supports me when it counts—even if I take on one-too-many projects such as this
one.

xxii | Preface



CHAPTER 1

An Overview of Ray

One of the reasons we need efficient distributed computing is that we’re collecting
ever more data with great variety at increasing speeds. The storage systems, data
processing, and analytics engines that have emerged in the past decade are crucial
to the success of many companies. Interestingly, most “big data” technologies are
built for and operated by (data) engineers who are in charge of data collection and
processing tasks. The rationale is to free up data scientists to do what they’re best at.
As a data science practitioner, you might want to focus on training complex machine
learning models, running efficient hyperparameter selection, building entirely new
and custom models or simulations, or serving your models to showcase them.

At the same time, it might be inevitable to scale these workloads to a compute
cluster. To do that, the distributed system of your choice needs to support all of these
fine-grained “big compute” tasks, potentially on specialized hardware. Ideally, it also
fits into the big data tool chain you’re using and is fast enough to meet your latency
requirements. In other words, distributed computing has to be powerful and flexible
enough for complex data science workloads—and Ray can help you with that.

Python is likely the most popular language for data science today; it’s certainly the
one we find the most useful for our daily work. Python is now more than 30 years
old, but it still has a growing and active community. The rich PyData ecosystem is an
essential part of a data scientist’s toolbox. How can you make sure to scale out your
workloads while still leveraging the tools you need? That’s a difficult problem, espe‐
cially since communities can’t be forced to just toss their toolbox or programming
language. That means distributed computing tools for data science have to be built
for their existing community.

1

https://pydata.org


1 By “Python-first” we mean that all higher-level libraries are written in Python and that the development of
new features is driven by the needs of the Python community. Having said this, Ray has been designed to
support multiple language bindings and, for example, comes with a Java API. So, it’s not out of the question
that Ray might support other languages that are important to the data science ecosystem.

What Is Ray?
What we like about Ray is that it checks all these boxes. It’s a flexible distributed
computing framework built for the Python data science community.

Ray is easy to get started and keeps simple things simple. Its core API is as lean as
it gets and helps you reason effectively about the distributed programs you want to
write. You can efficiently parallelize Python programs on your laptop and run the
code you tested locally on a cluster practically without any changes. Its high-level
libraries are easy to configure and can seamlessly be used together. Some of them, like
Ray’s reinforcement learning library, would likely have a bright future as standalone
projects, distributed or not. While Ray’s core is built in C++, it’s been a Python-first
framework since day one,1 integrates with many important data science tools, and can
count on a growing ecosystem.

Distributed Python is not new, and Ray is not the first framework in this space (nor
will it be the last), but it is special in what it has to offer. Ray is particularly strong
when you combine several of its modules and have custom, machine learning–heavy
workloads that would be difficult to implement otherwise. It makes distributed com‐
puting easy enough to run your complex workloads flexibly by leveraging the Python
tools you know and want to use. In other words, by learning Ray you get to know
flexible distributed Python for machine learning. And showing you how is what this
book is all about.

In this chapter you’ll get a first glimpse of what Ray can do for you. We will discuss
the three layers that make up Ray: its core engine, high-level libraries, and ecosystem.
Throughout the chapter we’ll first show you code examples to give you a feel for
Ray. You can view this chapter as a quick preview of the book; we defer any in-depth
treatment of Ray’s APIs and components to later chapters.

What Led to Ray?
Programming distributed systems is hard. It requires specific knowledge and experi‐
ence you might not have. Ideally, such systems get out of your way and provide
abstractions to let you focus on your job. But in practice, as Joel Spolsky notes,
“all nontrivial abstractions, to some degree, are leaky,” and getting clusters of comput‐
ers to do what you want is undoubtedly difficult. Many software systems require
resources that far exceed what single servers can do. Even if one server were enough,
modern systems need to be failsafe and provide features like high availability. That

2 | Chapter 1: An Overview of Ray

https://oreil.ly/mpzSe


2 Moore’s law held for a long time, but there might be signs that it’s slowing down. Some even say it’s dead.
We’re not here to argue these points. What’s important is not that our computers generally keep getting faster,
but the relation to the amount of compute we need.

3 There are many ways to speed up ML training, from basic to sophisticated. For instance, we’ll spend a
considerable amount of time elaborating on distributed data processing in Chapter 6 and distributed model
training in Chapter 7.

4 Anyscale, the company behind Ray, is building a managed Ray platform and offers hosted solutions for your
Ray applications.

means your applications might have to run on multiple machines, or even datacen‐
ters, just to make sure they’re running reliably.

Even if you’re not too familiar with machine learning (ML) or artificial intelligence
(AI) more generally, you must have heard of recent breakthroughs in the field. To
name just two, systems like Deepmind’s AlphaFold for solving the protein folding
problem and OpenAI’s Codex for helping software developers with the tedium of
their jobs, have made the news lately. You might also have heard that ML systems
generally require large amounts of data to be trained, and that ML models tend to get
larger. OpenAI has shown exponential growth in compute needed to train AI models
in their paper “AI and Compute”. The number of operations needed for AI systems in
their study is measured in petaflops (thousands of trillions of operations per second)
and has been doubling every 3.4 months since 2012.

Compare this to Moore’s law,2 which states that the number of transistors in com‐
puters would double every two years. Even if you’re bullish on Moore’s law, you
can see how there’s a clear need for distributed computing in ML. You should also
understand that many tasks in ML can be naturally decomposed to run in parallel. So,
why not speed things up if you can?3

Distributed computing is generally perceived as hard. But why is that? Shouldn’t it
be realistic to find good abstractions to run your code on clusters without having to
constantly think about individual machines and how they interoperate? What if we
specifically focused on AI workloads?

Researchers at RISELab at UC Berkeley created Ray to address these questions. They
were looking for efficient ways to speed up their workloads by distributing them.
The workloads they had in mind were quite flexible in nature and didn’t fit into the
frameworks available at the time. RISELab also wanted to build a system that took
care of how the work was distributed. With reasonable default behaviors in place,
researchers should be able to focus on their work, regardless of the specifics of their
compute cluster. And ideally they should have access to all their favorite tools in
Python. For this reason, Ray was built with an emphasis on high-performance and
heterogeneous workloads.4 To understand these points better, let’s have a closer look
at Ray’s design philosophy.

What Is Ray? | 3

https://oreil.ly/fhPg-
https://www.anyscale.com
https://oreil.ly/RFaMa
https://oreil.ly/vGnyh
https://oreil.ly/7huR_
https://oreil.ly/1zsMj


Ray’s Design Principles
Ray is built with several design principles in mind. Its API is designed for simplicity
and generality, and its compute model aims for flexibility. Its system architecture is
designed for performance and scalability. Let’s look at each of these in more detail.

Simplicity and abstraction
Ray’s API not only banks on simplicity, it’s also intuitive to pick up (as you’ll see in
Chapter 2). It doesn’t matter whether you want to use all the CPU cores on your
laptop or leverage all the machines in your cluster. You might have to change a
line of code or two, but the Ray code you use stays essentially the same. And as
with any good distributed system, Ray manages task distribution and coordination
under the hood. That’s great, because you’re not bogged down by reasoning about the
mechanics of distributed computing. A good abstraction layer allows you to focus on
your work, and we think Ray has done a great job of giving you one.

Since Ray’s API is so generally applicable and pythonic, it’s easy to integrate with other
tools. For instance, Ray actors can call into or be called by existing distributed Python
workloads. In that sense, Ray makes for good “glue code” for distributed workloads,
too, as it’s performant and flexible enough to communicate between different systems
and frameworks.

Flexibility and heterogeneity
For AI workloads, in particular when dealing with paradigms like reinforcement
learning, you need a flexible programming model. Ray’s API is designed to make
it easy to write flexible and composable code. Simply put, if you can express your
workload in Python, you can distribute it with Ray. Of course, you still need to
make sure you have enough resources available and be mindful of what you want to
distribute. But Ray doesn’t limit what you can do with it.

Ray is also flexible when it comes to heterogeneity of computations. For instance, let’s
say you work on a complex simulation. Simulations can usually be decomposed into
several tasks or steps. Some of these steps might take hours to run, others just a few
milliseconds, but they always need to be scheduled and executed quickly. Sometimes
a single task in a simulation can take a long time, but other, smaller tasks should be
able to run in parallel without blocking it. Also, subsequent tasks may depend on
the outcome of an upstream task, so you need a framework to allow for dynamic
execution that deals well with task dependencies. Ray gives you full flexibility when
running heterogeneous workflows like that.

You also need to ensure you are flexible in your resource usage, and Ray supports
heterogeneous hardware. For instance, some tasks might have to run on a GPU, while
others run best on a couple of CPU cores. Ray provides you with that flexibility.

4 | Chapter 1: An Overview of Ray



5 This might sound drastic, but it’s not a joke. To name just one example, in March 2021 a French datacenter
powering millions of websites burned down completely. If your whole cluster burns down, we’re afraid Ray
can’t help you.

6 This is a Python book, so we’ll exclusively focus on Python, but you should know that Ray also has a Java API,
which is less mature than its Python equivalent at this point.

Speed and scalability
Another of Ray’s design principles is the speed at which Ray executes its tasks. It can
handle millions of tasks per second, and you incur very low latencies with it. Ray is
built to execute its tasks with just milliseconds of latency.

For a distributed system to be fast, it also needs to scale well. Ray is efficient at
distributing and scheduling your tasks across your compute cluster. And it does so in
a fault-tolerant way, too. As you’ll learn in detail in Chapter 9, Ray Clusters support
autoscaling to support highly elastic workloads. Ray’s autoscaler tries to launch or
stop machines in your cluster to match the current demand. This helps both to
minimize costs and to ensure that your cluster has enough resources to run your
workload.

In distributed systems, it’s not a question of if, but when, things will go wrong. A
machine might have an outage, abort a task, or simply go up in flames.5 In any case,
Ray is built to recover quickly from failures, which contributes to its overall speed.

As we haven’t talked about Ray’s architecture (Chapter 2 will introduce you to it), we
can’t tell you how these design principles are realized just yet. Let’s instead shift our
attention to what Ray can do for you in practice.

Three Layers: Core, Libraries, and Ecosystem
Now that you know why Ray was built and what its creators had in mind, let’s look at
the three layers of Ray. This presentation is not the only way to slice it, but it’s the way
that makes most sense for this book:

• A low-level, distributed computing framework for Python with a concise core•
API and tooling for cluster deployment called Ray Core.6

• A set of high-level libraries built and maintained by the creators of Ray. This•
includes the so-called Ray AIR to use these libraries with a unified API in
common machine learning workloads.

• A growing ecosystem of integrations and partnerships with other notable•
projects that span many aspects of the first two layers.

There’s a lot to unpack here, and we’ll look into each of these layers individually in the
remainder of this chapter.

What Is Ray? | 5

https://oreil.ly/Nl9_o


7 One of the reasons so many libraries are built on top of Ray Core is that it’s so lean and straightforward to
reason about. One of the goals of this book is to inspire you to write your own applications, or even libraries,
with Ray.

You can imagine Ray’s core engine with its API at the center of things, on which
everything else builds. Ray’s data science libraries build on top of Ray Core and
provide a domain-specific abstraction layer.7 In practice, many data scientists will use
these libraries directly, while ML or platform engineers might rely heavily on building
their tools as extensions of the Ray Core API. Ray AIR can be seen as an umbrella
that links Ray libraries and offers a consistent framework for dealing with common
AI workloads. And the growing number of third-party integrations for Ray is another
great entry point for experienced practitioners. Let’s look into each one of the layers
one by one.

A Distributed Computing Framework
At its core, Ray is a distributed computing framework. We’ll provide you with just
the basic terminology here and talk about Ray’s architecture in depth in Chapter 2. In
short, Ray sets up and manages clusters of computers so that you can run distributed
tasks on them. A Ray Cluster consists of nodes that are connected to each other via a
network. You program against the so-called driver, the program root, which lives on
the head node. The driver can run jobs, a collection of tasks, that are run on the nodes
in the cluster. Specifically, the individual tasks of a job are run on worker processes
on worker nodes. Figure 1-1 illustrates the basic structure of a Ray Cluster. Note
that we’re not concerned with communication between nodes just yet; this diagram
merely shows the layout of a Ray Cluster.

Figure 1-1. The basic components of a Ray Cluster

What’s interesting is that a Ray Cluster can also be a local cluster, a cluster consisting
of just your own computer. In this case, there’s just one node, namely, the head node,
which has the driver process and some worker processes. The default number of
worker processes is the number of CPUs available on your machine.

6 | Chapter 1: An Overview of Ray



8 We generally introduce dependencies in this book only when we need them, which should make it easier to
follow along. In contrast, the notebooks on GitHub give you the option to install all dependencies up front so
that you can focus on running the code instead.

9 At the time of this writing, there’s no Python 3.10 support for Ray, so sticking to a version between 3.7 and 3.9
should work best to follow this book.

With that knowledge at hand, it’s time to get your hands dirty and run your first
local Ray Cluster. Installing Ray on any of the major operating systems should work
seamlessly using pip:

pip install "ray[rllib, serve, tune]==2.2.0"

With a simple pip install ray, you will install just the basics of Ray. Since we want
to explore some advanced features, we installed the “extras” rllib, serve, and tune,
which we’ll discuss in a bit.8 Depending on your system configuration, you may not
need the quotation marks in this installation command.

Next, go ahead and start a Python session. You could, for instance, use the ipython
interpreter, which is often suitable for following simple examples. In your Python
session you can now easily import and initialize Ray:

import ray
ray.init()

If you don’t feel like typing in the commands yourself, you can also
jump into the Jupyter notebook for this chapter and run the code
there. The choice is up to you, but in any case please remember to
use Python version 3.7 or later.9

With those two lines of code, you’ve started a Ray Cluster on your local machine.
This cluster can utilize all the cores available on your computer as workers. Right now
your Ray Cluster doesn’t do much, but that’s about to change.

The init function you use to start the cluster is one of the six fundamental API calls
that you will learn about in depth in Chapter 2. Overall, the Ray Core API is very
accessible and easy to use. But since it is also a rather low-level interface, it takes time
to build interesting examples with it. Chapter 2 has an extensive first example to get
you started with the Ray Core API, and in Chapter 3 you’ll see how to build a more
interesting Ray application for reinforcement learning.

In the preceding code you didn’t provide any arguments to the ray.init(...) func‐
tion. If you wanted to run Ray on a “real” cluster, you’d have to pass more arguments
to init. This init call is often called the Ray Client, and it is used to interactively

A Distributed Computing Framework | 7

https://oreil.ly/j9ccz
https://oreil.ly/j9ccz


10 There are other means of interacting with Ray Clusters, such as the Ray Jobs CLI.
11 We never liked the categorization of data science as an intersection of disciplines, like math, coding, and

business. Ultimately, that doesn’t tell you what practitioners do.

connect to an existing Ray Cluster.10 You can read more about using the Ray Client to
connect to your production clusters in the Ray documentation.

Of course, if you’ve ever worked with compute clusters, you know there are many
pitfalls and intricacies. For instance, you can deploy Ray applications on clusters hos‐
ted by cloud providers such as Amazon Web Services (AWS), Google Cloud Platform
(GCP), or Microsoft Azure—and each choice needs good tooling for deployment and
maintenance. You can also spin up a cluster on your own hardware or use tools such
as Kubernetes to deploy your Ray Clusters. In Chapter 9 (following chapters with
concrete Ray applications), we’ll come back to the topic of scaling workloads with
Ray Clusters.

Before moving on to Ray’s higher-level libraries, let’s briefly summarize the two
foundational components of Ray as a distributed computation framework:

Ray Clusters
This component is in charge of allocating resources, creating nodes, and ensuring
they are healthy. A good way to get started with Ray Clusters is its dedicated
quick start guide.

Ray Core
Once your cluster is up and running, you use the Ray Core API to program
against it. You can get started with Ray Core by following the official walk-
through for this component.

A Suite of Data Science Libraries
Moving on to the second layer of Ray, in this section we’ll briefly introduce all the
data science libraries that Ray comes with. To do so, let’s first take a bird’s-eye view of
what it means to do data science. Once you understand this context, it’s much easier
to review Ray’s higher-level libraries and see how they can be useful to you.

Ray AIR and the Data Science Workflow
The somewhat elusive term “data science” (DS) has evolved quite a bit in recent
years, and you can find many definitions of varying usefulness online.11 To us, it’s
the practice of gaining insights and building real-world applications by leveraging data.
That’s quite a broad definition of an inherently practical and applied field that centers
around building and understanding things. In that sense, describing practitioners of

8 | Chapter 1: An Overview of Ray

https://oreil.ly/XXnlW
https://oreil.ly/nNhMt
https://oreil.ly/rBUil
https://oreil.ly/rBUil
https://oreil.ly/7r0Lv
https://oreil.ly/7r0Lv


12 As a fun exercise, we recommend reading Paul Graham’s famous “Hackers and Painters” essay on this topic
and replace “computer science” with “data science.” What would hacking 2.0 be?

13 If you want to understand more about the holistic view of the data science process when building ML
applications, Building Machine Learning Powered Applications by Emmanuel Ameisen (O’Reilly) is entirely
dedicated to it.

this field as “data scientists” is about as bad a misnomer as describing hackers as
“computer scientists.”12

In broad strokes, doing data science is an iterative process that entails requirements
engineering, data collection and processing, building models and evaluating them,
and deploying solutions. Machine learning is not necessarily part of this process but
often is. If ML is involved, you can further specify some steps:

Data processing
To train ML models, you need data in a format that your ML model understands.
The process of transforming and selecting what data should be fed into your
model is often called feature engineering. This step can be messy. You’ll benefit a
lot if you can rely on common tools to do the job.

Model training
In ML you need to train your algorithms on data that got processed in the
previous step. This includes selecting the right algorithm for the job, and it helps
if you can choose from a wide variety.

Hyperparameter tuning
Machine learning models have parameters that are tuned in the model training
step. Most ML models also have another set of parameters called hyperparameters
that can be modified prior to training. These parameters can heavily influence
the performance of your resulting ML model and need to be tuned properly.
There are good tools to help automate that process.

Model serving
Trained models need to be deployed. To serve a model means to make it available
to whomever needs access by whatever means necessary. In prototypes, you often
use simple HTTP servers, but there are many specialized software packages for
ML model serving.

This list is by no means exhaustive, and there’s a lot more to be said about building
ML applications.13 However, it is true that these four steps are crucial for the success
of a data science project using ML.

Ray has dedicated libraries for each of the four ML-specific steps we just listed.
Specifically, you can take care of your data processing needs with Ray Datasets,
run distributed model training with Ray Train, run your reinforcement learning

A Suite of Data Science Libraries | 9

https://oreil.ly/ZEDtU


14 In Chapter 6 we will introduce you to the fundamentals of what makes Ray Datasets work, including its use of
Arrow. For now, we want to focus on its API and concrete usage patterns.

workloads with Ray RLlib, tune your hyperparameters efficiently with Ray Tune, and
serve your models with Ray Serve. And the way Ray is built, all these libraries are
distributed by design, a point we can’t stress enough.

What’s more is that all of these steps are part of a process and are rarely tackled in
isolation. Not only do you want all the libraries involved to seamlessly interoperate, it
can also be a decisive advantage if you can work with a consistent API throughout the
whole data science process. This is exactly what Ray AIR was built for: having a com‐
mon runtime and API for your experiments and the ability to scale your workloads
when you’re ready. Figure 1-2 shows a quick overview of all the components of AIR.

Figure 1-2. Ray AIR as an umbrella of all current data science libraries of Ray

While introducing the Ray AI Runtime API would be too much for this chapter (you
can jump ahead to Chapter 10 for that), we’ll introduce you to all the building blocks
that feed into it. Let’s go through each of Ray’s DS libraries one by one.

Data Processing with Ray Datasets
The first high-level library of Ray we’ll talk about is Ray Datasets. This library
contains a data structure aptly called Dataset, a multitude of connectors for loading
data from various formats and systems, an API for transforming such datasets, a
way to build data processing pipelines with them, and many integrations with other
data processing frameworks. The Dataset abstraction builds on the powerful Arrow
framework.14

To use Ray Datasets, you need to install Arrow for Python, for instance by running
pip install pyarrow. The following simple example creates a distributed Dataset
on your local Ray Cluster from a Python data structure. Specifically, you’ll create a
dataset from a Python dictionary containing a string name and an integer-valued data
for 10,000 entries:

import ray

10 | Chapter 1: An Overview of Ray

https://arrow.apache.org
https://arrow.apache.org


15 We’ll elaborate more on this in later chapters, specifically in Chapter 6, but note that Ray Datasets is not
meant as a general-purpose data processing library. Tools such as Spark have more mature and optimized
support for large-scale data processing.

items = [{"name": str(i), "data": i} for i in range(10000)]

ds = ray.data.from_items(items)   

ds.show(5)  

Creating a Dataset by using from_items from the ray.data module.

Printing the first five items of the Dataset.

To show a Dataset means to print some of its values. You should see precisely five
elements on your command line, like this:

{'name': '0', 'data': 0}
{'name': '1', 'data': 1}
{'name': '2', 'data': 2}
{'name': '3', 'data': 3}
{'name': '4', 'data': 4}

Great, now you have some rows, but what can you do with that data? The Dataset
API bets heavily on functional programming, as this paradigm is well suited for data
transformations.

Even though Python 3 made a point of hiding some of its functional program‐
ming capabilities, you’re probably familiar with functionality such as map, filter,
flat_map, and others. If not, it’s easy enough to pick up: map takes each element
of your dataset and transforms it into something else, in parallel; filter removes
data points according to a Boolean filter function; and the slightly more elaborate
flat_map first maps values similarly to map, but then it also “flattens” the result. For
instance, if map produced a list of lists, flat_map would flatten out the nested lists
and give you just a list. Equipped with these three functional API calls,15 let’s see how
easily you can transform your dataset ds:

squares = ds.map(lambda x: x["data"] ** 2)  

evens = squares.filter(lambda x: x % 2 == 0)  
evens.count()

cubes = evens.flat_map(lambda x: [x, x**3])  

sample = cubes.take(10)  
print(sample)

We map each row of ds to only keep the square value of its data entry.

A Suite of Data Science Libraries | 11



Then we filter the squares to keep only even numbers (a total of five thousand
elements).

We then use flat_map to augment the remaining values with their respective
cubes.

To take a total of 10 values means to leave Ray and return a Python list with
these values that we can print.

The drawback of Dataset transformations is that each step gets executed synchro‐
nously. In this example that is a nonissue, but for complex tasks that, for example,
mix reading files and processing data, you would want an execution that can overlap
individual tasks. DatasetPipeline does exactly that. Let’s rewrite the previous exam‐
ple into a pipeline:

pipe = ds.window()  
result = pipe\
    .map(lambda x: x["data"] ** 2)\
    .filter(lambda x: x % 2 == 0)\

    .flat_map(lambda x: [x, x**3])  
result.show(10)

You can turn a Dataset into a pipeline by calling .window() on it.

Pipeline steps can be chained to yield the same result as before.

There’s a lot more to be said about Ray Datasets, especially its integration with nota‐
ble data processing systems, but we’ll defer an in-depth discussion until Chapter 6.

Model Training
Moving on to the next set of libraries, let’s look at the distributed training capabilities
of Ray. For that, you have access to two libraries. One is dedicated to reinforcement
learning specifically; the other one has a different scope and is aimed primarily at
supervised learning tasks.

Reinforcement learning with Ray RLlib
Let’s start with Ray RLlib for reinforcement learning (RL). This library is powered
by the modern ML frameworks TensorFlow and PyTorch, and you can choose which
one to use. Both frameworks seem to converge more and more conceptually, so you
can pick the one you like most without losing much in the process. Throughout the
book we use both TensorFlow and PyTorch examples so you can get a feel for both
frameworks when using Ray.

12 | Chapter 1: An Overview of Ray



16 If you’re on a Mac, you’ll have to install tensorflow-macos. In general, if you encounter any issues installing
Ray or its dependencies on your system, please refer to the installation guide.

For this section, go ahead and install TensorFlow with pip install tensorflow
right now.16 To run the code example, you also need to install the gym library with pip
install "gym==0.25.0".

One of the easiest ways to run examples with RLlib is to use the command-
line tool rllib, which we already installed implicitly when we ran pip install
"ray[rllib]". Once you run more complex examples in Chapter 4, you will mostly
rely on its Python API, but for now we want to get a first taste of running RL
experiments with RLlib.

We’ll look at a fairly classic control problem of balancing a pole on a cart. Imagine
you have a pole like the one in Figure 1-3, fixed at a joint of a cart, and subject to
gravity. The cart is free to move along a frictionless track, and you can manipulate the
cart by giving it a push from the left or the right with a fixed force. If you do this well
enough, the pole will remain in an upright position. For each time step the pole didn’t
fall over, we get a reward of 1. Collecting a high reward is our goal, and the question
is whether we can teach a reinforcement learning algorithm to do this for us.

Figure 1-3. Controlling a pole attached to a cart by asserting force to the left or the right

Specifically, we want to train a reinforcement learning agent that can carry out two
actions, namely, push to the left or to the right, observe what happens when interact‐
ing with the environment in that way, and learn from the experience by maximizing
the reward.

To tackle this problem with Ray RLlib, we can use a so-called tuned example, which
is a preconfigured algorithm that runs well for a given problem. You can run a tuned
example with a single command. RLlib comes with many such examples, and you can
list them all with rllib example list.

One of the available examples is cartpole-ppo, a tuned example that uses the PPO
algorithm to solve the cart–pole problem, specifically, the CartPole-v1 environment
from OpenAI Gym. You can take a look at the configuration of this example by
typing rllib example get cartpole-ppo, which will first download the example

A Suite of Data Science Libraries | 13

https://docs.ray.io/en/latest/ray-overview/installation.html
https://oreil.ly/YNxoz


file from GitHub and then print its configuration. This configuration is encoded in
YAML file format and reads as follows:

cartpole-ppo:

    env: CartPole-v1  

    run: PPO  
    stop:

        episode_reward_mean: 150  
        timesteps_total: 100000

    config: 
        framework: tf
        gamma: 0.99
        lr: 0.0003
        num_workers: 1
        observation_filter: MeanStdFilter
        num_sgd_iter: 6
        vf_loss_coeff: 0.01
        model:
            fcnet_hiddens: [32]
            fcnet_activation: linear
            vf_share_layers: true
        enable_connectors: True

The CartPole-v1 environment simulates the problem we just described.

Use a powerful RL algorithm called Proximal Policy Optimization, or PPO.

Once we reach a reward of 150, stop the experiment.

PPO needs some RL-specific configuration to make it work for this problem.

The details of this configuration file don’t matter much at this point, so don’t get dis‐
tracted by them. The important part is that you specify the Cartpole-v1 environment
and sufficient RL-specific configuration to ensure the training procedure works. Run‐
ning this configuration doesn’t require any special hardware and finishes in a matter
of minutes. To train this example, you’ll have to install the PyGame dependency with
pip install pygame and then simply run:

rllib example run cartpole-ppo

If you run this, RLlib creates a named experiment and logs important metrics such
as the reward or the episode_reward_mean for you. In the output of the training
run, you should also see information about the machine (loc, meaning hostname and
port), as well as the status of your training runs. If your run is TERMINATED but you’ve
never seen a successfully RUNNING experiment in the log, something must have gone
wrong. Here’s a sample snippet of a training run:

14 | Chapter 1: An Overview of Ray



+-----------------------------+----------+----------------+
| Trial name                  | status   | loc            |
|-----------------------------+----------+----------------|
| PPO_CartPole-v0_9931e_00000 | RUNNING  | 127.0.0.1:8683 |
+-----------------------------+----------+----------------+

When the training run finishes and things went well, you should see the following
output:

Your training finished.
Best available checkpoint for each trial:
  <checkpoint-path>/checkpoint_<number>

You can now evaluate your trained algorithm from any checkpoint, for example, by
running:

╭─────────────────────────────────────────────────────────────────────────╮
│   rllib evaluate <checkpoint-path>/checkpoint_<number> --algo PPO       │
╰─────────────────────────────────────────────────────────────────────────╯

Your local Ray checkpoint folder is ~/ray-results by default. For the training con‐
figuration we used, your <checkpoint-path> should be of the form ~/ray_results/
cartpole-ppo/PPO_CartPole-v1_<experiment_id>. During the training procedure,
your intermediate and final model checkpoints get generated into this folder.

To evaluate the performance of your trained RL algorithm, you can now evaluate it
from checkpoint by copying the command the previous example training run printed:

rllib evaluate <checkpoint-path>/checkpoint_<number> --algo PPO

Running this command will print evaluation results, namely, the rewards achieved by
your trained RL algorithm on the CartPole-v1 environment.

There’s much more that you can do with RLlib, and we’ll cover more of it in Chap‐
ter 4. The point of this example was to show you how easily you can get started with
RLlib and the rllib command-line tool, just by leveraging the example and evaluate
commands.

Distributed training with Ray Train
Ray RLlib is dedicated to reinforcement learning, but what do you do if you need to
train models for other types of machine learning, like supervised learning? You can
use another Ray library for distributed training in this case: Ray Train. At this point,
we don’t have enough knowledge of frameworks such as TensorFlow to give you a
concise and informative example for Ray Train. If you’re interested in distributed
training, you can jump ahead to Chapter 6.

A Suite of Data Science Libraries | 15



Hyperparameter Tuning
Naming things is hard, but Ray Tune, which you can use to tune all sorts of parame‐
ters, hits the spot. It was built specifically to find good hyperparameters for machine
learning models. The typical setup is as follows:

• You want to run an extremely computationally expensive training function. In•
ML, it’s not uncommon to run training procedures that take days, if not weeks,
but let’s say you’re dealing with just a couple of minutes.

• As a result of training, you compute a so-called objective function. Usually•
you want to either maximize your gains or minimize your losses in terms of
performance of your experiment.

• The tricky bit is that your training function might depend on certain parameters,•
called hyperparameters, that influence the value of your objective function.

• You may have a hunch what individual hyperparameters should be, but tuning•
them all can be difficult. Even if you can restrict these parameters to a sensible
range, it’s usually prohibitive to test a wide range of combinations. Your training
function is simply too expensive.

What can you do to efficiently sample hyperparameters and get “good enough” results
on your objective? The field concerned with solving this problem is called hyperpara‐
meter optimization (HPO), and Ray Tune has an enormous suite of algorithms for
tackling it. Let’s look an example of Ray Tune used for the situation we just explained.
The focus is yet again on Ray and its API, not on a specific ML task (which we simply
simulate for now):

from ray import tune
import math
import time

def training_function(config):  
    x, y = config["x"], config["y"]
    time.sleep(10)
    score = objective(x, y)

    tune.report(score=score)  

def objective(x, y):

    return math.sqrt((x**2 + y**2)/2)  

result = tune.run(  
    training_function,
    config={

        "x": tune.grid_search([-1, -.5, 0, .5, 1]),  

16 | Chapter 1: An Overview of Ray



        "y": tune.grid_search([-1, -.5, 0, .5, 1])
    })

print(result.get_best_config(metric="score", mode="min"))

Simulate an expensive training function that depends on two hyperparameters, x
and y, read from a config.

After sleeping for 10 seconds to simulate training and computing the objective,
the score is reported to tune.

The objective computes the mean of the squares of x and y and returns the
square root of this term. This type of objective is fairly common in ML.

Use tune.run to initialize hyperparameter optimization on our
training_function.

A key part is to provide a parameter space for x and y for tune to search over.

Notice how the output of this run is structurally similar to what you saw in the
RLlib example. That’s no coincidence, as RLlib (like many other Ray libraries) uses
Ray Tune under the hood. If you look closely, you will see PENDING runs that wait
for execution, as well as RUNNING and TERMINATED runs. Tune takes care of selecting,
scheduling, and executing your training runs automatically.

Specifically, this Tune example finds the best possible choices of parameters x and y
for a training_function with a given objective we want to minimize. Even though
the objective function might look a little intimidating at first, since we compute the
sum of squares of x and y, all values will be non-negative. That means the smallest
value is obtained at x=0 and y=0, which evaluates the objective function to 0.

We do a so-called grid search over all possible parameter combinations. As we explic‐
itly pass in 5 possible values for both x and y, that’s a total of 25 combinations that
get fed into the training function. Since we instruct training_function to sleep
for 10 seconds, testing all combinations of hyperparameters sequentially would take
more than 4 minutes total. Since Ray is smart about parallelizing this workload, this
whole experiment took only about 35 seconds for us, but it might take much longer,
depending on where you run it.

Now, imagine each training run would have taken several hours, and we’d have 20
instead of 2 hyperparameters. That makes grid search infeasible, especially if you
don’t have educated guesses on the parameter range. In such situations you’ll have to
use more elaborate HPO methods from Ray Tune, as discussed in Chapter 5.

A Suite of Data Science Libraries | 17



17 Depending on the operating system you’re using, you may need to install the Rust compiler first to make this
work. For instance, on a Mac, you can install it with brew install rust.

Model Serving
The last of Ray’s high-level libraries we’ll discuss specializes in model serving and is
simply called Ray Serve. To see an example of it in action, you need a trained ML
model to serve. Luckily, nowadays, you can find many interesting models on the
internet that have already been trained for you. For instance, Hugging Face has a
variety of models available for you to download directly in Python. The model we’ll
use is a language model called GPT-2 that takes text as input and produces text to
continue or complete the input. For example, you can prompt a question and GPT-2
will try to complete it.

Serving such a model is a good way to make it accessible. You may not know how
to load and run a TensorFlow model on your computer, but you do know how to
ask a question in plain English. Model serving hides the implementation details of
a solution and lets users focus on providing inputs and understanding outputs of a
model.

To proceed, make sure to run pip install transformers to install the Hugging Face
library that has the model we want to use.17 With that we can now import and start
an instance of Ray’s serve library, load and deploy a GPT-2 model, and ask it for the
meaning of life, like so:

from ray import serve
from transformers import pipeline
import requests

serve.start()  

@serve.deployment  
def model(request):

    language_model = pipeline("text-generation", model="gpt2")  
    query = request.query_params["query"]

    return language_model(query, max_length=100)  

model.deploy()  

query = "What's the meaning of life?"

response = requests.get(f"http://localhost:8000/model?query={query}")  
print(response.text)

18 | Chapter 1: An Overview of Ray



Start serve locally.

The @serve.deployment decorator turns a function with a request parameter
into a serve deployment.

Loading language_model inside the model function for every request is ineffi‐
cient, but it’s the quickest way to show you a deployment.

Ask the model to give us at most 100 characters to continue our query.

Formally deploy the model so that it can start receiving requests over HTTP.

Use the indispensable requests library to get a response for any question you
might have.

In Chapter 9 you will learn how to properly deploy models in various scenarios,
but for now we encourage you to play around with this example and test different
queries. Running the last two lines of code repeatedly will give you different answers
practically every time. Here’s a darkly poetic gem, raising more questions, from one
query that we’ve slightly censored for underaged readers:

[{
    "generated_text": "What's the meaning of life?\n\n
     Is there one way or another of living?\n\n
     How does it feel to be trapped in a relationship?\n\n
     How can it be changed before it's too late?
     What did we call it in our time?\n\n
     Where do we fit within this world and what are we going to live for?\n\n
     My life as a person has been shaped by the love I've received from others."
}]

This concludes our whirlwind tour of Ray’s data science libraries, the second of Ray’s
layers. Ultimately, all high-level Ray libraries presented in this chapter are extensions
of the Ray Core API. Ray makes it relatively easy to build new extensions, and there
are a few more that we can’t discuss in full in this book. For instance, there is the
relatively recent addition of Ray Workflows, which allows you to define and run
long-running applications with Ray.

Before we wrap up this chapter, let’s have a very brief look at the third layer, the
growing ecosystem around Ray.

A Suite of Data Science Libraries | 19

https://oreil.ly/XUT7y


18 Spark was created by another lab in Berkeley, AMPLab. The internet is full of blog posts claiming that Ray
should therefore be seen as a replacement of Spark. It’s better to think of them as tools with different strengths
that are both likely here to stay.

19 Before the deep learning framework Keras became an official part of TensorFlow, it started out as a conve‐
nient API specification for various lower-level frameworks such as Theano or CNTK. In that sense, Ray RLlib
has the chance to become “Keras for RL,” and Ray Tune might just be “Keras for HPO.” The missing piece for
more adoption might just be a more elegant API for both.

A Growing Ecosystem
Ray’s high-level libraries are powerful and deserve a much deeper treatment through‐
out the book. While their usefulness for the data science experimentation lifecycle
is undeniable, we also don’t want to give the impression that Ray is all you need
from now on. No surprise, the best and most successful frameworks are the ones
that integrate well with existing solutions and ideas. It’s better to focus on your core
strengths and leverage other tools for what’s missing in your solution, and Ray does
this quite well.

Throughout the book, and in Chapter 11 in particular, we will discuss many useful
third-party libraries built on top of Ray. The Ray ecosystem also has a lot of integra‐
tions with existing tools. To give you an example of that, recall that Ray Datasets is
Ray’s data loading and compute library. If you happen to have an existing project that
already uses data processing engines like Spark or Dask,18 you can use those tools
together with Ray. Specifically, you can run the entire Dask ecosystem on top of a Ray
Cluster using the Dask-on-Ray scheduler, or you can use the Spark on Ray project to
integrate your Spark workloads with Ray. Likewise, the Modin project is a distributed
drop-in replacement for Pandas DataFrames that uses Ray (or Dask) as a distributed
execution engine (“Pandas on Ray”).

The common theme here is that Ray doesn’t try to replace all these tools, but rather
integrates with them while still giving you access to its native Ray Datasets library.
We’ll go into much more detail about the relationship of Ray with other tools in the
broader ecosystem in Chapter 11.

One important aspect of many Ray libraries is that they seamlessly integrate common
tools as backends. Ray often creates common interfaces, instead of trying to create
new standards.19 These interfaces allow you to run tasks in a distributed fashion,
a property most of the respective backends don’t have, or not to the same extent.
For instance, Ray RLlib and Train are backed by the full power of TensorFlow and
PyTorch. And Ray Tune supports algorithms from practically every notable HPO
tool available, including Hyperopt, Optuna, Nevergrad, Ax, SigOpt, and many others.
None of these tools is distributed by default, but Tune unifies them in a common
interface for distributed workloads.

20 | Chapter 1: An Overview of Ray

https://keras.io
https://oreil.ly/J1D5I
https://oreil.ly/brGPJ


Summary
Figure 1-4 gives you an overview of the three layers of Ray as we laid them out. Ray’s
core distributed execution engine sits at the center of the framework. The Ray Core
API is a versatile library for distributed computing, and Ray Clusters allow you to
deploy your workloads in a variety of ways.

For practical data science workflows you can use Ray Datasets for data processing,
Ray RLlib for reinforcement learning, Ray Train for distributed model training, Ray
Tune for hyperparameter tuning, and Ray Serve for model serving. You’ve seen
examples for each of these libraries and have an idea of what their APIs entail. Ray
AIR provides a unified API for all other Ray ML libraries and was built with the
needs of data scientists in mind.

On top of that, Ray’s ecosystem has many extensions, integrations, and backends that
we’ll look more into later. Maybe you can already spot a few tools you know and like
in Figure 1-4?

Figure 1-4. Ray in three layers

The Ray Core API sits at the center of Figure 1-4, surrounded by the libraries RLlib,
Ray Tune, Ray Train, Ray Serve, Ray Datasets, and the many third-party integrations
that are too many to list here.

Summary | 21





1 Note that Ray comes with a drop-in replacement for multiprocessing that you might find useful for certain
workloads.

2 This represents a trade-off in terms of generality versus specialization. By also providing specialized yet
interoperable libraries on top of the Core API, Ray provides tooling at various levels of abstraction.

CHAPTER 2

Getting Started with Ray Core

For a book on distributed Python, it’s not without a certain irony that Python on
its own is largely ineffective for distributed computing. Its interpreter is effectively
single threaded. For instance, this makes it difficult to leverage multiple CPUs on the
same machine, let alone a whole cluster of machines, using plain Python. That means
you need extra tooling, and luckily the Python ecosystem has some options for you.
Libraries like multiprocessing can help you distribute work on a single machine,1

but not beyond.

Seen as a Python library, the Ray Core API is powerful enough to make general dis‐
tributed programming more accessible to the Python community as a whole. By way
of analogy, some companies get by with deploying pretrained ML models for their
use cases, but that strategy is not always effective. It’s often inevitable to need to train
custom models to be successful. In the same way, your distributed workloads might
just fit into the (potentially limiting) programming model of existing frameworks, but
Ray Core can unlock the full spectrum of building distributed applications, due to its
generality.2 As it is so fundamental, we dedicate this whole chapter to the basics of
Ray Core and spend all of Chapter 3 on building an interesting application with the
Core API. This way you’re equipped with practical knowledge about Ray Core and
can use it in later chapters and your own projects.

In this chapter you’ll understand how Ray Core handles distributed computing by
spinning up a local cluster, and you’ll learn how to use Ray’s lean and powerful API to
parallelize some interesting computations. For instance, you’ll build an example that

23

https://oreil.ly/UMg73


3 The dashboard is being redesigned as we write these lines. As much as we’d like to show you screenshots of it
and walk you through it, you’ll have to discover it for yourself for now.

runs a data-parallel task efficiently and asynchronously on Ray, in a convenient way
that’s not easily replicable with other tooling. We discuss how tasks and actors work as
distributed versions of functions and classes in Python. You’ll also learn how to put
objects in Ray’s object store and how to retrieve them. We give you concrete examples
for these three fundamental concepts (tasks, actors, and objects), using just six basic
API calls of the Ray Core API. Lastly, we’ll discuss the system components underlying
Ray and what its architecture looks like. In other words, in this chapter we’ll give you
a look under the hood of Ray’s engine.

An Introduction to Ray Core
The bulk of this chapter is an extended Ray Core example that we’ll build together.
Many of Ray’s concepts can be explained with a good example, so that’s exactly what
we’ll do.

As before, you can follow this example by typing the code yourself
(which is highly recommended) or by following the notebook for
this chapter. In any case, make sure you have Ray installed, for
instance with pip install ray.

In Chapter 1 we showed you how start a local cluster simply by calling import ray
and then initializing it with ray.init(). After running this code you will see output
of the following form. We omit a lot of information in this example output, as that
would require you to understand more of Ray’s internals first:

... INFO services.py:1263 -- View the Ray dashboard at http://127.0.0.1:8265
{'node_ip_address': '192.168.1.41',
 ...
 'node_id': '...'}

This output indicates that your Ray Cluster is up and running. As you can see from
the first line of the output, Ray comes with its own, prepackaged dashboard.3 You can
check it out at http://127.0.0.1:8265, unless your output shows a different port. You
can take your time if you want to explore the dashboard. For instance, you should
see all your CPU cores listed and the total utilization of your (trivial) Ray application.
To see the resource utilization of your Ray Cluster in Python, you can simply call
ray.cluster_resources(). The output should look something like this:

{'CPU': 12.0,
 'memory': 14203886388.0,

24 | Chapter 2: Getting Started with Ray Core

https://oreil.ly/c6vtM
https://oreil.ly/lMmfp
https://oreil.ly/lMmfp
http://127.0.0.1:8265


4 In case you fall into these categories, it might be comforting to hear that many data scientists rarely use Ray
Core directly. Instead, they work directly with Ray’s higher-level libraries like Datasets, Train, or Tune.

 'node:127.0.0.1': 1.0,
 'object_store_memory': 2147483648.0}

You’ll need a running Ray Cluster to run the examples in this chapter, so make sure
you’ve started one before continuing. The goal of this section is to give you a quick
introduction to the Ray Core API, which we’ll simply refer to as the Ray API from
now on.

For Python programmers, the great thing about the Ray API is that it hits so close
to home. It uses familiar concepts such as decorators, functions, and classes to
provide you with a fast learning experience. The Ray API aims to provide a universal
programming interface for distributed computing. That’s certainly no easy feat, but
we think Ray succeeds in this respect, as it provides you with good abstractions that
are intuitive to learn and use. Ray’s engine does all the heavy lifting for you in the
background. This design philosophy is what enables Ray to be used with existing
Python libraries and systems.

Note that the reason we start out with Ray Core in this book is that we believe it
has massive potential to make distributed computing more accessible. In essence, this
chapter is all about getting a peek behind the curtains of what makes Ray work so
well and how you can pick up its fundamentals. If you’re a less experienced Python
programmer or just want to focus on higher-level tasks, Ray Core might take some
getting used to.4 Having said that, we emphatically recommend learning the Ray Core
API, as it’s a great way to get into distributed computing with Python.

A First Example Using the Ray API
To give you an example, take the following function that retrieves and processes data
from a database. Our sample database is a plain Python list containing the words of
the title of this book. We act as if retrieving an individual item from this database and
further processing it is expensive by letting Python sleep:

import time

database = [  
    "Learning", "Ray",
    "Flexible", "Distributed", "Python", "for", "Machine", "Learning"
]

def retrieve(item):

    time.sleep(item / 10.)  
    return item, database[item]

An Introduction to Ray Core | 25



A sample database containing string data with the title of this book.

Emulate a data-crunching operation that takes a long time.

Our database has eight items in total. If we were to retrieve all items sequentially, how
long would that take? For the item with index 5, we wait for half a second (5 / 10) and
so on. In total, we can expect a runtime of around (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) / 10
= 2.8 seconds. Let’s see if that’s what we actually get:

def print_runtime(input_data, start_time):
    print(f'Runtime: {time.time() - start_time:.2f} seconds, data:')
    print(*input_data, sep="\n")

start = time.time()

data = [retrieve(item) for item in range(8)]  

print_runtime(data, start)  

Uses a list comprehension to retrieve all eight items.

Unpacks the data to print each item on its own line.

If you run this code, you should see the following output:

Runtime: 2.82 seconds, data:
(0, 'Learning')
(1, 'Ray')
(2, 'Flexible')
(3, 'Distributed')
(4, 'Python')
(5, 'for')
(6, 'Machine')
(7, 'Learning')

There’s a little overhead that brings the total runtime to 2.82 seconds. On your
end this might be slightly less, or much more, depending on your computer. The
important takeaway is that our naive Python implementation is not able to run this
function in parallel.

This may not come as a surprise to you, but you could at least have suspected that
Python list comprehensions are more efficient in that regard. The runtime we got is
pretty much the worst-case scenario, namely, the 2.8 seconds we calculated prior to
running the code. If you think about it, it might even be a bit frustrating to see that a
program that essentially sleeps most of its runtime is that slow overall. Ultimately you
can blame the Global Interpreter Lock (GIL) for that, but it gets enough of the blame
already.

26 | Chapter 2: Getting Started with Ray Core



Python’s Global Interpreter Lock
The GIL is undoubtedly one of the most infamous features of the Python language.
In a nutshell, it’s a lock that makes sure only one thread on your computer can ever
execute your Python code at a time. If you use multithreading, the threads need to
take turns controlling the Python interpreter.

The GIL has been implemented for good reasons. For one, it makes memory
management that much easier in Python. Another key advantage is that it makes
single-threaded programs quite fast. Programs that primarily use lots of system input
and output (we say they are I/O-bound), like reading files or databases, benefit
as well. One of the major downsides is that CPU-bound programs are essentially
single-threaded. In fact, CPU-bound tasks might even run faster when not using
multithreading, as the latter incurs write-lock overheads on top of the GIL.

Given all that, the GIL might somewhat paradoxically be one of the reasons for
Python’s popularity, if you believe Larry Hastings. Interestingly, Hastings also led
(unsuccessful) efforts to remove it in a project called GILectomy, which is exactly the
kind of complicated surgery that it sounds like. The jury is still out, but Sam Gross
might just have found a way to remove the GIL in his nogil branch of Python 3.9.
For now, if you absolutely have to work around the GIL, consider using an implemen‐
tation different from CPython. CPython is Python’s standard implementation, and
if you don’t know that you’re using it, you’re definitely using it. Implementations
like Jython, IronPython, or PyPy don’t have a GIL, but they come with their own
drawbacks.

Functions and remote Ray tasks
It’s reasonable to assume that such a task can benefit from parallelization. Perfectly
distributed, the runtime should not take much longer than the longest subtask,
namely, 7/ 10 = 0.7 seconds. So, let’s see how you can extend this example to run on
Ray. To do so, start by using the @ray.remote decorator as follows:

@ray.remote  
def retrieve_task(item):

    return retrieve(item)  

Make any Python function a Ray task with just this decorator.

All else remains unchanged. retrieve_task just passes through to retrieve.

In this way, the function retrieve_task becomes a so-called Ray task. In essence, a
Ray task is a function that gets executed on a different process than it was called from,
potentially on a different machine.

An Introduction to Ray Core | 27

https://oreil.ly/UShnM
https://oreil.ly/J4I-q


5 Strictly speaking, this first example is a bit of an anti-pattern, as you should not normally share mutable state
across Ray tasks through global variables. Having said that, for this toy data example you shouldn’t overthink
this part. Rest assured that we’ll show you a better way of doing things in the next section.

6 This book is geared to data science practitioners, so we won’t discuss the conceptual details of Ray’s architec‐
ture here. If you’re curious and want to learn more about how Ray tasks are executed, check out the Ray
architecture whitepaper.

That’s an extremely convenient design choice, as you can focus on your Python code
first and don’t have to completely change your mindset or programming paradigm
to use Ray. Note that in practice you would have simply added the @ray.remote
decorator to your original retrieve function (after all, that’s the intended use of
decorators), but to keep things as clear as possible, we didn’t want to touch previous
code.

Easy enough, so what do you have to change in the code that retrieves the database
entries and measures performance? It turns out, not much. Example 2-1 shows how
you would do that.5

Example 2-1. Measuring performance of your Ray task

start = time.time()

object_references = [  
    retrieve_task.remote(item) for item in range(8)
]

data = ray.get(object_references)  
print_runtime(data, start)

To run retrieve_task on your local Ray Cluster, you use .remote() and pass in
your items as before. Each task returns an object.

To get back actual data, and not just Ray object references, you use ray.get.

Did you spot the differences? You have to execute your Ray task remotely using
a .remote() call.6 When Ray executes tasks remotely, even on your local cluster, it
does so asynchronously. The list items in object_references in the last code snippet
do not contain the results directly. In fact, if you check the Python type of the first
item with type(object_references[0]), you’ll see that it’s in fact an ObjectRef.
These object references correspond to futures, which you need to ask the result of.
This is what the call to ray.get(...) is for. Whenever you call remote on a Ray
task, it will immediately return one or more object references. You should consider
Ray tasks the primary method of creating objects. In the next section we’ll show you
an example that chains multiple tasks together and lets Ray take care of passing and
resolving the objects between them.

28 | Chapter 2: Getting Started with Ray Core

https://oreil.ly/OuOWC
https://oreil.ly/Pe-hT
https://oreil.ly/Pe-hT


7 This example has been adapted from Dean Wampler’s fantastic report “What Is Ray?”.

We still want to work more on this example,7 but let’s take a step back here and
recap what we did so far. You started with a Python function and decorated it
with @ray.remote. This made your function a Ray task. Then, instead of calling the
original function in your code, you called .remote(...) on the Ray task. The last step
was to use .get(...) to get the results from your Ray Cluster. This procedure is so
intuitive that you might be able to create your own Ray task from another function
without having to look back at this example. Why don’t you give it a try right now?

Coming back to our example: by using Ray tasks, what did we gain in terms of
performance? The runtime clocks in at 0.71 seconds for us, which is just slightly more
than the longest subtask, which comes in at 0.7 seconds. That’s great and much better
than before, but we can further improve our program by leveraging more of Ray’s
API.

Using the object store with put and get

One thing you might have noticed is that in the definition of retrieve we directly
accessed items from our database. When working on a local Ray Cluster, this is fine,
but imagine you’re running on an actual cluster that includes several computers. How
would all those computers access the same data? Remember from Chapter 1 that in
a Ray Cluster there is one head node with a driver process (running ray.init())
and many worker nodes with worker processes executing your tasks. By default, Ray
will create as many worker processes as there are CPU cores on your machine. Our
database is currently defined on the driver only, but the workers running your tasks
need to have access to it to run the retrieve task. Luckily, Ray provides an easy
way to share objects between the driver and workers (or between workers). You can
simply use put to place your data into Ray’s distributed object store. In our definition
of retrieve_task we explicitly pass in a db argument, to which we later will pass our
db_object_ref object:

db_object_ref = ray.put(database)  

@ray.remote

def retrieve_task(item, db):  
    time.sleep(item / 10.)
    return item, db[item]

put your database into the object store and receive a reference to it. This way we
can explicitly pass this reference to our Ray task later.

The Ray task retrieve_task takes the object reference as an argument.

An Introduction to Ray Core | 29

https://oreil.ly/8Hc9y


By using the object store this way, you can let Ray handle data access across the whole
cluster. We’ll talk about how exactly values are passed between nodes and within
workers when talking about Ray’s infrastructure. While the interaction with the
object store requires some overhead, it gives you performance gains when working
with larger, more realistic datasets. For now, the important part is that this step is
essential in a truly distributed setting. If you like, try to rerun Example 2-1 with this
new retrieve_task function and confirm that it still runs as expected.

Using Ray’s wait function for nonblocking calls

Note how in Example 2-1 we used ray.get(object_references) to access results.
This call is blocking, which means that our driver has to wait for all the results to
be available. That’s not a big deal in our case; the program now finishes in under
a second. But imagine that the processing of each database item would take several
minutes. In that case, you would want to free up the driver process for other tasks,
instead of sitting idly by. Also, it would be great to process results as they come
in (some finish much quicker than others), rather than waiting for all items to be
processed. One more question to keep in mind is, what happens if one of the database
items can’t be retrieved as expected? Let’s say there’s a deadlock somewhere in the
database connection. The driver would simply hang and never retrieve all items. For
that reason it’s a good idea to work with reasonable timeouts. Let’s say we don’t want
to wait longer than 10 times the longest data retrieval task before stopping the task.
Here’s how you can do that with Ray by using wait:

start = time.time()
object_references = [

    retrieve_task.remote(item, db_object_ref) for item in range(8)  
]
all_data = []

while len(object_references) > 0:  

    finished, object_references = ray.wait(  
        object_references, num_returns=2, timeout=7.0
    )
    data = ray.get(finished)

    print_runtime(data, start)  

    all_data.extend(data)  

Run remote on our retrieve_task and pass the respective item we want to
retrieve and the object reference to our database.

Instead of blocking, loop through unfinished object_references.

We asynchronously wait for finished data with a reasonable timeout.
object_references gets overridden here, to prevent an infinite loop.

30 | Chapter 2: Getting Started with Ray Core



Print results as they come in, namely in blocks of two.

append new data to the all_data until finished.

As you can see, ray.wait returns two arguments: finished values and futures that still
need to be processed. We use the num_returns argument, which defaults to 1, to let
wait return whenever a new pair of database items is available. This results in the
following output for us:

Runtime: 0.11 seconds, data:
(0, 'Learning')
(1, 'Ray')
Runtime: 0.31 seconds, data:
(2, 'Flexible')
(3, 'Distributed')
Runtime: 0.51 seconds, data:
(4, 'Python')
(5, 'for')
Runtime: 0.71 seconds, data:
(6, 'Machine')
(7, 'Learning')

Note how in the while loop, instead of just printing results, we could have done many
other things, like starting entirely new tasks on other workers with the values already
retrieved up to this point.

Handling task dependencies
So far our example program has been fairly easy on a conceptual level. It consists
of a single step: retrieving a bunch of database items. Now, imagine that once your
data is loaded you want to run a follow-up processing task. To be more concrete, let’s
say we want to use the result of our first retrieve task to query other, related data (pre‐
tend that you’re querying data from a different table in the same database). Exam‐
ple 2-2 sets up such a task and runs both our retrieve_task and follow_up_task
consecutively.

Example 2-2. Running a follow-up task that depends on another Ray task

@ray.remote

def follow_up_task(retrieve_result):  
    original_item, _ = retrieve_result

    follow_up_result = retrieve(original_item + 1)  

    return retrieve_result, follow_up_result  

retrieve_refs = [retrieve_task.remote(item, db_object_ref) for item in [0, 2, 4, 6]]

follow_up_refs = [follow_up_task.remote(ref) for ref in retrieve_refs]  

An Introduction to Ray Core | 31



8 According to Clarke’s third law, any sufficiently advanced technology is indistinguishable from magic. For me,
this example has a bit of magic to it.

9 The same thing happened earlier, when we passed an object reference to the remote call of retrieve_task
and then directly accessed the respective items of the database db there. We didn’t want to distract you too
much from the main point of that example.

result = [print(data) for data in ray.get(follow_up_refs)]

Using the result of retrieve_task, compute another Ray task on top of it.

Leveraging the original_item from the first task, retrieve more data.

Return both the original and the follow-up data.

Pass the object references from the first task to the second task.

Running this code results in the following output:

((0, 'Learning'), (1, 'Ray'))
((2, 'Flexible'), (3, 'Distributed'))
((4, 'Python'), (5, 'for'))
((6, 'Machine'), (7, 'Learning'))

If you don’t have a lot of experience with asynchronous programming, you might
not be impressed by Example 2-2. But we hope to convince you that it’s at least a
bit surprising that this code snippet runs at all.8 So, what’s the big deal? After all, the
code reads like regular Python: a function definition and a few list comprehensions.
The point is that the function body of follow_up_task expects a Python tuple for its
input argument retrieve_result, which we unpack in the first line of the function
definition.

But by invoking [follow_up_task.remote(ref) for ref in retrieve_refs] we
do not pass in tuples to the follow-up task at all. Instead, we pass in Ray object
references with retrieve_refs. What happens under the hood is that Ray knows that
follow_up_task requires actual values, so internally in this task it will call ray.get
to resolve the futures.9 Ray builds a dependency graph for all tasks and executes them
in an order that respects the dependencies. You do not have to tell Ray explicitly
when to wait for a previous task to finish; it will infer that information for you. This
also shows you a powerful feature of the Ray object store: if intermediate values are
large, you can avoid copying them back to the driver. You can just pass your object
references to the next task and let Ray handle the rest.

The follow-up tasks will be scheduled only once the individual retrieve tasks
have finished. If you ask us, that’s an incredible feature. In fact, if we had called

32 | Chapter 2: Getting Started with Ray Core

https://oreil.ly/VHJ_o


10 The actor model is an established concept in computer science, which you can find implemented, e.g., in
Akka or Erlang. However, the history and specifics of actors are not relevant to our discussion.

retrieve_refs something like retrieve_result, you may not have even noticed this
important detail. That’s by design. Ray wants you to focus on your work, not on the
details of cluster computing. In Figure 2-1 you can see the dependency graph for the
two tasks visualized.

Figure 2-1. Running two dependent tasks asynchronously and in parallel with Ray

If you feel like it, try to rewrite Example 2-2 so that it explicitly uses get on the first
task before passing values into the follow-up task. Not only does this introduce more
boilerplate code, it’s also a bit less intuitive to write and understand.

From classes to actors
Before wrapping up this example, let’s discuss one more important concept of Ray
Core. Notice how everything is essentially a function in our example. We just used
the ray.remote decorator to make some of them remote functions, and other than
that we used plain Python.

Let’s say we wanted to track how often our database has been queried. Sure, we could
simply count the results of our retrieve tasks, but is there a better way to do this? We
want to track this in a “distributed” way that will scale. For that, Ray has the concept
of actors. Actors allow you to run stateful computations on your cluster. They can
also communicate between each other.10 Much like Ray tasks were simply decorated

An Introduction to Ray Core | 33



functions, Ray actors are decorated Python classes. Let’s write a simple counter to
track our database calls:

@ray.remote  
class DataTracker:
    def __init__(self):
        self._counts = 0

    def increment(self):
        self._counts += 1

    def counts(self):
        return self._counts

Make any Python class a Ray actor by using the same ray.remote decorator as
before.

This DataTracker class is already an actor, since we equipped it with the ray.remote
decorator. This actor can track state, here just a simple counter, and its methods
are Ray tasks that get invoked precisely like we did with functions before, namely,
using .remote(). Let’s see how we can modify our existing retrieve_task to incor‐
porate this new actor:

@ray.remote

def retrieve_tracker_task(item, tracker, db):  
    time.sleep(item / 10.)

    tracker.increment.remote()  
    return item, db[item]

tracker = DataTracker.remote()  

object_references = [  
    retrieve_tracker_task.remote(item, tracker, db_object_ref) 
    for item in range(8)
]
data = ray.get(object_references)

print(data) 

print(ray.get(tracker.counts.remote()))  

Passes in the tracker actor into this task.

The tracker receives an increment for each call.

Instantiates our DataTracker actor by calling .remote() on the class.

The actor gets passed into the retrieve task.

34 | Chapter 2: Getting Started with Ray Core



11 To paraphrase Alan Kay, to get simplicity, you need to find slightly more sophisticated building blocks. The
Ray API does just that for distributed Python.

12 Check out the API reference to see that there are in fact quite a few more methods available. At some point
you should invest in understanding the arguments of init, but all other methods likely won’t be of interest to
you, if you’re not an administrator of your Ray Cluster.

Aftwerward, we can get the counts state from our tracker from another remote
invocation.

Not surprisingly, the result of this computation is in fact 8. We didn’t need actors
to compute this, but it can be useful to have a mechanism to track state across the
cluster, potentially spanning multiple tasks. In fact, we could pass our actor into
any dependent task, or even into the constructor of yet another actor. There is no
limitation to what you can do, and it’s this flexibility that makes the Ray API so
powerful. It’s not very common for distributed Python tools to allow for stateful
computations like this. This feature can come in handy, especially when running
complex distributed algorithms, for instance when using reinforcement learning.

This completes our extensive first Ray API example. We’ll concisely summarize the
Ray API next.

In this introduction by example we focused a lot on Ray tasks and
actors as distributed versions of Python functions and classes. But
objects are also first-class citizens in Ray Core and should be seen
as equal in status to tasks and actors. The object store is a central
component of Ray.

An Overview of the Ray Core API
If you recall what we did in the previous example, you’ll notice that we used a total
of just six API methods.11 We used ray.init() to start the cluster and @ray.remote
to turn functions and classes into tasks and actors. Then we used ray.put() to pass
values into Ray’s object store and ray.get() to retrieve objects from the cluster.
Finally, we used .remote() on actor methods or tasks to run code on our cluster, and
ray.wait to avoid blocking calls.

While six API methods might not seem like much, those are the only ones you’ll
likely ever care about when using the Ray API.12 We briefly summarize them in
Table 2-1 so you can easily reference them in the future.

An Introduction to Ray Core | 35

https://oreil.ly/lNdxi
https://oreil.ly/k3E7H


Table 2-1. The six major API methods of Ray Core

API call Description

ray.init() Initializes your Ray Cluster. Pass in an address to connect to an existing cluster.

@ray.remote Turns functions into tasks and classes into actors.

ray.put() Puts values into Ray’s object store.

ray.get() Gets values from the object store. Returns the values you’ve put there or that were computed by a task or
actor.

.remote() Runs actor methods or tasks on your Ray Cluster and is used to instantiate actors.

ray.wait() Returns two lists of object references, one with finished tasks we’re waiting for and one with unfinished
tasks.

Now that you’ve seen the Ray API in action, let’s spend some time on its system
architecture.

Understanding Ray System Components
You’ve seen how the Ray API can be used and understand the design philosophy
behind Ray. Now it’s time to get a better understanding of the underlying system
components. In other words, how does Ray work and how does it achieve what it
does?

Scheduling and Executing Work on a Node
You know that Ray Clusters consist of nodes. We’ll first look at what happens on indi‐
vidual nodes, before we zoom out and discuss how the whole cluster interoperates.

As we’ve already discussed, a worker node consists of several worker processes or
simply workers. Each worker has a unique ID, an IP address, and a port by which
they can be referenced. Workers are called “workers” for a reason; they’re compo‐
nents that blindly execute the work you give them. But who tells them what to do and
when? A worker might be busy already, it may not have the proper resources to run
a task (e.g., access to a GPU), and it might not even have the values it needs to run
a given task. On top of that, workers have no knowledge of what happens before or
after they’ve executed their workload; there’s no coordination.

To address these issues, each worker node has a component called Raylet. Think of
Raylets as the smart components of a node that manage the worker processes. Raylets
are shared between jobs and consist of two components, a task scheduler and an object
store.

Let’s talk about object stores first. In the running example in this chapter, we’ve
already used the concept of an object store loosely, without explicitly specifying it.
Each node of a Ray Cluster is equipped with an object store, within that node’s

36 | Chapter 2: Getting Started with Ray Core



Raylet, and all objects stored collectively form the distributed object store of a cluster.
The object store manages a shared pool of memory across workers on the same
node and ensures that workers can access objects that were created on a different
node. The object store is implemented in Plasma, which now belongs to the Apache
Arrow project. Functionally, the object store takes care of memory management and
ultimately makes sure workers have access to the objects they need.

The second component of a Raylet is its scheduler. The scheduler takes care of
resource management, among other things. For instance, if a task requires access to
four CPUs, the scheduler needs to make sure it can find a free worker process that
can grant access to said resources. By default, the scheduler knows about and acquires
information about the number of CPUs and GPUs, as well as the amount of memory
available on its node. If a scheduler can’t provide the required resources, it simply
can’t schedule execution of a task right away and needs to queue it. The scheduler
limits which tasks are running concurrently to make sure that you don’t run out of
physical resources.

Apart from resources, the other requirement the scheduler takes care of is dependency
resolution. That means it needs to ensure that each worker has all the objects it needs
to execute a task in the local object store. For that to work, the scheduler will first
resolve local dependencies by looking up values in its object store. If the required
value is not available on this node’s object store, the scheduler will communicate with
other nodes (we’ll tell you how in a bit) and pull in remote dependencies. Once the
scheduler has ensured enough resources for a task, resolved all needed dependencies,
and found a worker for a task, it can schedule the task for execution.

Task scheduling is a very difficult topic, even if we’re talking only about single
nodes. You can easily imagine scenarios in which an incorrectly or naively planned
task execution can “block” downstream tasks because not enough resources remain.
Especially in a distributed context, assigning work like this can be become tricky very
quickly.

Now that you know about Raylets, let’s briefly come back to worker processes and
wrap up the discussion by explaining how Ray can recover from failures and the
concepts needed to do so.

In short, workers store metadata for all the tasks they invoke and the object refer‐
ences returned by those tasks. This concept, called ownership, means the process that
generates an object reference is also responsible for its resolution. In other words,
each worker process “owns” the tasks it submits, which includes proper execution
and ensuring availability of results. Worker processes need to track what they own,
for instance in case of failures, which is why they have a so-called ownership table.
This way, if a task fails and needs to be recomputed, the worker already owns all

Understanding Ray System Components | 37

https://oreil.ly/RdrJZ


13 This is an extremely limited description of how Ray handles failures in general. After all, just having all the
information to recover does not tell you how to do so. We refer you to the architecture whitepaper for an
in-depth discussion on this topic.

the information it needs to do so.13 To give you a concrete example of an ownership
relationship, as opposed to the concept of dependency discussed earlier, let’s say we
have a program that starts a simple task and internally calls another task:

@ray.remote
def task_owned():
    return

@ray.remote
def task(dependency):
    res_owned = task_owned.remote()
    return

val = ray.put("value")
res = task.remote(dependency=val)

Let’s quickly analyze ownership and dependency for this example. We defined two
tasks in task and task_owned, and we have three variables in total: val, res, and
res_owned. Our main program defines both val (which puts "value" into the object
store) and res, and it also calls task. In other words, the driver owns task, val, and
res according to Ray’s ownership definition. In contrast, res depends on task, but
there’s no ownership relationship between the two. When task gets called, it takes
val as a dependency. It then calls task_owned and assigns res_owned and hence owns
them both. Lastly, task_owned itself does not own anything, but certainly res_owned
depends on it. Figure 2-2 sums up this discussion about worker nodes, showing all
involved components.

Figure 2-2. The system components comprising a Ray worker node

38 | Chapter 2: Getting Started with Ray Core

https://oreil.ly/_1SyA


14 In fact, it could have multiple drivers, but this is not essential for our discussion. Starting a single driver on
the head node is the most common, but driver processes also can be started on any node in the cluster, and
multiple drivers can be on a single cluster.

The Head Node
We’ve already indicated in Chapter 1 that each Ray Cluster has one special node
called a head node. So far you know that this node has a driver process.14 Drivers can
submit tasks themselves but can’t execute them. You also know that the head node
can have some worker processes, which is important to be able to run local clusters
consisting of a single node.

The head node is identical to other worker nodes, but it additionally runs processes
responsible for cluster management such as the autoscaler (that we cover in Chap‐
ter 9) and a component called Global Control Service (GCS). This is an important
component that carries global information about the cluster. The GCS is a key-value
store that stores information such as system-level metadata. For instance, it has a
table with heartbeat signals for each Raylet to ensure they are still reachable. Raylets,
in turn, send heartbeat signals to the GCS to indicate that they are alive. The GCS also
stores the locations of Ray actors. The ownership model just discussed tells us that all
object information is stored at their owner worker process, which avoids making the
GCS a bottleneck.

Distributed Scheduling and Execution
Let’s briefly talk about cluster orchestration and how nodes manage, plan, and exe‐
cute tasks. When talking about worker nodes, we’ve indicated that there are several
components to distributing workloads with Ray. Here’s an overview of the steps and
intricacies involved in this process:

Distributed memory
The object stores of individual Raylets manage memory on a node. But some‐
times objects need to be transferred between nodes, which is called distributed
object transfer. This is needed for remote dependency resolution so that workers
have the objects they need to run tasks.

Communication
Most of the communication in a Ray Cluster, such as object transfer, takes place
via gRPC.

Resource management and fulfillment
On a node, Raylets are responsible for granting resources and leasing worker
processes to task owners. All schedulers across nodes form the distributed sched‐
uler, which effectively means that nodes can schedule tasks on other nodes.

Understanding Ray System Components | 39

https://grpc.io


Through communication with the GCS, local schedulers know about other
nodes’ resources.

Task execution
Once a task has been submitted for execution, all its dependencies (local and
remote data) need to be resolved, e.g., by retrieving large data from the object
store, before execution can begin.

If the past few sections seem a bit involved technically, that’s because they are. It’s
important to understand the basic patterns and ideas of the software you’re using, but
we’ll admit that the details of Ray’s architecture can be a bit tough to wrap your head
around in the beginning. In fact, it’s one of Ray’s design principles to trade usability
for architectural complexity. If you want to delve deeper into Ray’s architecture, a
good place to start is their architecture whitepaper.

Figure 2-3 summarizes what we know about Ray’s architecture.

Now that you’ve learned the basics of the Ray Core API and know the fundamentals
of Ray’s Cluster architecture, let’s compute one more complex example.

Figure 2-3. An overview of Ray’s architectural components

40 | Chapter 2: Getting Started with Ray Core

https://oreil.ly/tadqC


15 It’s a drosophila melanogaster of sorts, not unlike computing a classifier on the ubiquitous MNIST dataset.

Systems Related to Ray
With the architecture and functionality of it in mind, how does Ray relate to other
systems? Here are the basics:

• Ray can be used as a parallelization framework for Python and shares properties•
with tools like celery or multiprocessing. In fact, there’s a drop-in replacement
for the latter implemented in Ray.

• Ray is also related to data processing frameworks such as Spark, Dask, Flink, and•
MARS. We’ll explore these relationships in Chapter 11, when talking about Ray’s
ecosystem.

• As a distributed computing tool, Ray also deals with the problems of cluster•
management and orchestration, and we’ll see how Ray does that in relation to
tools like Kubernetes in Chapter 9.

• Since Ray is implementing the actor model of concurrency, it’s also interesting to•
explore its relationship with frameworks like Akka.

• Lastly, since Ray banks on a performant, low-level API for communication,•
there’s a certain relationship with high-performance computing (HPC) frame‐
works and communication protocols like the message passing interface (MPI).

A Simple MapReduce Example with Ray
We can’t let you go without discussing an example of one of the most important
milestones in distributed computing in recent decades, namely, MapReduce. Many
successful big data technologies like Hadoop are based on this programming model,
and it’s worth revisiting in the context of Ray. To keep things simple, we’ll restrict
our MapReduce implementation to a single use case, the task of counting word
occurrences across several documents. This is an almost trivial task in single process‐
ing, but it becomes an interesting challenge once a massive corpus of documents is
involved and you need multiple compute nodes to crunch the numbers.

Implementing a MapReduce word-count example might be the most well-known
example we have in distributed computing,15 so it’s worth knowing. If you don’t know
about this classic paradigm, it’s based on three straightforward steps:

1. Take a set of documents and transform or “map” its elements (for instance1.
the words contained in them) according to a function you provide. This map
phase produces key-value pairs by design, in which a key represents a document
element and a value is simply a metric you want to compute for that element.

A Simple MapReduce Example with Ray | 41

https://oreil.ly/4Lrgf


16 In general, a shuffle is any operation that requires redistributing data across its partitions. Shuffles can be
quite costly. If your map phase operates on N partitions, it will produce N × N results that need to be shuffled.

Since we’re interested in counting words, whenever we encounter a word in a
document, our map function will simply emit the pair (word, 1) to indicate that
we found one occurrence of it.

2. Collect and group all the outputs of the map phase according to their key. Since2.
we work in a distributed setup and the same key might be present on several
compute nodes, this might require shuffling of data between nodes. For that
reason this step is often referred to as the shuffle phase.16 To give you an idea of
what grouping might mean in our concrete use case, let’s say we have a total of
four (word, 1) occurrences produced in the map phase. The shuffle would then
co-locate all occurrences of the same word on the same node.

3. Aggregate or “reduce” the elements from the shuffle step, which is why we refer3.
to it as the reduce phase. Continuing with the example we laid out, we simply sum
up all word occurrences on each node to get the final count. For instance, four
occurrences of (word, 1) would be reduced to word: 4.

Evidently, MapReduce gets its name from the first and last of these three phases, but
the second one is arguably just as important. While schematically these phases may
look simple, their power lies in the fact that they can be massively parallelized across
hundreds of machines.

In Figure 2-4 we illustrate an example of applying the three MapReduce phases to
a corpus of documents that has been distributed across three partitions. To run
MapReduce on a distributed corpus of documents, we first map each document to a
set of key-value pairs, then shuffle the results to ensure that all key-value pairs with
the same key are on the same node, and finally reduce the key-value pairs to compute
the final word counts.

Let’s implement the MapReduce algorithm for our word-count use case in Python
and parallelize the computation using Ray. First, load example data so that you get a
better idea of what we’re operating on:

import subprocess
zen_of_python = subprocess.check_output(["python", "-c", "import this"])

corpus = zen_of_python.split()  

num_partitions = 3
chunk = len(corpus) // num_partitions

partitions = [  
    corpus[i * chunk: (i + 1) * chunk] for i in range(num_partitions)
]

42 | Chapter 2: Getting Started with Ray Core



17 Note the usage of yield in the map function. This is the quickest way of building a generator with the data we
need in Python. You could also build and return a list of pairs, if that’s clearer to you.

Our text corpus is the content of the Zen of Python.

Split the corpus into three partitions.

Figure 2-4. Running the MapReduce algorithm on a distributed corpus of documents

The data we’re using is the so-called Zen of Python, a small set of guidelines by the
Python community. The Zen is hidden in an “Easter egg” and gets printed when
you type import this in a Python session. It’s worth reading these guidelines as a
Python programmer, but for this exercise we’re only interested in counting the words
they contain. Put simply, we load the Zen of Python, treat each line as a separate
“document,” and split it into three partitions.

To start our implementation of MapReduce, we’ll first cover the map phase and
discuss how Ray can help us take care of shuffling the results.

Mapping and Shuffling Document Data
To define the map phase, we need a map function that we apply to each document.
In our case, we want to emit the pair (word, 1) for each word we find in a document.
For simple text documents loaded as Python strings, it looks like this:17

A Simple MapReduce Example with Ray | 43



def map_function(document):
    for word in document.lower().split():
        yield word, 1

Next, we want to apply this map function to a whole corpus of documents. We do this
by making the following apply_map function a Ray task via the @ray.remote decora‐
tor. When we call apply_map, we’ll apply it to three partitions (num_partitions=3) of
document data, just like we indicated in Figure 2-4. Note that apply_map will return
three lists, one for each partition. As you will see in a moment, we do this so that Ray
can automatically shuffle the results of the map phase to the right nodes for us:

import ray

@ray.remote
def apply_map(corpus, num_partitions=3):

    map_results = [list() for _ in range(num_partitions)]  
    for document in corpus:
        for result in map_function(document):
            first_letter = result[0].decode("utf-8")[0]

            word_index = ord(first_letter) % num_partitions  

            map_results[word_index].append(result)  
    return map_results

The Ray task apply_map returns one result for each data partition.

Assign each (word, 1) pair to a partition by using the ord function to generate
a word_index. This ensures that each occurrence of a word gets shuffled to the
same partition.

The pairs are then successively appended to the correct list.

For a text corpus that can be loaded on a single machine, this is overkill, and we could
count the words instead. But in a distributed setting, in which we have to partition
the data across several nodes, this map phase makes perfect sense.

To apply the map phase to our corpus of documents in parallel, we use a remote call
on apply_map as we’ve done many times before in this chapter. The notable difference
is that now we also instruct Ray to return three results (one for each partition) via the
num_returns argument:

map_results = [

    apply_map.options(num_returns=num_partitions)  

    .remote(data, num_partitions)  

    for data in partitions  
]

for i in range(num_partitions):

    mapper_results = ray.get(map_results[i])  

44 | Chapter 2: Getting Started with Ray Core



18 By construction, all same-key pairs will end up on the same node this way. For instance, note how in the
sample output we printed the word is that appears in the 0-th return value of two of the mappers. All
occurrences of is will end up on the same partition for the reduce phase.

    for j, result in enumerate(mapper_results):
        print(f"Mapper {i}, return value {j}: {result[:2]}")

Use options to tell Ray to return num_partitions values.

Execute apply_map remotely.

Iterate over each of the partitions we defined.

Inspect the results for illustration purposes only. Normally you would not call
ray.get yet.

If you run this code, you will see that each map phase result consists of three lists, of
which we print the first two elements of each:

Mapper 0, return value 0: [(b'of', 1), (b'is', 1)]
Mapper 0, return value 1: [(b'python,', 1), (b'peters', 1)]
Mapper 0, return value 2: [(b'the', 1), (b'zen', 1)]
Mapper 1, return value 0: [(b'unless', 1), (b'in', 1)]
Mapper 1, return value 1: [(b'although', 1), (b'practicality', 1)]
Mapper 1, return value 2: [(b'beats', 1), (b'errors', 1)]
Mapper 2, return value 0: [(b'is', 1), (b'is', 1)]
Mapper 2, return value 1: [(b'although', 1), (b'a', 1)]
Mapper 2, return value 2: [(b'better', 1), (b'than', 1)]

As you will see, we can make it so that all pairs from the j-th return value end up on
the same node for the reduce phase.18 Let’s discuss this phase next.

Reducing Word Counts
In the reduce phase, we can now simply create a dictionary that sums up all word
occurrences on each partition:

@ray.remote

def apply_reduce(*results):  
    reduce_results = dict()
    for res in results:
        for key, value in res:
            if key not in reduce_results:
                reduce_results[key] = 0

            reduce_results[key] += value  

    return reduce_results

A Simple MapReduce Example with Ray | 45



Reduce the list of shuffled map results.

Iterate over each result obtained from the map phase and increase word counts
by one for each occurrence of a word.

We can now collect the j-th return value from each mapper and pass it to the j-th
reducer as follows. Note that we use a toy dataset here, but this code would scale to
datasets that don’t fit on a single machine. That’s because we’re passing Ray object
references to the reducers, not the actual data. The map and reduce phases are Ray
tasks that can be executed on any Ray Cluster, and the shuffling of the data is handled
by Ray as well:

outputs = []
for i in range(num_partitions):

    outputs.append(  
        apply_reduce.remote(*[partition[i] for partition in map_results])
    )

counts = {k: v for output in ray.get(outputs) for k, v in output.items()}  

sorted_counts = sorted(counts.items(), key=lambda item: item[1], reverse=True)  
for count in sorted_counts:
    print(f"{count[0].decode('utf-8')}: {count[1]}")

Gather one output from each map task and supply it to apply_reduce.

Collect all reduce-phase results in a single Python count dictionary.

Print the sorted word count over the full corpus.

Running this example will yield the following output:

is: 10
than: 8
better: 8
the: 6
to: 5
although: 3
...

If you want a deep dive into making MapReduce tasks scale to multiple nodes
with Ray, including detailed memory considerations, we recommend studying the
excellent blog post on this topic.

The important part about this MapReduce example is how flexible Ray’s programming
model really is. Surely, a production-grade MapReduce implementation takes a bit
more effort. But being able to reproduce common algorithms like this one quickly
goes a long way. Keep in mind that in the earlier phases of MapReduce, say around

46 | Chapter 2: Getting Started with Ray Core

https://oreil.ly/ROSPr
https://oreil.ly/ROSPr


19 We encourage you to check out Ray’s in-depth patterns and anti-patterns for both tasks and actors.

2010, this paradigm was often the only thing you had to express your workloads.
With Ray, a whole range of interesting distributed computing patterns become acces‐
sible to any intermediate Python programmer.19

Summary
You’ve seen the basics of the Ray API in action in this chapter. You know how to
put values into the object store and how to get them back. Also, you’re familiar with
declaring Python functions as Ray tasks with the @ray.remote decorator, and you
know how to run them on a Ray Cluster with the .remote() call. In much the same
way, you understand how to declare a Ray actor from a Python class and how to
instantiate it and leverage it for stateful, distributed computations.

On top of that, you also know the basics of Ray Clusters. After starting them with
ray.init(...), you know that you can submit jobs consisting of tasks to your clus‐
ter. The driver process, sitting on the head node, will then distribute the tasks to the
worker nodes. Raylets on each node will schedule the tasks, and worker processes will
execute them. You’ve also seen a quick implementation of the MapReduce paradigm
with Ray as an example of a common pattern of building Ray applications.

This quick tour through Ray Core should get you started with writing your own
distributed programs. In Chapter 3 we’ll test your knowledge by implementing a basic
machine learning application.

Summary | 47

https://oreil.ly/dWaSg
https://oreil.ly/s6eLw




CHAPTER 3

Building Your First Distributed Application

Now that you’ve seen the basics of the Ray API in action, let’s build something
more realistic with it. By the end of this chapter, you will have built a reinforcement
learning (RL) problem from scratch, implemented your first algorithm to tackle it,
and used Ray tasks and actors to parallelize this solution to a local cluster—all in less
than 250 lines of code.

This chapter is designed to work for readers who don’t have any experience with RL.
We’ll work on a straightforward problem and develop the necessary skills to tackle
it hands-on. Since Chapter 4 is devoted entirely to this topic, we’ll skip all advanced
RL topics and language and just focus on the problem at hand. But even if you’re a
quite advanced RL user, you’ll likely benefit from implementing a classic algorithm in
a distributed setting.

This is the last chapter working only with Ray Core. We hope you learn to appreciate
how powerful and flexible it is and how quickly you can implement distributed
experiments that would otherwise take considerable efforts to scale.

Before we jump into any implementation, let’s quickly talk about the paradigm of RL
in a bit more detail. Feel free to skip this section if you’ve worked with RL before.

Introducing Reinforcement Learning
One of my (Max’s) favorite mobile apps can automatically classify or “label” individ‐
ual plants in our garden. The app works by simply showing it a picture of the plant
in question. That’s immensely helpful; I’m terrible at distinguishing them. (I’m not
bragging about the size of my garden; I’m just bad at it.) In the last couple of years
we’ve seen a surge of impressive applications similar to this one.

49



1 We don’t yet have gardening robots, and we don’t know which AI paradigm will get us there. RL isn’t
necessarily the answer; it is just a paradigm that naturally fits into this specific discussion of AI goals.

Ultimately, the promise of AI is to build intelligent agents that go far beyond classify‐
ing objects. Imagine an AI application that not only knows your plants but can take
care of them too. Such an application would have to do the following:

• Operate in dynamic environments (like the change of seasons)•
• React to changes in the environment (like a heavy storm or pests)•
• Take sequences of actions (like watering and fertilizing plants)•
• Accomplish long-term goals (like prioritizing plant health)•

By observing its environment, such an AI would also learn to explore the possible
actions it could take and come up with better solutions over time. If you feel like
this example is artificial or too far out, it’s not difficult to come up with examples
on your own that share all these requirements. Think of managing and optimizing a
supply chain, strategically restocking a warehouse considering fluctuating demands,
or orchestrating the processing steps in an assembly line. Another famous example of
what you could expect from AI is Stephen Wozniak’s famous “Coffee Test”: if you’re
invited to a friend’s house, you can navigate to the kitchen, spot the coffee machine
and all necessary ingredients, figure out how to brew a cup of coffee, and sit down to
enjoy it. A machine should be able to do the same, except the last part might be a bit
of a stretch. What other examples can you think of?

You can frame all the requirements naturally in RL, a subfield of machine learning.1

For now, it’s enough to understand that RL is about agents interacting with their
environment by observing it and emitting actions. In RL, agents evaluate their envi‐
ronments by attributing a reward (e.g., how healthy is my plant on a linear scale).
The term “reinforcement” comes from the fact that agents will ideally learn to seek
behavior that leads to good outcomes (high reward) and shy away from punishing
situations (low or negative reward).

The interaction of agents with their environment is usually modeled by creating a
computer simulation of it (although sometimes that’s not feasible). So, let’s build an
example of such a simulation with agents acting in their environments to give you an
idea of what this looks like in practice.

Setting Up a Simple Maze Problem
As with the previous chapters, we encourage you to code this chapter and build this
application as we go. If you don’t want to do that, you can simply follow the notebook
for this chapter.

50 | Chapter 3: Building Your First Distributed Application

https://oreil.ly/ceW4X
https://oreil.ly/ceW4X


To give you an idea, the app we’re building is structured as follows:

• Implement a simple 2D-maze game in which a single player can move around in•
the four major directions.

• Initialize the maze as a 5 × 5 grid to which the player is confined. One of the 25•
grid cells is the “goal” that a player called the seeker must reach.

• Employ an RL algorithm instead of hard-coding a solution so that the seeker•
learns to find the goal.

• Run simulations of the maze repeatedly, rewarding the seeker for finding the goal•
and smartly keeping track of which of the seeker’s decisions worked and which
didn’t. Because running simulations can be parallelized and our RL algorithm can
also be trained in parallel, we use the Ray API to parallelize the whole process.

We’re not quite ready to deploy this application on an actual Ray Cluster composed of
multiple nodes just yet, so for now we’ll continue to work with local clusters. If you’re
interested in infrastructure topics and want to learn how to set up Ray Clusters, jump
ahead to Chapter 9. In any case, make sure you have Ray installed with pip install
ray.

Let’s start by implementing the 2D maze we just sketched. The idea is to implement
a simple grid in Python that spans a 5 × 5 grid starting at (0, 0) and ending at (4,
4) and properly define how a player can move around the grid. To do this, we first
need an abstraction for moving in the four cardinal directions. These four actions,
namely, moving up, down, left, and right, can be encoded in Python as a class we call
Discrete. The abstraction of moving in several discrete actions is so useful that we’ll
generalize it to n directions, instead of just four. In case you’re worried, this is not
premature—we’ll actually need a general Discrete class in a moment:

import random

class Discrete:
    def __init__(self, num_actions: int):
        """ Discrete action space for num_actions.
        Discrete(4) can be used as encoding moving in
        one of the cardinal directions.
        """
        self.n = num_actions

    def sample(self):

        return random.randint(0, self.n - 1)  

space = Discrete(4)

print(space.sample())  

Setting Up a Simple Maze Problem | 51



A discrete action can be uniformly sampled between 0 and n – 1.

For instance, a Discrete(4) sample will give you 0, 1, 2, or 3.

Sampling from a Discrete(4) like in this example will randomly return 0, 1, 2, or 3.
How we interpret these numbers is up to us, so let’s say we go for “down,” “left,” “up,”
and “right” in that order.

Now that we know how to encode moving around the maze, let’s code the maze itself,
including the goal cell and the position of the seeker player that tries to find the
goal. To this end we’re going to implement a Python class called Environment. It’s
called that because the maze is the environment in which the player “lives.” To make
matters easy, we’ll always put the seeker at (0, 0) and the goal at (4, 4). To make the
seeker move and find the goal, we initialize the Environment with an action_space
of Discrete(4).

We need to set up one last bit of information for our maze environment: an encoding
of the seeker position. The reason is that we’re going to implement an algorithm later
that keeps track of which actions led to good results for which seeker positions. By
encoding the seeker position as a Discrete(5*5), it becomes a single number that’s
much easier to work with. In RL lingo it is common to call the information of the
game that is accessible to the player an observation. So, in an analogy to the actions
we can carry out for our seeker, we can also define an observation_space for it.
Here’s the implementation of what we’ve just discussed:

import os

class Environment:
    def __init__(self,  *args, **kwargs):

        self.seeker, self.goal = (0, 0), (4, 4)  
        self.info = {'seeker': self.seeker, 'goal': self.goal}

        self.action_space = Discrete(4)  

        self.observation_space = Discrete(5*5)  

The seeker gets initialized in the top left, the goal in the bottom right of the
maze.

Our seeker can move down, left, up, and right.

It can be in a total of 25 states, one for each position on the grid.

52 | Chapter 3: Building Your First Distributed Application



Note that we defined an info variable as well, which can be used to print information
about the current state of the maze, for instance for debugging purposes. To play an
actual game of find-the-goal from the perspective of the seeker, we have to define a
few helper methods. Clearly, the game should be considered “done” when the seeker
finds the goal. Also, we should reward the seeker for finding the goal. And when
the game is over, we should be able to reset it to its initial state, to play again.
To round things off, we also define a get_observation method that returns the
encoded seeker position. Continuing our implementation of the Environment class,
this translates into the following four methods:

    def reset(self):  
        """Reset seeker position and return observations."""
        self.seeker = (0, 0)

        return self.get_observation()

    def get_observation(self):
        """Encode the seeker position as integer"""

        return 5 * self.seeker[0] + self.seeker[1]  

    def get_reward(self):
        """Reward finding the goal"""

        return 1 if self.seeker == self.goal else 0  

    def is_done(self):
        """We're done if we found the goal"""

        return self.seeker == self.goal  

To play a new game, reset the grid to its original state.

Convert the seeker tuple to a value from the environment’s observation_space.

The seeker is rewarded only upon reaching the goal.

If the seeker is at the goal, the game is over.

The last essential method to implement is the step method. Imagine you’re playing
our maze game and decide to go right as your next move. The step method will
take this action (namely, 3, the encoding of “right”) and apply it to the internal state
of the game. To reflect what changed, the step method will then return the seeker’s
observations, its reward, whether the game is over, and the info value of the game.
Here’s how the step method works:

    def step(self, action):
        """Take a step in a direction and return all available information."""
        if action == 0:  # move down
            self.seeker = (min(self.seeker[0] + 1, 4), self.seeker[1])

Setting Up a Simple Maze Problem | 53



        elif action == 1:  # move left
            self.seeker = (self.seeker[0], max(self.seeker[1] - 1, 0))
        elif action == 2:  # move up
            self.seeker = (max(self.seeker[0] - 1, 0), self.seeker[1])
        elif action == 3:  # move right
            self.seeker = (self.seeker[0], min(self.seeker[1] + 1, 4))
        else:
            raise ValueError("Invalid action")

        obs = self.get_observation()
        rew = self.get_reward()
        done = self.is_done()

        return obs, rew, done, self.info  

Returns the observation, reward, whether we’re done, and any additional infor‐
mation we might find useful after taking a step in the specified direction.

We said the step method was the last essential method, but we actually want to define
one more helper method that’s extremely useful for visualizing the game and helping
us understand it. This render method will print the current state of the game to the
command line:

    def render(self, *args, **kwargs):
        """Render the environment, e.g., by printing its representation."""

        os.system('cls' if os.name == 'nt' else 'clear')  

        grid = [['| ' for _ in range(5)] + ["|\n"] for _ in range(5)]
        grid[self.goal[0]][self.goal[1]] = '|G'

        grid[self.seeker[0]][self.seeker[1]] = '|S'  

        print(''.join([''.join(grid_row) for grid_row in grid]))  

Clear the screen.

Draw the grid and mark the goal as G and the seeker as S on it.

The grid then gets rendered by printing it to your screen.

Great, now we have completed the implementation of our Environment class that’s
defining our 2D-maze game. We can step through this game, know when it’s done,
and reset it again. The player of the game, the seeker, can also observe its environ‐
ment and get rewarded for finding the goal.

Let’s use this implementation to play a game of find-the-goal for a seeker that simply
takes random actions. This can be done by creating a new Environment, sampling
and applying actions to it, and rendering the environment until the game is over:

import time

environment = Environment()

54 | Chapter 3: Building Your First Distributed Application



while not environment.is_done():

    random_action = environment.action_space.sample()  
    environment.step(random_action)
    time.sleep(0.1)

    environment.render()  

We can test our environment by applying sampled actions until we’re finished.

To visualize the environment, render it after waiting for a tenth of a second
(otherwise the code runs too fast to follow).

If you run this on your computer, eventually you’ll see that the game is over and the
seeker has found the goal. It might take a while if you’re unlucky.

In case you’re objecting that this is an extremely simple problem, and to solve it,
all you have to do is take a total of eight steps, namely, going right and down four
times each in arbitrary order, we’re not arguing with you. The point is that we want
to tackle this problem using machine learning, so that we can take on much harder
problems later. Specifically, we want to implement an algorithm that figures out on its
own how to play the game, merely by playing the game repeatedly: observing what’s
happening, deciding what to do next, and getting rewarded for its actions.

If you want, now is a good time to make the game more complex. As long as you do
not change the interface we defined for the Environment class, you could modify this
game in many ways. Here are a few suggestions:

• Make it a 10 × 10 grid or randomize the initial position of the seeker.•
• Make the outer walls of the grid dangerous. Whenever you touch them, you’ll•

incur a reward of –100, i.e., a steep penalty.
• Introduce obstacles in the grid that the seeker cannot pass through.•

If you’re feeling really adventurous, you could also randomize the goal position. This
requires extra care, as currently the seeker has no information about the goal position
in terms of the get_observation method. Maybe come back to tackling this last
exercise after you’ve finished reading this chapter.

Building a Simulation
With the Environment class implemented, what does it take to tackle the problem of
“teaching” the seeker to play the game well? How can it find the goal consistently
in the minimum number of eight steps necessary? We’ve equipped the maze environ‐
ment with reward information so that the seeker can use this signal to learn to play
the game. In RL, you play games repeatedly and learn from the experience you gain in
the process. The player of the game is often referred to as an agent that takes actions

Building a Simulation | 55



2 As we’ll see in Chapter 4, you can run RL on multiplayer games too. Making the maze environment a
so-called multi-agent environment, in which multiple seekers compete for the goal, is an interesting exercise.

in the environment, observes its state, and receives a reward.2 The better an agent
learns, the better it becomes at interpreting the current game state (observations) and
finding actions that lead to more rewarding outcomes.

Regardless of the RL algorithm you want to use, you need to have a way of simulating
the game repeatedly to collect experience data. For this reason, we’re going to imple‐
ment a simple Simulation class.

The other useful abstraction we need to proceed is that of a Policy, a way of
specifying actions. Right now the only thing we can do to play the game is sample
random actions for our seeker. What a Policy allows us to do is to get better actions
for the current state of the game. In fact, we define a Policy to be a class with a
get_action method that takes a game state and returns an action.

Remember that in our game the seeker has a total of 25 possible states on the grid
and can carry out four actions. A simple idea would be to look at pairs of states and
actions and assign a high value to a pair if carrying out this action in this state will
lead to a high reward, and a low value otherwise. For instance, from your intuition of
the game it should be clear that going down or right is always a good idea, whereas
going left or up is not. Then, create a 25 × 4 lookup table of all possible state-action
pairs and store it in our Policy. Then we could simply ask our policy to return the
highest value of any action, given a state. Of course, implementing an algorithm that
finds good values for these state-action pairs is the challenging part. Let’s implement
this idea of a Policy first and worry about a suitable algorithm later:

import numpy as np

class Policy:

    def __init__(self, env):
        """A Policy suggests actions based on the current state.
        We do this by tracking the value of each state-action pair.
        """
        self.state_action_table = [
            [0 for _ in range(env.action_space.n)]

            for _ in range(env.observation_space.n)  
        ]
        self.action_space = env.action_space

    def get_action(self, state, explore=True, epsilon=0.1):  
        """Explore randomly or exploit the best value currently available."""

        if explore and random.uniform(0, 1) < epsilon:  
            return self.action_space.sample()

        return np.argmax(self.state_action_table[state])  

56 | Chapter 3: Building Your First Distributed Application



Define a nested list of values for each state-action pair, initialized to zero.

explore random actions on demand so that we don’t get stuck in suboptimal
behavior.

Introduce an explore parameter to the get_action method because we might
want to explore actions randomly in the game. By default, this happens 10% of
the time.

Return the action with the highest value in the lookup table, given the current
state.

We’ve snuck a little implementation detail into the Policy definition that might be
a bit confusing. The get_action method has an explore parameter. Without it, if
you learn an extremely poor policy (e.g., one that always wants you to move left),
you have no chance of ever finding better solutions. In other words, sometimes you
need to explore new ways and not “exploit” your current understanding of the game.
As indicated before, we haven’t discussed how to learn to improve the values in the
state_action_table of our policy. For now, just keep in mind that the policy gives us
the actions we want to follow when simulating the maze game.

Moving on to the Simulation class we spoke about earlier, a simulation should take
an Environment and compute actions of a given Policy until the goal is reached and
the game ends. The data we observe when “rolling out” a full game like this is what
we call the experience we gained. Accordingly, our Simulation class has a rollout
method that computes experiences for a full game and returns them. Here’s what the
implementation of the Simulation class looks like:

class Simulation(object):
    def __init__(self, env):
        """Simulates rollouts of an environment, given a policy to follow."""
        self.env = env

    def rollout(self, policy, render=False, explore=True, epsilon=0.1):  
        """Returns experiences for a policy rollout."""
        experiences = []

        state = self.env.reset()  
        done = False
        while not done:

            action = policy.get_action(state, explore, epsilon)  

            next_state, reward, done, info = self.env.step(action)  

            experiences.append([state, action, reward, next_state])  
            state = next_state

            if render:  
                time.sleep(0.05)
                self.env.render()

Building a Simulation | 57



        return experiences

Compute a game “rollout” by following the actions of a policy, and optionally
render the simulation.

To be sure, reset the environment before each rollout.

The passed-in policy drives the actions we take. The explore and epsilon
parameters are passed through.

Step through the environment by applying the policy’s action.

Define an experience as a (state, action, reward, next_state) quadruple.

Optionally render the environment at each step.

Note that each entry of the experiences we collect in a rollout consists of four
values: the current state, the action taken, the reward received, and the next state. The
algorithm we’re going to implement in a moment will use these experiences to learn
from them. Other algorithms might use other experience values, but those are the
ones we need to proceed.

We now have a policy that hasn’t learned anything just yet, but we can already
test its interface to see if it works. Let’s try it out by initializing a Simulation
object, calling its rollout method on a not-so-smart Policy, and then printing the
state_action_table of it:

untrained_policy = Policy(environment)
sim = Simulation(environment)

exp = sim.rollout(untrained_policy, render=True, epsilon=1.0)  
for row in untrained_policy.state_action_table:

    print(row)  

Roll out one full game with an “untrained” policy that we render.

The state-action values are currently all zero.

If you feel like we haven’t made much progress since the previous section, rest
assured that things will come together in the next one. The prep work of setting up
a Simulation and a Policy were necessary to frame the problem correctly. Now the
only thing that’s left is to devise a smart way to update the internal state of the Policy
based on the experiences we’ve collected so that it actually learns to play the maze
game.

58 | Chapter 3: Building Your First Distributed Application



Training a Reinforcement Learning Model
Imagine we have a set of experiences that we’ve collected from a couple of games.
What would be a smart way to update the values in the state_action_table of our
Policy? Here’s one idea. Let’s say you’re sitting at position (3,5), and you’ve decided
to go right, which puts you at (4,5), just one step away from the goal. Clearly you
could then just go right and collect a reward of 1. That must mean the current state
you’re in, combined with an action of going “right,” should have a high value. In
other words, the value of this particular state-action pair should be high. In contrast,
moving left in the same situation does not lead to anything, and the corresponding
state-action pair should have a low value.

More generally, let’s say you were in a given state, you decided to take an action,
leading to a reward, and you’re then in next_state. Remember that this is how we
defined an experience. With our policy.state_action_table we can peek a little
ahead and see if we can expect to gain anything from actions taken from next_state.
That is, we can compute:

next_max = np.max(policy.state_action_table[next_state])

How should we compare the knowledge of this value to the current state-action value,
which is value = policy.state_action_table[state][action]? There are many
ways to go about this, but we clearly can’t completely discard the current value and
put too much trust in next_max. After all, this is just a single piece of experience we’re
using here. So as a first approximation, why don’t we simply compute a weighted sum
of the old and the expected value and go with new_value = 0.9 * value + 0.1 *
next_max? Here, the values 0.9 and 0.1 have been chosen somewhat arbitrarily; the
only important pieces are that the first value is high enough to reflect our preference
to keep the old value and that both weights sum to 1. That formula is a good starting
point, but the problem is that we’re not at all factoring in the crucial information that
we’re getting from the reward. In fact, we should put more trust in the current reward
value than in the projected next_max value, so it’s a good idea to discount the latter a
little, let’s say by 10%. Updating the state-action value would then look like this:

new_value = 0.9 * value + 0.1 * (reward + 0.9 * next_max)

Depending on your level of experience with this kind of reasoning, the last few para‐
graphs might be a lot to digest. If you’ve understood the explanations up to this point,
the remainder of this chapter will likely come easily to you. Mathematically, this
was the last (and only) hard part of this example. If you’ve worked with RL before,
you will have noticed that this is an implementation of the so-called Q-Learning
algorithm. It’s called that because the state-action table can be described as a function
Q(state, action) that returns values for these pairs.

Training a Reinforcement Learning Model | 59



We’re almost there, so let’s formalize the procedure with an update_policy function
for a policy and collected experiences:

def update_policy(policy, experiences, weight=0.1, discount_factor=0.9):
    """Updates a given policy with a list of (state, action, reward, state)
    experiences."""

    for state, action, reward, next_state in experiences:  

        next_max = np.max(policy.state_action_table[next_state])  

        value = policy.state_action_table[state][action]  
        new_value = (1 - weight) * value + weight * \

                    (reward + discount_factor * next_max)  

        policy.state_action_table[state][action] = new_value  

Loop through all experiences in order.

Choose the maximum value among all possible actions in the next state.

Extract the current state-action value.

The new value is the weighted sum of the old value and the expected value, which
is the sum of the current reward and the discounted next_max.

After updating, set the new state_action_table value.

Having this function in place now makes it simple to train a policy to make better
decisions. We can use the following procedure:

1. Initialize a policy and a simulation.1.
2. Run the simulation many times, let’s say for a total of 10,000 runs.2.
3. For each game, first collect the experiences by running a rollout.3.
4. Then update the policy by calling update_policy on the collected experiences.4.

That’s it! The following train_policy function implements this procedure:

def train_policy(env, num_episodes=10000, weight=0.1, discount_factor=0.9):
    """Training a policy by updating it with rollout experiences."""
    policy = Policy(env)
    sim = Simulation(env)
    for _ in range(num_episodes):

        experiences = sim.rollout(policy)  

        update_policy(policy, experiences, weight, discount_factor)  

    return policy

trained_policy = train_policy(environment)  

60 | Chapter 3: Building Your First Distributed Application



Collect experiences for each game.

Update our policy with those experiences.

Finally, train and return a policy for our enviroment from before.

Note that in the RL literature, the high-brow way of referring to a full play-through
of the maze game is an episode. That’s why we call the argument num_episodes in the
train_policy function, rather than num_games.

Q-Learning
The Q-Learning algorithm we just implemented is often the first algorithm taught in
RL classes, mostly because it is relatively easy to reason with. You collect and tabulate
experience data that shows you how well state-action pairs work, and then you update
the table according to the Q-Learning update rule.

For RL problems that have a huge number of either states or actions, the Q-table can
become excessively large. The algorithm then becomes inefficient, because it would
take too much time to collect enough experience data for all (relevant) state-action
pairs.

One way to address this issue is to use a neural network to approximate the Q-table.
By this we mean that you can employ a deep neural network to learn a function that
maps states to actions. This approach is called Deep Q-Learning, and the networks
used for learning are called Deep Q-Networks (DQN). From Chapter 4 on, we will
exclusively use deep learning to tackle RL problems in this book.

Now that we have a trained policy, let’s see how well it performs. We’ve run random
policies twice before in this chapter, just to get an idea of how well they work for the
maze problem. But let’s now properly evaluate our trained policy on several games
and see how it does on average. Specifically, we’ll run our simulation for a couple of
episodes and count how many steps it took per episode to reach the goal. So, let’s
implement an evaluate_policy function that does precisely that:

def evaluate_policy(env, policy, num_episodes=10):
    """Evaluate a trained policy through rollouts."""
    simulation = Simulation(env)
    steps = 0

    for _ in range(num_episodes):

        experiences = simulation.rollout(policy, render=True, explore=False)  

        steps += len(experiences)  

    print(f"{steps / num_episodes} steps on average "
          f"for a total of {num_episodes} episodes.")

Training a Reinforcement Learning Model | 61



    return steps / num_episodes

evaluate_policy(environment, trained_policy)

This time, set explore to False to fully exploit the trained policy’s learnings.

The length of the experiences is the number of steps we took to finish the game.

Apart from seeing the trained policy crush the maze problem 10 times in a row, as we
hoped it would, you should also see the following prompt:

8.0 steps on average for a total of 10 episodes.

In other words, the trained policy is able to find optimal solutions for the maze game.
That means you’ve successfully implemented your first RL algorithm from scratch!

With the understanding you’ve built, do you think placing the seeker into random‐
ized starting positions and then running this evaluation function would still work?
Why don’t you go ahead and make the changes necessary for that?

Another interesting question to ask yourself is what assumptions went into the
algorithm we used. For instance, it’s clearly a prerequisite for the algorithm that all
state-action pairs can be tabulated. Do you think this would still work well if we had
millions of states and thousands of actions?

Building a Distributed Ray App
We hope you have enjoyed the example so far, but you might be wondering how what
we’ve done until now relates to Ray (which is a great question). As you’ll see shortly,
all we need to make the RL experiment a distributed Ray app is writing three short
code snippets. This is what we’re going to do:

1. Make the Simulation a Ray actor using just a few lines of code.1.
2. Define a parallel version of train_policy that’s structurally similar to its original.2.

For simplicity, we will parallelize only the rollouts, not the policy updates.
3. Train and evaluate the policy as before but using train_policy_parallel.3.

Let’s tackle the first step of this plan by implementing a Ray actor called Simulation
Actor:

import ray

ray.init()

@ray.remote

62 | Chapter 3: Building Your First Distributed Application



class SimulationActor(Simulation):  
    """Ray actor for a Simulation."""
    def __init__(self):
        env = Environment()
        super().__init__(env)

This Ray actor wraps our Simulation class in a straightforward way.

With the foundations on Ray Core you’ve developed in Chapter 2, you should have
no problems reading this code. It might take some practice to be able to write it
yourself, but conceptually you should be on top of this example.

Moving on, let’s define a train_policy_parallel function that distributes this RL
workload on your local Ray Cluster. To do so, we create a policy on the driver and
a total of four SimulationActor instances that we can use for distributed rollouts.
We then put the policy into the object store with ray.put and pass it to the remote
rollout calls as an argument to collect experiences for a given number of training
episodes. We then use ray.wait to get the finished rollouts (and account for the fact
that some rollouts might finish earlier than others) and update our policy with the
collected experiences. Finally, we return the trained policy:

def train_policy_parallel(env, num_episodes=1000, num_simulations=4):
    """Parallel policy training function."""

    policy = Policy(env)  

    simulations = [SimulationActor.remote() for _ in range(num_simulations)]  

    policy_ref = ray.put(policy)  
    for _ in range(num_episodes):

        experiences = [sim.rollout.remote(policy_ref) for sim in simulations]  

        while len(experiences) > 0:

            finished, experiences = ray.wait(experiences)  
            for xp in ray.get(finished):
                update_policy(policy, xp)

    return policy

Initialize a policy for the given environment.

Instead of one simulation, create four simulation actors.

Put the policy into the object store.

For each of the 1,000 episodes, collect experience data in parallel using our
simulation actors.

Building a Distributed Ray App | 63



Finished rollouts can be retrieved from the object store and used to update the
policy.

This allows us to take the last step and run the training procedure in parallel and then
evaluate the result as before:

parallel_policy = train_policy_parallel(environment)
evaluate_policy(environment, parallel_policy)

The result of those two lines is the same as before, when we ran the serial version of
the RL training for the maze. We hope you appreciate how train_policy_parallel
has the same high-level structure as train_policy. It’s a good exercise to compare the
two line-by-line.

Essentially, all it took to parallelize the training process was to use the ray.remote
decorator on a class in a suitable way and then use the right remote calls. Of course,
you need some experience to get this right. But notice how little time we spent on
thinking about distributed computing and how much time we could spend on the
actual application code. We didn’t need to adopt an entirely new programming para‐
digm and could simply approach the problem in the most natural way. Ultimately,
that’s what you want—and Ray is great at giving you this kind of flexibility.

To wrap things up, let’s have a quick look at the execution graph of the Ray applica‐
tion that we’ve just built. Figure 3-1 summarizes this task graph in a compact way.

The running example in this chapter is an implementation of the
pseudocode example used to illustrate the flexibility of Ray in the
initial paper by its creators. That paper has a figure similar to
Figure 3-1 and is worth reading for context.

64 | Chapter 3: Building Your First Distributed Application

https://oreil.ly/ZKZFY
https://oreil.ly/ZKZFY


Figure 3-1. Parallel training of a reinforcement learning policy with Ray

Building a Distributed Ray App | 65



Recapping RL Terminology
Before we wrap up this chapter, let’s discuss the concepts we’ve encountered in the
maze example in a broader context. Doing so will prepare you for more complex RL
settings in the next chapter and show you where we simplified things a little for this
chapter’s running example. If you know RL well enough, you can skip this section.

Every RL problem starts with the formulation of an environment, which describes the
dynamics of the “game” you want to play. The environment hosts a player or agent
that interacts with its environment through a simple interface. The agent can request
information from the environment, namely, its current state within the environment,
the reward it has received in this state, and whether the game is done or not. In
observing states and rewards, the agent can learn to make decisions based on the
information it receives. Specifically, the agent will emit an action that can be executed
by the environment by taking the next step.

The mechanism used by an agent to produce actions for a given state is called a
policy, and we sometimes say that the agent follows a given policy. Given a policy,
we can simulate or roll out a few steps or an entire game using that policy. During a
rollout we can collect experiences, which collect information about the current state
and reward, the next action, and the resulting state. An entire sequence of steps from
start to finish is referred to as an episode, and the environment can be reset to its
initial state to start a new episode.

The policy we used in this chapter was based on the simple idea of tabulating
state-action values (also called Q-values), and the algorithm used to update the policy
from the experiences collected during rollouts is called Q-Learning. More generally,
you can consider the state-action table we implemented as the model used by the
policy. In the next chapter you will see examples of more complex models, such as a
neural network to learn state-action values. The policy can decide to exploit what it
has learned about the environment by choosing the best available value of its model
or explore the environment by choosing a random action.

Many of the basic concepts introduced here hold for any RL problem, but we’ve made
a few simplifying assumptions. For instance, there could be multiple agents acting in
the environment (imagine having multiple seekers competing for reaching the goal
first), and we’ll look into so-called multi-agent environments and multi-agent RL and
in the next chapter. Also, we assumed that the action space of an agent was discrete,
meaning that the agent could take only a fixed set of actions. You can, of course,
also have continuous action spaces, and the cart–pole example from Chapter 1 is one
example of this. Especially when you have multiple agents, action spaces can be more
complicated, and you might need tuples of actions or even to nest them accordingly.
The observation space we’ve considered for the maze game was also quite simple and
was modeled as a discrete set of states. You can easily imagine that complex agents

66 | Chapter 3: Building Your First Distributed Application



like robots interacting with their environments might work with image or video data
as observations, which would require a more complex observation space too.

Another crucial assumption we made is that the environment is deterministic, mean‐
ing that when our agent chose to take an action, the resulting state would always
reflect that choice. In general environments this is not the case, and there can be
elements of randomness at play in the environment. For instance, we could have
implemented a coin flip in the maze game, and whenever tails came up, the agent
would get pushed in a random direction. In that scenario, we couldn’t have planned
ahead like we did in this chapter because actions would not deterministically lead to
the same next state every time. To reflect this probabilistic behavior, in general we
have to account for state transition probabilities in our RL experiments.

The last simplifying assumption I’d like to talk about here is that we’ve been treating
the environment and its dynamics as a game that can be perfectly simulated. But the
fact is that some physical systems can’t be faithfully simulated. In that case you might
still interact with this physical environment through an interface like the one we
defined in our Environment class, but there would be some communication overhead
involved. In practice, reasoning about RL problems as if they were games takes very
little away from the experience.

Summary
To recap, we’ve implemented a simple maze problem in plain Python and then solved
the task of finding the goal in that maze using a straightforward reinforcement
learning algorithm. We then took this solution and ported it to a distributed Ray
application in roughly 25 lines of code. We did so without having to plan up front
how to work with Ray—we simply used the Ray API to parallelize our Python code.
This example shows how Ray gets out of your way and lets you focus on your
application code. It also demonstrates how custom workloads that use advanced
techniques like RL can be efficiently implemented and distributed with Ray.

In Chapter 4, you’ll build on what you’ve learned here and see how easy it is to solve
our maze problem directly with the higher-level Ray RLlib library.

Summary | 67





1 We’re using a simple game to illustrate the process of RL. There is a multitude of interesting industry
applications of RL that are not games.

CHAPTER 4

Reinforcement Learning with Ray RLlib

In Chapter 3 you built an RL environment, a simulation to play out some games,
an RL algorithm, and the code to parallelize the training of the algorithm—all
completely from scratch. It’s good to know how to do all that, but in practice the
only thing you really want to do when training RL algorithms is the first part,
namely, specifying your custom environment, the “game” you want to play.1 Most of
your efforts will go into selecting the right algorithm, setting it up, finding the best
parameters for the problem, and generally focusing on training a well-performing
policy.

Ray RLlib is an industry-grade library for building RL algorithms at scale. You’ve
already seen a first example of RLlib in Chapter 1, but in this chapter we’ll go
into much more depth. The great thing about RLlib is that it’s a mature library for
developers that comes with good abstractions to work with. As you will see, many of
these abstractions you already know from the previous chapter.

We start out by giving you an overview of RLlib’s capabilities. Then we quickly revisit
the maze game from Chapter 3 and show you how to tackle it both with the RLlib
CLI and the RLlib Python API in a few lines of code. You’ll see how easy RLlib is to
get started before learning about its key concepts, such as RLlib environments and
algorithms.

We’ll also take a closer look at some advanced RL topics that are extremely useful in
practice but are not often properly supported in other RL libraries. For instance, you
will learn how to create a curriculum for your RL agents so that they can learn simple
scenarios before moving on to more complex ones. You will also see how RLlib deals

69



2 We don’t cover this integration in this book, but you can learn more about deploying RLlib models in the
“Serving RLlib Models” tutorial in the Ray documentation.

with having multiple agents in a single environment and how to leverage experience
data that you’ve collected outside your current application to improve your agent’s
performance.

An Overview of RLlib
Before we dive into any examples, let’s quickly discuss what RLlib is and what it can
do. As part of the Ray ecosystem, RLlib inherits all the performance and scalability
benefits of Ray. In particular, RLlib is distributed by default, so you can scale your RL
training to as many nodes as you want.

Another benefit of being built on top of Ray is that RLlib integrates tightly with other
Ray libraries. For instance, the hyperparameters of any RLlib algorithm can be tuned
with Ray Tune, as we will see in Chapter 5. You can also seamlessly deploy your RLlib
models with Ray Serve.2

What’s extremely useful is that RLlib works with both of the predominant deep
learning frameworks at the time of this writing: PyTorch and TensorFlow. You can
use either one of them as your backend and can easily switch between them, often by
changing just one line of code. That’s a huge benefit, as companies are often locked
into their underlying deep learning framework and can’t afford to switch to another
system and rewrite their code.

RLlib also has a track record of solving real-world problems and is a mature library
used by many companies to bring their RL workloads to production. The RLlib
API appeals to many engineers, as it offers the right level of abstraction for many
applications while still being flexible enough to be extended.

Apart from these more general benefits, RLlib has a lot of RL-specific features that
we will cover in this chapter. In fact, RLlib is so feature rich that it would deserve
a book on its own, which means we can touch on just some aspects of it here. For
instance, RLlib has a rich library of advanced RL algorithms to choose from. In this
chapter we will focus on a few select ones, but you can track the growing list of
options on the RLlib algorithms page. RLlib also has many options for specifying RL
environments and is very flexible in handling them during training; for an overview
of RLlib environments see the documentation.

70 | Chapter 4: Reinforcement Learning with Ray RLlib

https://oreil.ly/vsz0A
https://oreil.ly/14JhM
https://oreil.ly/Vp6xY


Getting Started with RLlib
To use RLlib, make sure you have installed it on your computer:

pip install "ray[rllib]==2.2.0"

Check out the accompanying notebook for this chapter if you don’t
feel like typing the code yourself.

Every RL problem starts with having an interesting environment to investigate. In
Chapter 1 we looked at the classical cart–pole balancing problem. Recall that we
didn’t implement this cart–pole environment; it came out of the box with RLlib.

In contrast, in Chapter 3 we implemented a simple maze game on our own. The
problem with this implementation is that we can’t directly use it with RLlib or any
other RL library for that matter. The reason is that in RL you have ubiquitous
standards, and our environments need to implement certain interfaces. The best
known and most widely used library for RL environments is gym, an open source
Python project from OpenAI.

Let’s have a look at what Gym is and how to convert our maze Environment from the
previous chapter to a Gym environment compatible with RLlib.

Building a Gym Environment
If you look at the well-documented and easy-to-read gym.Env environment interface
on GitHub, you’ll notice that an implementation of this interface has two mandatory
class variables and three methods that subclasses need to implement. You don’t have
to check the source code, but we do encourage you to have a look. You might just be
surprised by how much you already know about these environments.

In short, the interface of a Gym environment looks like the following pseudocode:

import gym

class Env:

    action_space: gym.spaces.Space

    observation_space: gym.spaces.Space  

    def step(self, action):  
        ...

    def reset(self):  

Getting Started with RLlib | 71

https://oreil.ly/KEhGx
https://gym.openai.com
https://gym.openai.com
https://oreil.ly/R3Ob1


        ...

    def render(self, mode="human"):  
        ...

The gym.Env interface has an action and an observation space.

The Env can run a step and returns a tuple of observations, reward, done
condition, and further info.

An Env can reset itself, which will return the initial observations of a new
episode.

We can render an Env for different purposes, such as for human display or as a
string representation.

You’ll recall from Chapter 3 that this is very similar to the interface of the maze
Environment we built there. In fact, Gym has a so-called Discrete space imple‐
mented in gym.spaces, which means we can make our maze Environment a gym.Env
as follows. We assume that you store this code in a file called maze_gym_env.py and
that the code for the Environment from Chapter 3 is located at the top of that file (or
is imported there):

# maze_gym_env.py  | Original definition of Environment goes at the top.

import gym

from gym.spaces import Discrete  

class GymEnvironment(Environment, gym.Env):  
    def __init__(self, *args, **kwargs):
        """Make our original Environment a gym `Env`."""
        super().__init__(*args, **kwargs)

gym_env = GymEnvironment()

Replace our own Discrete implementation with that of Gym.

Make the GymEnvironment implement a gym.Env. The interface is essentially the
same as before.

Of course, we could have made our original Environment implement gym.Env by
simply inheriting from it in the first place. But the point is that the gym.Env interface

72 | Chapter 4: Reinforcement Learning with Ray RLlib



3 From Ray 2.3.0 onward, RLlib will be using the Gymnasium library as drop-in replacement for Gym. This will
likely introduce some breaking changes, so it’s best to stick with Ray 2.2.0 to follow this chapter.

4 Gym comes with a variety of interesting environments that are worth exploring. For instance, you can find
many of the Atari environments that were used in the famous “Playing Atari with Deep Reinforcement
Learning” paper from DeepMind, or advanced physics simulations using the MuJoCo engine.

comes up so naturally in the context of RL that it is a good exercise to implement it
without having to resort to external libraries.3

The gym.Env interface also comes with helpful utility functionality and many interest‐
ing example implementations. For instance, the CartPole-v1 environment we used
in Chapter 1 is an example from Gym,4 and there are many other environments
available to test your RL algorithms.

Running the RLlib CLI
Now that we have our GymEnvironment implemented as a gym.Env, here’s how you
can use it with RLlib. You’ve seen the RLlib CLI in action in Chapter 1, but this time
the situation is a bit different. In the first chapter we simply ran a tuned example
using the rllib example command.

This time around we want to bring our own gym environment class, namely, the class
GymEnvironment that we defined in maze_gym_env.py. To specify this class in Ray
RLlib, you use the full qualifying name of the class from where you’re referencing it,
so in our case that’s maze_gym_env.GymEnvironment. If you had a more complicated
Python project and your environment was stored in another module, you’d simply
add the module name accordingly.

The following Python file specifies the minimal configuration needed to train an
RLlib algorithm on the GymEnvironment class. To align as closely as possible with our
experiment from Chapter 3, in which we used Q-Learning, we use a DQNConfig to
define a DQN algorithm and store it in a file called maze.py:

from ray.rllib.algorithms.dqn import DQNConfig

config = DQNConfig().environment("maze_gym_env.GymEnvironment")\
    .rollouts(num_rollout_workers=2)

This gives a quick preview of RLlib’s Python API, which we cover in the next section.
To run this with RLlib, we’re using the rllib train command. We do this by
specifying the file we want to run: maze.py. To make sure we can control the time of
training, we tell our algorithm to stop after running for a total of 10,000 time steps
(timesteps_total):

 rllib train file maze.py --stop '{"timesteps_total": 10000}'

Getting Started with RLlib | 73

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://oreil.ly/Mj6_t


5 To be precise, RLlib uses a double and dueling DQN.

6 In the GitHub repo for this book we’ve also included an equivalent maze.yml file that you could use via rllib
train file maze.yml (no --type needed).

This single line takes care of everything we did in Chapter 3, but in a better way:

• It runs a more sophisticated version of Q-Learning for us (DQN).5•
• It takes care of scaling out to multiple workers under the hood (in this case two).•
• It even creates checkpoints of the algorithm automatically for us.•

From the output of that training script you should see that Ray will write training
results to a directory located at ~/ray_results/maze_env. And if the training run
finishes successfully,6 you’ll get a checkpoint and a copiable rllib evaluate com‐
mand in the output, just as in the example from Chapter 1. Using this reported
<checkpoint>, you can now evaluate the trained policy on our custom environment
by running the following command:

rllib evaluate ~/ray_results/maze_env/<checkpoint>\
  --algo DQN\
  --env maze_gym_env.Environment\
  --steps 100

The algorithm used in --algo and the environment specified with --env have to
match the ones used in the training run, and we evaluate the trained algorithm for a
total of 100 steps. This should lead to output of the following form:

Episode #1: reward: 1.0
Episode #2: reward: 1.0
Episode #3: reward: 1.0
...
Episode #13: reward: 1.0

It should not come as a big surprise that the DQN algorithm from RLlib gets the
maximum reward of 1 for the simple maze environment we tasked it with every
single time.

Before moving on to the Python API, we should mention that the RLlib CLI uses Ray
Tune under the hood, for instance, to create the checkpoints of your algorithms. You
will learn more about this integration in Chapter 5.

74 | Chapter 4: Reinforcement Learning with Ray RLlib



7 Of course, configuring your models is a crucial part of RL experiments. We will discuss configuration of RLlib
algorithms in more detail in the next section.

Using the RLlib Python API
In the end, the RLlib CLI is merely a wrapper around its underlying Python library.
As you will likely spend most of your time coding your RL experiments in Python,
we’ll focus the rest of this chapter on aspects of this API.

To run RL workloads with RLlib from Python, the Algorithm class is your main
entry point. Always start with a corresponding AlgorithmConfig class to define an
algorithm. For instance, in the previous section we used a DQNConfig as a starting
point, and the rllib train command took care of instantiating the DQN algorithm
for us. All other RLlib algorithms follow the same pattern.

Training RLlib algorithms

Every RLlib Algorithm comes with reasonable default parameters, meaning that you
can initialize them without having to tweak any configuration parameters for these
algorithms.7

That said, it’s worth noting that RLlib algorithms are highly configurable, as you
will see in the following example. We start by creating a DQNConfig object. Then
we specify its environment and set the number of rollout workers to two by using
the rollouts method. This means that the DQN algorithm will spawn two Ray
actors, each using a CPU by default, to run the algorithm in parallel. Also, for later
evaluation purposes, we set create_env_on_local_worker to True:

from ray.tune.logger import pretty_print
from maze_gym_env import GymEnvironment
from ray.rllib.algorithms.dqn import DQNConfig

config = (DQNConfig().environment(GymEnvironment)  
          .rollouts(num_rollout_workers=2, create_env_on_local_worker=True))

pretty_print(config.to_dict())

algo = config.build()  

for i in range(10):

    result = algo.train()  

print(pretty_print(result))  

Getting Started with RLlib | 75



8 If you set num_rollout_workers to 0, only the local worker on the head node will be created, and all sampling
from the env is done there. This is particularly useful for debugging, as no additional Ray actor processes are
spawned.

Set the environment to our custom GymEnvironment class and configure the
number of rollout workers and ensure that an environment instance is created on
the local worker.

Use the DQNConfig from RLlib to build a DQN algorithm for training. This time
we use two rollout workers.

Call the train method to train the algorithm for 10 iterations.

With the pretty_print utility, we can generate human-readable output of the
training results.

Note that the number of training iterations has no special meaning, but it should be
enough for the algorithm to learn to solve the maze problem adequately. The example
just goes to show that you have full control over the training process.

From printing the config dictionary, you can verify that the num_rollout_workers
parameter is set to 2.8 The result contains detailed information about the state of
the DQN algorithm and the training results, which are too verbose to show here.
The part that’s most relevant for us right now is information about the reward of
the algorithm, which ideally indicates that the algorithm learned to solve the maze
problem. You should see output of the following form (we’re showing only the most
relevant information for clarity):

...
episode_reward_max: 1.0
episode_reward_mean: 1.0
episode_reward_min: 1.0
episodes_this_iter: 15
episodes_total: 19
...
training_iteration: 10
...

In particular, this output shows that the minimum reward attained on average per
episode is 1.0, which in turn means that the agent always reached the goal and
collected the maximum reward (1.0).

76 | Chapter 4: Reinforcement Learning with Ray RLlib



Saving, loading, and evaluating RLlib models
Reaching the goal for this simple example isn’t too difficult, but let’s see if evaluating
the trained algorithm confirms that the agent can also do so in an optimal way,
namely, by taking only the minimum number of eight steps to reach the goal.

To do so, we utilize another mechanism that you’ve already seen from the RLlib CLI:
checkpointing. Creating algorithm checkpoints is useful to ensure you can recover
your work in case of a crash or simply to track training progress persistently. You can
create a checkpoint of an RLlib algorithm at any point in the training process by call‐
ing algo.save(). Once you have a checkpoint, you can easily restore your Algorithm
with it. Evaluating a model is as simple as calling algo.evaluate(checkpoint) with
the checkpoint you created. Here’s how that looks if you put it all together:

from ray.rllib.algorithms.algorithm import Algorithm

checkpoint = algo.save()  
print(checkpoint)

evaluation = algo.evaluate()  
print(pretty_print(evaluation))

algo.stop()  

restored_algo = Algorithm.from_checkpoint(checkpoint)  

Save algorithms to create checkpoints.

Evaluate RLlib algorithms at any point in time by calling evaluate.

Stop an algo to free all claimed resources.

Restore any Algorithm from a given checkpoint with from_checkpoint.

Looking at the output of this example, we can now confirm that the trained RLlib
algorithm did indeed converge to a good solution for the maze problem, as indicated
by episodes of length 8 in evaluation:

~/ray_results/DQN_GymEnvironment_2022-02-09_10-19-301o3m9r6d/checkpoint_000010/
checkpoint-10 evaluation:
  ...
  episodes_this_iter: 5
  hist_stats:
    episode_lengths:
    - 8
    - 8
    ...

Getting Started with RLlib | 77



Computing actions

RLlib algorithms have much more functionality than just the train, evaluate, save,
and from_checkpoint methods we’ve seen so far. For example, you can directly com‐
pute actions given the current state of an environment. In Chapter 3 we implemented
episode rollouts by stepping through an environment and collecting rewards. We can
easily do the same with RLlib for our GymEnvironment:

env = GymEnvironment()
done = False
total_reward = 0
observations = env.reset()

while not done:

    action = algo.compute_single_action(observations)  
    observations, reward, done, info = env.step(action)
    total_reward += reward

To compute actions for given observations, use compute_single_action.

In case you should need to compute many actions at once, not just a single one,
you can use the compute_actions method instead, which takes dictionaries of obser‐
vations as input and produces dictionaries of actions with the same dictionary keys as
output:

action = algo.compute_actions(  
    {"obs_1": observations, "obs_2": observations}
)
print(action)
# {'obs_1': 0, 'obs_2': 1}

For multiple actions, use compute_actions.

Accessing policy and model states
Remember that each reinforcement learning algorithm is based on a policy that
chooses next actions given the agent’s current observations of the environment. Each
policy is in turn based on an underlying model.

In the case of vanilla Q-Learning that we discussed in Chapter 3, the model was a
simple lookup table of state-action values, also called Q-values. And that policy used
this model for predicting next actions in case it decided to exploit what the model had
learned so far or to explore the environment with random actions otherwise.

When using Deep Q-Learning, the underlying model of the policy is a neural net‐
work that, loosely speaking, maps observations to actions. Note that for choosing
next actions in an environment, we’re ultimately not interested in the concrete values
of the approximated Q-values, but rather in the probabilities of taking each action.
The probability distribution over all possible actions is called an action distribution.

78 | Chapter 4: Reinforcement Learning with Ray RLlib



9 The Policy class in RLlib today will be replaced in a future release. The new Policy class will likely be a
drop-in replacement for the most part and exhibit some minor differences. The idea of the class remains the
same, though: a policy is a class that encapsulates the logic of choosing actions given observations, and it gives
you access to the underlying models used.

10 Technically speaking, only the local model is used for actual training. The two worker models are used for
action computation and data collection (rollouts). After each training step, the local model sends its current
weights to the workers for synchronization. Fully distributed training, as opposed to distributed sampling,
will be available across all RLlib algorithms in future Ray versions.

11 This is true by default, since we’re using TensorFlow and Keras under the hood. Should you opt to change
the framework specification of your algorithm to work with PyTorch directly, do print(model), in which case
model is-a torch.nn.Module. Access to the underlying model will be unified across all frameworks the future.

In the maze we’re using as a running example, we can move up, right, down, or left.
So, in our case an action distribution is a vector of four probabilities, one for each
action. In the case of Q-Learning, the algorithm will always greedily choose the action
with the highest probability of this distribution, while other algorithms will sample
from it.

To make things concrete, let’s look at how you access policies and models in RLlib:9

policy = algo.get_policy()
print(policy.get_weights())

model = policy.model

Both policy and model have many useful methods to explore. In this example we use
get_weights to inspect the parameters of the model underlying the policy (which are
called weights by standard convention).

To convince you that not just one model is at play here but in fact a collection of
models,10 we can access all the workers we used in training and then ask each worker’s
policy for their weights using foreach_worker:

workers = algo.workers
workers.foreach_worker(
    lambda remote_trainer: remote_trainer.get_policy().get_weights()
)

In this way, you can access every method available on an Algorithm instance on each
of your workers. In principle, you can use this to set model parameters as well, or
otherwise configure your workers. RLlib workers are ultimately Ray actors, so you
can alter and manipulate them in almost any way you like.

We haven’t talked about the specific implementation of Deep Q-Learning used in
DQN, but the model used is a bit more complex than what we’ve described so far.
Every RLlib model obtained from a policy has a base_model that has a neat summary
method to describe itself:11

model.base_model.summary()

Getting Started with RLlib | 79



12 The “value” output of this network represents the Q-value of state-action pairs.
13 To learn more about customizing your RLlib models, check out the guide to custom models in the Ray

documentation.

As you can see from the following output, this model takes in our observations.
The shape of these observations is a bit strangely annotated as [(None, 25)], but
essentially this means we have the expected 5 × 5 maze grid values correctly encoded.
The model follows with two so-called Dense layers and predicts a single value at the
end:12

Model: "model"
________________________________________________________________________________
Layer (type)                  Output Shape       Param #     Connected to
================================================================================
observations (InputLayer)     [(None, 25)]       0
________________________________________________________________________________
fc_1 (Dense)                  (None, 256)        6656        observations[0][0]
________________________________________________________________________________
fc_out (Dense)                (None, 256)        65792       fc_1[0][0]
________________________________________________________________________________
value_out (Dense)             (None, 1)          257         fc_1[0][0]
================================================================================
Total params: 72,705
Trainable params: 72,705
Non-trainable params: 0
________________________________________________________________________________

Note that it’s perfectly possible to customize this model for your RLlib experiments.
If your environment is complex and has a big observation space, for instance, you
might need a bigger model to capture that complexity. However, doing so requires in-
depth knowledge of the underlying neural network framework (in this case Tensor‐
Flow), which we don’t assume you have.13

State-Action Values and State-Value Functions
So far we’ve been mostly concerned with the concept of state-action values, since this
concept takes center stage in the formulation of Q-Learning that we used extensively
so far. The model we just had a look at has a dedicated output (in deep learning terms
called a head) for predicting Q-values. You can access and summarize this part of the
model through model.q_value_head.summary().

In contrast it’s also possible to ask how valuable a particular state is, without specify‐
ing an action that pairs with it. This leads to the concept of state-value functions,
or simply value functions, that are very important in the RL literature. We can’t go
into more detail in this RLlib introduction, but note that you have access to a value
function head as well through model.state_value_head.summary().

80 | Chapter 4: Reinforcement Learning with Ray RLlib

https://oreil.ly/cpRdf
https://oreil.ly/cpRdf


Next, let’s see if we can take some observations from our environment and pass them
to the model we just extracted from our policy. This part is a bit technically involved
because models are a bit more difficult to access directly in RLlib. Normally you
would only interface with a model through your policy, which takes care of prepro‐
cessing the observations, among other things. Luckily, we can access the preprocessor
used by the policy, transform the observations from our environment, and then pass
them to the model:

from ray.rllib.models.preprocessors import get_preprocessor

env = GymEnvironment()
obs_space = env.observation_space

preprocessor = get_preprocessor(obs_space)(obs_space)  

observations = env.reset()

transformed = preprocessor.transform(observations).reshape(1, -1)  

model_output, _ = model({"obs": transformed})  

Use get_preprocessor to access the preprocessor used by the policy.

You can use transform on any observations obtained from your env to the
format expected by the model. Note that we need to reshape the observations too.

Get the model output by calling the model on a preprocessed observation
dictionary.

Having computed our model_output, we can now access the Q-values and the action
distribution of the model for this output:

q_values = model.get_q_value_distributions(model_output)  
print(q_values)

action_distribution = policy.dist_class(model_output, model)  

sample = action_distribution.sample()  
print(sample)

The get_q_value_distributions method is specific to DQN models only.

By accessing dist_class we get the policy’s action distribution class.

Action distributions can be sampled from.

Getting Started with RLlib | 81



14 We list only the methods we introduce in this chapter. Apart from those we mention, you also find options
for evaluation of your algorithms, reporting, debugging, checkpointing, adding callbacks, altering your
deep learning framework, requesting resources, and accessing experimental features.

Configuring RLlib Experiments
Now that you’ve seen the basic Python training API of RLlib in an example, let’s
take a step back and discuss in more depth how to configure and run RLlib experi‐
ments. By now you know that to define an Algorithm, you start with the respective
AlgorithmConfig and then build your algorithm from it. So far we’ve used only the
rollout method of an AlgorithmConfig to set the number of rollout workers to two,
and set our environment accordingly.

If you want to alter the behavior of your RLlib training run, chain more utility meth‐
ods onto the AlgorithmConfig instance and then call build on it at the end. As RLlib
algorithms are fairly complex, they come with many configuration options. To make
things easier, the common properties of algorithms are naturally grouped into useful
categories.14 Each such category comes with its own respective AlgorithmConfig
method:

training()

Takes care of all training-related configuration options of your algorithm. The
training method is the one place that RLlib algorithms differ in their configura‐
tion. All the following methods are algorithm-agnostic.

environment()

Configures all aspects of your environment.

rollouts()

Modifies the setup and behavior of your rollout workers.

exploration()

Alters the behavior of your exploration strategy.

resources()

Configures the compute resources used by your algorithm.

offline_data()

Defines options for training with so-called offline data, a topic we cover in
“Working with Offline Data” on page 97.

multi_agent()

Specifies options for training algorithms using multiple agents. We discuss an
explicit example of this in the next section.

82 | Chapter 4: Reinforcement Learning with Ray RLlib



The algorithm-specific configuration in training() becomes even more relevant
once you’ve settled on an algorithm and want to squeeze it for performance. In
practice, RLlib provides you with good defaults to get started.

For more details on configuring RLlib experiments, look up configuration arguments
in the API reference for RLlib algorithms. But before we move on to examples, you
should learn about the most common configuration options in practice.

Resource Configuration
Whether you use Ray RLlib locally or on a cluster, you can specify the resources
used for the training process. Here are the most important options to consider. We
continue using the DQN algorithm as an example, but this would apply to any other
RLlib algorithm as well:

from ray.rllib.algorithms.dqn import DQNConfig

config = DQNConfig().resources(

    num_gpus=1,  

    num_cpus_per_worker=2, 

    num_gpus_per_worker=0, 
)

Specify the number of GPUs to use for training. It’s important to check whether
your algorithm of choice supports GPUs first. This value can also be fractional.
For example, if using four rollout workers in DQN (num_rollout_workers=4),
you can set num_gpus=0.25 to pack all four workers on the same GPU so that
all rollout workers benefit from the potential speedup. This affects only the local
learner process, not the rollout workers.

Set the number of CPUs to use for each rollout worker.

Set the number of GPUs used per worker.

Rollout Worker Configuration
RLlib lets you configure how your rollouts are computed and how to distribute them:

from ray.rllib.algorithms.dqn import DQNConfig

config = DQNConfig().rollouts(

    num_rollout_workers=4,  

    num_envs_per_worker=1, 

    create_env_on_local_worker=True, 
)

You’ve seen this already. It specifies the number of Ray workers to use.

Configuring RLlib Experiments | 83

https://oreil.ly/4q1eo


15 There’s also a way to register your environments so that you can refer to them by name, but this requires using
Ray Tune. You will learn about this feature in Chapter 5.

Specify the number of environments to evaluate per worker. This setting allows
you to “batch” evaluation of environments. In particular, if your models take a
long time to evaluate, grouping environments like this can speed up training.

When num_rollout_workers > 0, the driver (“local worker”) does not need an
environment. That’s because sampling and evaluation is done by the rollout
workers. If you still want an environment on the driver, you can set this option to
True.

Environment Configuration
from ray.rllib.algorithms.dqn import DQNConfig

config = DQNConfig().environment(

    env="CartPole-v1",  

    env_config={"my_config": "value"}, 
    observation_space=None,

    action_space=None, 

    render_env=True, 
)

Specify the environment you want to use for training. This can be either a string
of an environment known to Ray RLlib, such as any Gym environment, or the
class name of a custom environment you’ve implemented.15

Optionally specify a dictionary of configuration options for your environment
that will be passed to the environment constructor.

You can specify the observation and action spaces of your environment too. If
you don’t specify them, they will be inferred from the environment.

False by default, this property allows you to turn on rendering of the environ‐
ment, which requires you to implement the render method of your environment.

Note that we left out many available configuration options for each of the types we
listed. On top of that, we can’t touch on aspects here that alter the behavior of the
RL training procedure in this introduction (like modifying the underlying model to
use). But the good news is that you’ll find all the information you need in the RLlib
Training API documentation.

84 | Chapter 4: Reinforcement Learning with Ray RLlib

https://oreil.ly/mljW7
https://oreil.ly/mljW7


Working with RLlib Environments
So far we’ve introduced you to just Gym environments, but RLlib supports a wide
variety of environments. After giving you a quick overview of all available options
(see Figure 4-1), we’ll show you two concrete examples of advanced RLlib environ‐
ments in action.

An Overview of RLlib Environments
All available RLlib environments extend a common BaseEnv class. If you want to
work with several copies of the same gym.Env environment, you can use RLlib’s
VectorEnv wrapper. Vectorized environments are useful, but they are straightforward
generalizations of what you’ve seen already. The two other types of environments
available in RLlib are more interesting and deserve more attention.

Figure 4-1. An overview of all available RLlib environments

The first is called MultiAgentEnv, which allows you to train a model with multiple
agents. Working with multiple agents can be tricky. That’s because you have to take
care to define your agents within your environment with a suitable interface and
account for the fact that each agent might have a completely different way of interact‐
ing with its environment.

What’s more is that agents might interact with each other, and they have to respect
each other’s actions. In more advanced settings, there might even be a hierarchy
of agents that explicitly depend on each other. In short, running multi-agent RL
experiments is difficult, and we’ll see how RLlib handles this in the next example.

The other type of environment we will look at is called ExternalEnv, which can
be used to connect external simulators to RLlib. For instance, imagine our simple
maze problem from earlier was a simulation of an actual robot navigating a maze.
It might not be suitable in such scenarios to co-locate the robot (or its simulation,
implemented in a different software stack) with RLlib’s learning agents. To account
for that, RLlib provides you with a simple client-server architecture for communicat‐
ing with external simulators, which allows communication over a REST API. In case

Working with RLlib Environments | 85



you want to work both in a multi-agent and external environment setting, RLlib
offers a MultiAgentExternalEnv environment that combines both.

Working with Multiple Agents
The basic idea of defining multi-agent environments in RLlib is simple. You first
assign each agent an agent ID. Then, whatever you previously defined as a single
value in a Gym environment (observations, rewards, etc.), you now define as a dictio‐
nary with agent IDs as keys and values per agent. Of course, the details are a little
more complicated than that in practice. But once you have defined an environment
hosting several agents, you have to define how these agents should learn.

In a single-agent environment there’s one agent and one policy to learn. In a multi-
agent environment there are multiple agents that might map to one or several
policies. For instance, if you have a group of homogenous agents in your environ‐
ment, then you could define a single policy for all of them. If they all act the same
way, then their behavior can be learned the same way. In contrast, you might have
situations with heterogeneous agents in which each of them has to learn a separate
policy. Between these two extremes, there’s a spectrum of possibilities, as shown in
Figure 4-2.

We continue to use our maze game as a running example for this chapter. This way
you can check for yourself how the interfaces differ in practice. So, to put the ideas we
just outlined into code, let’s define a multi-agent version of the GymEnvironment class.
Our MultiAgentEnv class will have precisely two agents, which we encode in a Python
dictionary called agents, but in principle this works with any number of agents.

Figure 4-2. Mapping agents to policies in multi-agent reinforcement learning problems

86 | Chapter 4: Reinforcement Learning with Ray RLlib



16 You can find a good example that defines different observation and action spaces for multiple agents in the
RLlib documentation.

We start by initializing and resetting our new environment:

from ray.rllib.env.multi_agent_env import MultiAgentEnv
from gym.spaces import Discrete
import os

class MultiAgentMaze(MultiAgentEnv):

    def __init__(self,  *args, **kwargs):  
        self.action_space = Discrete(4)
        self.observation_space = Discrete(5*5)

        self.agents = {1: (4, 0), 2: (0, 4)}  
        self.goal = (4, 4)

        self.info = {1: {'obs': self.agents[1]}, 2: {'obs': self.agents[2]}}  

    def reset(self):
        self.agents = {1: (4, 0), 2: (0, 4)}

        return {1: self.get_observation(1), 2: self.get_observation(2)}  

Action and observation spaces stay exactly the same as before.

We now have two seekers with (0, 4) and (4, 0) starting positions in an
agents dictionary.

For the info object, we’re using agent IDs as keys.

Observations are now per-agent dictionaries.

Notice that we didn’t touch the action and observation spaces at all. That’s because
we’re using two essentially identical agents here that can reuse the same spaces. In
more complex situations you’d have to account for the fact that the actions and
observations might look different for some agents.16

To continue, let’s generalize our helper methods get_observation, get_reward, and
is_done to work with multiple agents. We do this by passing in an action_id to their
signatures and handling each agent the same way as before:

    def get_observation(self, agent_id):
        seeker = self.agents[agent_id]
        return 5 * seeker[0] + seeker[1]

    def get_reward(self, agent_id):
        return 1 if self.agents[agent_id] == self.goal else 0

Working with RLlib Environments | 87

https://oreil.ly/4yyE-


17 Note how this can lead to issues like deciding which agent gets to act first. In our simple maze problem the
order of actions is irrelevant, but in more complex scenarios this becomes a crucial part of modeling the RL
problem correctly.

    def is_done(self, agent_id):
        return self.agents[agent_id] == self.goal

Next, to port the step method to our multi-agent setup, you have to know that
MultiAgentEnv now expects the action passed to a step to be a dictionary with keys
corresponding to the agent IDs, too. We define a step by looping through all available
agents and acting on their behalf:17

    def step(self, action):  
        agent_ids = action.keys()

        for agent_id in agent_ids:
            seeker = self.agents[agent_id]
            if action[agent_id] == 0:  # move down
                seeker = (min(seeker[0] + 1, 4), seeker[1])
            elif action[agent_id] == 1:  # move left
                seeker = (seeker[0], max(seeker[1] - 1, 0))
            elif action[agent_id] == 2:  # move up
                seeker = (max(seeker[0] - 1, 0), seeker[1])
            elif action[agent_id] == 3:  # move right
                seeker = (seeker[0], min(seeker[1] + 1, 4))
            else:
                raise ValueError("Invalid action")

            self.agents[agent_id] = seeker  

        observations = {i: self.get_observation(i) for i in agent_ids}  
        rewards = {i: self.get_reward(i) for i in agent_ids}
        done = {i: self.is_done(i) for i in agent_ids}

        done["__all__"] = all(done.values())  

        return observations, rewards, done, self.info

Actions in a step are now per-agent dictionaries.

After applying the correct action for each seeker, set the correct states of all
agents.

observations, rewards, and dones are also dictionaries with agent IDs as keys.

Additionally, RLlib needs to know when all agents are done.

88 | Chapter 4: Reinforcement Learning with Ray RLlib



18 Deciding when an episode is done is a crucial part of multi-agent RL, and it depends entirely on the problem
at hand and what you want to achieve.

The last step is to modify rendering the environment, which we do by denoting each
agent by its ID when printing the maze to the screen:

    def render(self, *args, **kwargs):
        os.system('cls' if os.name == 'nt' else 'clear')
        grid = [['| ' for _ in range(5)] + ["|\n"] for _ in range(5)]
        grid[self.goal[0]][self.goal[1]] = '|G'
        grid[self.agents[1][0]][self.agents[1][1]] = '|1'
        grid[self.agents[2][0]][self.agents[2][1]] = '|2'
        grid[self.agents[2][0]][self.agents[2][1]] = '|2'
        print(''.join([''.join(grid_row) for grid_row in grid]))

Randomly rolling out an episode until one of the agents reaches the goal can, for
instance, be done by the following code:18

import time

env = MultiAgentMaze()

while True:
    obs, rew, done, info = env.step(
        {1: env.action_space.sample(), 2: env.action_space.sample()}
    )
    time.sleep(0.1)
    env.render()
    if any(done.values()):
        break

Note how we have to make sure to pass two random samples by means of a Python
dictionary into the step method, and how we check if any of the agents are done
yet. We use this break condition for simplicity because it’s highly unlikely that both
seekers find their way to the goal at the same time by chance. But of course we’d like
both agents to complete the maze eventually.

In any case, equipped with our MultiAgentMaze, training an RLlib Algorithm works
exactly the same way as before:

from ray.rllib.algorithms.dqn import DQNConfig

simple_trainer = DQNConfig().environment(env=MultiAgentMaze).build()
simple_trainer.train()

This covers the simplest case of training a multi-agent reinforcement learning
(MARL) problem. But if you remember what we said earlier, when using multiple
agents, there’s always a mapping between agents and policies. By not specifying such
a mapping, both of our seekers were implicitly assigned to the same policy. This can

Working with RLlib Environments | 89



be changed by calling the .multi_agent method on our DQNConfig and setting the
policies and policy_mapping_fn arguments accordingly:

algo = DQNConfig()\
    .environment(env=MultiAgentMaze)\
    .multi_agent(

        policies={  
            "policy_1": (
                None, env.observation_space, env.action_space, {"gamma": 0.80}
            ),
            "policy_2": (
                None, env.observation_space, env.action_space, {"gamma": 0.95}
            ),
        },

        policy_mapping_fn = lambda agent_id: f"policy_{agent_id}",  
    ).build()

print(algo.train())

Define multiple policies for our agents, each with a different "gamma" value.

Each agent can then be mapped to a policy with a custom policy_mapping_fn.

As you can see, running multi-agent RL experiments is a first-class citizen of RLlib,
and there’s a lot more that could be said about it. The support of MARL problems is
probably one of RLlib’s strongest features.

Working with Policy Servers and Clients
For the last example in this section, let’s assume our original GymEnvironment can be
simulated only on a machine that can’t run RLlib, for instance because it doesn’t have
enough resources available. We can run the environment on a PolicyClient that
can ask a respective server for suitable next actions to apply to the environment. The
server, in turn, does not know about the environment. It only knows how to ingest
input data from a PolicyClient, and it is responsible for running all RL-related code;
in particular, it defines an RLlib AlgorithmConfig object and trains an Algorithm.

Typically, you want to run the server that trains your algorithm on a powerful Ray
Cluster, and then the respective client runs outside that cluster. Figure 4-3 schemati‐
cally illustrates this setup.

90 | Chapter 4: Reinforcement Learning with Ray RLlib



Figure 4-3. Working with policy servers and clients in RLlib

Defining a server
Let’s start by defining the server side of such an application first. We define a so-called
PolicyServerInput that runs on localhost on port 9900. This policy input is what the
client will provide later. With this policy_input defined as input to our algorithm
configuration, we can define yet another DQN to run on the server:

# policy_server.py
import ray
from ray.rllib.agents.dqn import DQNConfig
from ray.rllib.env.policy_server_input import PolicyServerInput
import gym

ray.init()

def policy_input(context):

    return PolicyServerInput(context, "localhost", 9900)  

config = DQNConfig()\
    .environment(

        env=None,  

        action_space=gym.spaces.Discrete(4),  
        observation_space=gym.spaces.Discrete(5*5))\
    .debugging(log_level="INFO")\
    .rollouts(num_rollout_workers=0)\

    .offline_data(  
        input=policy_input,
        input_evaluation=[])

algo = config.build()

The policy_input function returns a PolicyServerInput object running on
localhost on port 9900.

Working with RLlib Environments | 91



19 For technical reasons, we have to specify observation and action spaces here, which might not be necessary in
future releases of RLlib, as it leaks environment information. Also note that we need to set input_evaluation
to an empty list to make this server work.

We explicitly set the env to None because this server does not need one.

We therefore need to define both an observation_space and an action_space,
as the server is not able to infer them from the environment.

To make this work, we need to feed our policy_input into the experiment’s
input.

With this algo defined,19 we can now start a training session on the server like so:

# policy_server.py
if __name__ == "__main__":

    time_steps = 0
    for _ in range(100):
        results = algo.train()

        checkpoint = algo.save()  

        if time_steps >= 1000:  
            break
        time_steps += results["timesteps_total"]

Train for a maximum of 100 iterations and store checkpoints after each iteration.

If training surpasses 1,000 time steps, we stop the training.

In what follows we assume that you store the last two code snippets in a file called
policy_server.py. If you want to, you can now start this policy server on your local
machine by running python policy_server.py in a terminal.

Defining a client

Next, to define the corresponding client side of the application, we define a Policy
Client that connects to the server we just started. Since we can’t assume that you
have several computers at home (or available in the cloud), contrary to what we
said prior, we will start this client on the same machine. In other words, the client
will connect to http://localhost:9900, but if you can run the server on a different
machine, you could replace localhost with the IP address of that machine, provided
it’s available in the network.

Policy clients have a fairly lean interface. They can trigger the server to start or end
an episode, get next actions from it, and log reward information to it (that it would
otherwise not have). With that said, here’s how you define such a client:

92 | Chapter 4: Reinforcement Learning with Ray RLlib



# policy_client.py
import gym
from ray.rllib.env.policy_client import PolicyClient
from maze_gym_env import GymEnvironment

if __name__ == "__main__":
    env = GymEnvironment()

    client = PolicyClient("http://localhost:9900", inference_mode="remote")  

    obs = env.reset()

    episode_id = client.start_episode(training_enabled=True)  

    while True:

        action = client.get_action(episode_id, obs)  

        obs, reward, done, info = env.step(action)

        client.log_returns(episode_id, reward, info=info)  

        if done:

            client.end_episode(episode_id, obs)  

            exit(0)  

Start a policy client on the server address with remote inference mode.

Tell the server to start an episode.

For given environment observations, we can get the next action from the server.

It’s mandatory for the client to log reward information to the server.

If a certain condition is reached, we can stop the client process.

If the environment is done, we have to inform the server about episode
completion.

Assuming you store this code under policy_client.py and start it by running python
policy_client.py, then the server that we started earlier will start learning with
environment information solely obtained from the client.

Advanced Concepts
So far we’ve been working with simple environments that were easy enough to tackle
with the most basic RL algorithm settings in RLlib. Of course, in practice you’re not
always that lucky and might have to come up with other ideas to tackle more difficult
environments. In this section we’re going to introduce a slightly harder version of the
maze environment and discuss some advanced concepts to help you solve it.

Advanced Concepts | 93



20 In the definition of reset, we allow the seeker to reset on top of the goal to keep the definition simpler.
Allowing this trivial edge case does not affect learning.

Building an Advanced Environment
Let’s make our maze GymEnvironment a bit more challenging. First, we increase its
size from a 5 × 5 to an 11 × 11 grid. Then we introduce obstacles in the maze that the
agent can pass through but only by incurring a penalty, a negative reward of –1. This
way our seeker agent will have to learn to avoid obstacles while still finding the goal.
Also, we randomize the agent’s starting position. All of this makes the RL problem
harder to solve. Let’s look at the initialization of this new AdvancedEnv first:

from gym.spaces import Discrete
import random
import os

class AdvancedEnv(GymEnvironment):

    def __init__(self, seeker=None, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.maze_len = 11
        self.action_space = Discrete(4)
        self.observation_space = Discrete(self.maze_len * self.maze_len)

        if seeker:  
            assert 0 <= seeker[0] < self.maze_len and \
                   0 <= seeker[1] < self.maze_len
            self.seeker = seeker
        else:
            self.reset()

        self.goal = (self.maze_len-1, self.maze_len-1)
        self.info = {'seeker': self.seeker, 'goal': self.goal}

        self.punish_states = [  
            (i, j) for i in range(self.maze_len) for j in range(self.maze_len)
            if i % 2 == 1 and j % 2 == 0
        ]

Set the seeker position upon initialization.

Introduce punish_states as obstacles for the agent.

Next, when resetting the environment, we want to make sure to reset the agent’s
position to a random state.20 We also increase the positive reward for reaching the
goal to 5 to offset the negative reward for passing through an obstacle (which will

94 | Chapter 4: Reinforcement Learning with Ray RLlib



happen a lot before the RL algorithm picks up on the obstacle locations). Balancing
rewards like this is a crucial task in calibrating your RL experiments:

    def reset(self):
        """Reset seeker position randomly, return observations."""
        self.seeker = (
            random.randint(0, self.maze_len - 1),
            random.randint(0, self.maze_len - 1)
        )
        return self.get_observation()

    def get_observation(self):
        """Encode the seeker position as integer"""
        return self.maze_len * self.seeker[0] + self.seeker[1]

    def get_reward(self):
        """Reward finding the goal and punish forbidden states"""
        reward = -1 if self.seeker in self.punish_states else 0
        reward += 5 if self.seeker == self.goal else 0
        return reward

    def render(self, *args, **kwargs):
        """Render the environment, e.g. by printing its representation."""
        os.system('cls' if os.name == 'nt' else 'clear')
        grid = [['| ' for _ in range(self.maze_len)] +
                ["|\n"] for _ in range(self.maze_len)]
        for punish in self.punish_states:
            grid[punish[0]][punish[1]] = '|X'
        grid[self.goal[0]][self.goal[1]] = '|G'
        grid[self.seeker[0]][self.seeker[1]] = '|S'
        print(''.join([''.join(grid_row) for grid_row in grid]))

There are many other ways you could make this environment more difficult, like
making it much bigger, introducing a negative reward for every step the agent takes
in a certain direction, or punishing the agent for trying to walk off the grid. By
now you should understand the problem setting well enough to customize the maze
further.

While you might have success training this environment, this is a good opportunity
to introduce some advanced concepts that you can apply to other RL problems.

Applying Curriculum Learning
One of the most interesting features of RLlib is providing an Algorithm with a curric‐
ulum to learn from. Instead of letting the algorithm learn from arbitrary environment
setups, we cherry-pick states that are much easier to learn from and then slowly but
surely introduce more difficult states. Building a learning curriculum is a great way to
make your experiments converge to solutions quicker. To apply curriculum learning,
the only thing you need is a view on which starting states are easier than others. This
can be a challenge for many environments, but it’s easy to come up with a simple

Advanced Concepts | 95



curriculum for our advanced maze. Namely, the distance of the seeker from the goal
can be used as a measure of difficulty. The distance measure we’ll use for simplicity is
the sum of the absolute distance of both seeker coordinates from the goal to define a
difficulty.

To run curriculum learning with RLlib, we define a CurriculumEnv that extends
both our AdvancedEnv and a so-called TaskSettableEnv from RLLib. The interface
of TaskSettableEnv is very simple in that you have to define only how to get the
current difficulty (get_task) and how to set a required difficulty (set_task). Here’s
the full definition of this CurriculumEnv:

from ray.rllib.env.apis.task_settable_env import TaskSettableEnv

class CurriculumEnv(AdvancedEnv, TaskSettableEnv):

    def __init__(self, *args, **kwargs):
        AdvancedEnv.__init__(self)

    def difficulty(self):  
        return abs(self.seeker[0] - self.goal[0]) + \
               abs(self.seeker[1] - self.goal[1])

    def get_task(self):  
        return self.difficulty()

    def set_task(self, task_difficulty):  
        while not self.difficulty() <= task_difficulty:
            self.reset()

Define the difficulty of the current state as the sum of the absolute distance of
both seeker coordinates from the goal.

To define get_task we can then simply return the current difficulty.

To set a task difficulty, we reset the environment until its difficulty is at most
the specified task_difficulty.

To use this environment for curriculum learning, we need to define a curriculum
function that tells the algorithm when and how to set the task difficulty. We have
many options here, but we use a schedule that simply increases the difficulty by one
every 1,000 time steps trained:

def curriculum_fn(train_results, task_settable_env, env_ctx):
    time_steps = train_results.get("timesteps_total")
    difficulty = time_steps // 1000
    print(f"Current difficulty: {difficulty}")
    return difficulty

96 | Chapter 4: Reinforcement Learning with Ray RLlib



21 Note that if you run the notebook for this chapter on the cloud, the training process could take a while to
finish.

To test this curriculum function, we need to add it to our RLlib algorithm config
by setting the env_task_fn property to our curriculum_fn. Note that before training
a DQN for 15 iterations, we also set an output folder in our config. This will store
experience data of our training run to the specified temp folder:21

from ray.rllib.algorithms.dqn import DQNConfig
import tempfile

temp = tempfile.mkdtemp()  

trainer = (
    DQNConfig()

    .environment(env=CurriculumEnv, env_task_fn=curriculum_fn)  

    .offline_data(output=temp)  
    .build()
)

for i in range(15):
    trainer.train()

Create a temp file to store our training data for later use.

Set the CurriculumEnv as our environment in the environment part of our config
and assign our curriculum_fn to the env_task_fn property.

Use the offline_data method to store output in our temp folder.

Running this algorithm, you should see how the task difficulty increases over time,
thereby giving the algorithm easy examples to start with so that it can learn from
them and progress to more difficult tasks.

Curriculum learning is a great technique to be aware of and RLlib allows you to easily
incorporate it into your experiments through the curriculum API we just discussed.

Working with Offline Data
In our previous curriculum learning example we stored training data to a temporary
folder. What’s interesting is that you already know from Chapter 3 that in Q-Learning
you can collect experience data first and decide when to use it in a training step
later. This separation of data collection and training opens up many possibilities.
For instance, maybe you have a good heuristic that can solve your problem in an

Advanced Concepts | 97

https://oreil.ly/KEhGx


22 Note that RLlib has a wide range of on-policy algorithms like PPO as well.

imperfect yet reasonable manner. Or you have records of human interaction with
your environment, demonstrating how to solve the problem by example.

The topic of collecting experience data for later training is often discussed as working
with offline data. It’s called “offline” because it’s not directly generated by a policy
interacting online with the environment. Algorithms that don’t rely on training on
their own policy output are called off-policy algorithms, and Q-Learning, particularly
DQN, is just one such example. Algorithms that don’t share this property are called
on-policy algorithms. In other words, off-policy algorithms can be used to train on
offline data.22

To use the data we stored in the temp folder, we can create a new DQNConfig that
takes this folder as input. We will also set explore to False, since we simply want
to exploit the data previously collected for training—the algorithm will not explore
according to its own policy.

Using the resulting RLlib algorithm works exactly as before, which we demonstrate
by training it for 10 iterations and then evaluating it:

imitation_algo = (
    DQNConfig()
    .environment(env=AdvancedEnv)
    .evaluation(off_policy_estimation_methods={})
    .offline_data(input_=temp)
    .exploration(explore=False)
    .build())

for i in range(10):
    imitation_algo.train()

imitation_algo.evaluate()

Note that we called the algorithm imitation_algo. That’s because this training pro‐
cedure intends to imitate the behavior reflected in the data we collected before. This
type of learning by demonstration in RL is therefore often called imitation learning or
behavior cloning.

Other Advanced Topics
Before concluding this chapter, let’s have a look at a few other advanced topics that
RLlib has to offer. You’ve already seen how flexible RLlib is: working with a range of
different environments, configuring your experiments, training on a curriculum, or
running imitation learning. This section gives you a taste of what else is possible.

98 | Chapter 4: Reinforcement Learning with Ray RLlib



With RLlib, you can completely customize the models and policies used under the
hood. If you’ve worked with deep learning before, you know how important it can
be to have a good model architecture in place. In RL this is often not as crucial as
in supervised learning, but it is still a vital part of successfully running advanced
experiments.

You can also change the way your observations are preprocessed by providing custom
preprocessors. For our simple maze examples, there was nothing to preprocess, but
when working with image or video data, preprocessing is often a crucial step.

In our AdvancedEnv we introduced states to avoid. Our agents had to learn to do
this, but RLlib has a feature to automatically avoid them through so-called parametric
action spaces. Loosely speaking, what you can do is “mask out” all undesired actions
from the action space for each point in time. In some cases it can also be necessary to
have variable observation spaces, which is also fully supported by RLlib.

We briefly touched on the topic of offline data. RLlib has a full-fledged Python API
for reading and writing experience data that can be used in various situations.

We have worked solely with DQN here for simplicity, but RLlib has an impressive
range of training algorithms. To name just one, the MARWIL algorithm is a complex
hybrid algorithm with which you can run imitation learning from offline data, while
also mixing in regular training on data generated “online.”

Summary
You’ve seen a selection of interesting RLlib features in this chapter. We covered
training multi-agent environments, working with offline data generated by another
agent, setting up a client-server architecture to split simulations from RL training,
and using curriculum learning to specify increasingly difficult tasks.

We’ve also given you a quick overview of the main concepts underlying RLlib and
how to use its CLI and Python API. In particular, we’ve shown how to configure your
RLlib algorithms and environments to your needs. As we’ve covered only a small part
of RLlib’s possibilities, we encourage you to read its documentation and explore its
API.

In the next chapter you’ll learn how to tune the hyperparameters of your RLlib
models and policies with Ray Tune.

Summary | 99

https://oreil.ly/OmQYE
https://oreil.ly/OmQYE




CHAPTER 5

Hyperparameter Optimization
with Ray Tune

In Chapter 4 you learned how to build and run various reinforcement learning
experiments. Running such experiments can be expensive, in terms of both compute
resources and the time it takes to run them. This expense only gets amplified as you
move on to more challenging tasks, since it is unlikely that you can just pick an
algorithm out of the box and run it to get a good result. In other words, at some point
you’ll need to tune the hyperparameters of your algorithms to get the best results. As
we’ll see in this chapter, tuning machine learning models is hard, but Ray Tune is an
excellent choice to help you tackle this task.

Ray Tune is a powerful tool for hyperparameter optimization (HPO). Not only does
it work in a distributed manner by default (and works in any other Ray library
discussed in this book), but it’s also one of the most feature-rich HPO libraries
available. To top this off, Tune integrates with some of the most prominent HPO
libraries out there, such as Hyperopt, Optuna, and many more. This makes Tune an
ideal candidate for distributed HPO experiments, whether you’re coming from other
libraries or starting from scratch.

In this chapter we’ll first revisit in a bit more depth why HPO is hard to do and
how you could naively implement it yourself with Ray. We then teach you the
core concepts of Ray Tune and how you can use it to tune the RLlib models built
in the previous chapter. To wrap things up, we’ll also have a look at how to use
Tune for supervised learning tasks, using frameworks like Keras. Along the way, we
demonstrate how Tune integrates with other HPO libraries and introduce you to
some of its more advanced features.

101



Tuning Hyperparameters
Let’s briefly recap the basics of hyperparameter optimization. If you’re familiar with
HPO, you can skip this section, but since we’re also discussing aspects of distributed
HPO, you might still benefit from following along. As always, you can find a note‐
book for this chapter in the book’s GitHub repository.

In our first RL experiment introduced in Chapter 3, we defined a very basic Q-
Learning algorithm whose internal state-action values were updated according to an
explicit update rule. After initialization, we never touched these model parameters
directly; they were learned by the algorithm. By contrast, in setting up the algorithm,
we explicitly chose a weight and a discount_factor parameter prior to training. We
didn’t tell you how we chose to set these parameters back then; we simply accepted
that they were good enough to crack the problem at hand.

In the same way, in Chapter 4 we initialized an RLlib algorithm with a config that
used two rollout workers for our DQN algorithm by setting num_rollout_workers=2.
Parameters like these are called hyperparameters, and finding good choices for them
can be crucial for successful experiments. The field of hyperparameter optimization is
devoted to efficiently finding such good choices.

Building a Random Search Example with Ray
Hyperparameters like the weight or the discount_factor of our Q-Learning algo‐
rithm are continuous parameters, so we can’t possibly test all combinations of them.
What’s more, these parameter choices may not be independent of each other. If we
want them to be selected for us, we also need to specify a value range for each of
them (both hyperparameters need to be between 0 and 1 in this case). So, how do we
determine good or even optimal hyperparameters?

Let’s look at an example that implements a naive yet effective approach to tuning
hyperparameters. This example will also allow us to introduce some terminology that
we’ll use later. The core idea is that we can attempt to randomly sample hyperparame‐
ters, run the algorithm for each sample, and then select the best run based on the
results. But to do the theme of this book justice, we don’t just want to run this in a
sequential loop; we want to compute our runs in parallel using Ray.

To keep things simple we’ll revisit our simple Q-Learning algorithm from Chapter 3.
We defined the signature of the main training function as train_policy(env,
num_episodes=10000, weight=0.1, discount_factor=0.9). That means we can
tune the weight and discount_factor parameters of our algorithm by passing in
different values to the train_policy function and see how the algorithm performs.
To do that, let’s define a so-called search space for our hyperparameters. For both

102 | Chapter 5: Hyperparameter Optimization with Ray Tune

https://oreil.ly/-afF8


parameters in question we uniformly sample values between 0 and 1, for a total of 10
choices.

Here’s what that looks like:

import random
search_space = []
for i in range(10):
    random_choice = {
        'weight': random.uniform(0, 1),
        'discount_factor': random.uniform(0, 1)
    }
    search_space.append(random_choice)

Next, we define an objective function, or simply objective. The role of an objective
function is to evaluate the performance of a given set of hyperparameters for a
desired task. In our case, we want to train our RL algorithm and evaluate the trained
policy. Recall that in Chapter 3 we also defined an evaluate_policy function for
precisely this purpose. The evaluate_policy function was defined to return the
average number of steps it took for an agent to reach the goal in the underlying
maze environment. In other words, we want to find a set of hyperparameters that
minimizes the result of our objective function. To parallelize the objective function,
we’ll use the ray.remote decorator to make our objective a Ray task:

import ray

@ray.remote

def objective(config):  
    environment = Environment()

    policy = train_policy(  
        environment,
        weight=config["weight"],
        discount_factor=config["discount_factor"]
    )

    score = evaluate_policy(environment, policy)  

    return [score, config]  

Pass in a dictionary with a hyperparameter sample into our objective.

Train our RL policy using the chosen hyperparameters.

Afterward we can evaluate the policy to retrieve the score we want to minimize.

Return both score and hyperparameter choice for later analysis.

Tuning Hyperparameters | 103



Finally, we can run the objective function in parallel using Ray by iterating over the
search space and collecting the results:

result_objects = [objective.remote(choice) for choice in search_space]
results = ray.get(result_objects)

results.sort(key=lambda x: x[0])
print(results[-1])

The actual results of this hyperparameter run are not very interesting because the
problem is easy to solve (most runs will return the optimum of eight steps, regardless
of the hyperparameters chosen). What’s more interesting here is how easy it is to
parallelize the objective function with Ray. In fact, we’d like to encourage you to
rewrite the preceding example to simply loop through the search space and call the
objective function for each sample, just to confirm how painfully slow such a serial
loop can be.

Conceptually, the three steps we took to run that example are representative of
how hyperparameter tuning works in general. First, you define a search space, then
you define an objective function, and finally you run an analysis to find the best
hyperparameters. In HPO it is common to speak of one evaluation of the objective
function per hyperparameter sample as a trial, and all trials form the basis for your
analysis. How parameters are sampled from the search space (in our case, randomly)
is up to a search algorithm to decide. In practice, finding good hyperparameters is
easier said than done, so let’s have a closer look at why this problem is so hard.

Why Is HPO Hard?
If you zoom out from the previous example, you can see several intricacies involved
in making the process of hyperparameter tuning work well. Here’s a quick overview
of the most important ones:

• Your search space can be composed of a large number of hyperparameters.•
These parameters might have different data types and ranges. Some parameters
might be correlated or even depend on others. Sampling good candidates from
complex, high-dimensional spaces is a difficult task.

• Picking parameters at random can work surprisingly well, but it’s not always the•
best option. In general, you need to test more complex search algorithms to find
the best parameters.

• In particular, even if you parallelize your hyperparameter search like we just did,•
a single run of your objective function can take a long time to complete. That
means you can’t afford to run too many searches overall. For instance, training
neural networks can take hours to complete, so your hyperparameter search
needs to be efficient.

104 | Chapter 5: Hyperparameter Optimization with Ray Tune



• When distributing search, you need to have enough compute resources available•
to run searches over the objective function effectively. For instance, you might
need a GPU to compute your objective function fast enough, so all your search
runs need to have access to a GPU. Allocating the necessary resources for each
trial is critical for speeding up your search.

• You need convenient tooling for your HPO experiments, like stopping bad runs•
early, saving intermediate results, restarting from previous trials, or pausing and
resuming runs.

As a mature, distributed HPO framework, Ray Tune addresses all these topics and
provides a simple interface for running hyperparameter tuning experiments. Before
we look into how Tune works, let’s rewrite our previous example to use Tune.

An Introduction to Tune
To get your first taste of Tune, porting over our naive Ray Core implementation of
random search to Tune is straightforward and follows the same three steps as before.
First, we define a search space, but this time using tune.uniform, instead of the
random library:

from ray import tune

search_space = {
    "weight": tune.uniform(0, 1),
    "discount_factor": tune.uniform(0, 1),
}

Next, we can define an objective function that looks almost the same as before. We
designed it like that. The only differences are that this time we return the score as a
dictionary, and we don’t need a ray.remote decorator because Tune will take care of
distributing this objective function for us internally:

def tune_objective(config):
    environment = Environment()
    policy = train_policy(
        environment,
        weight=config["weight"],
        discount_factor=config["discount_factor"]
    )
    score = evaluate_policy(environment, policy)

    return {"score": score}

With this tune_objective function defined, we can pass it to a tune.run call,
together with the search space we defined. By default, Tune will run a random search

An Introduction to Tune | 105



1 Tune uses the same resource model as Ray Core. Each tune_objective run will be executed on a different
CPU core by default. If you want, you can also specify a (fractional) GPU to be used for each trial.

for you, but you can also specify other search algorithms, as you will see soon.1

Calling tune.run generates random search trials for your objective and returns an
analysis object that contains information about the hyperparameter search. We can
get the best hyperparameters found by calling get_best_config and specifying the
metric and mode arguments (we want to minimize our score):

analysis = tune.run(tune_objective, config=search_space)
print(analysis.get_best_config(metric="score", mode="min"))

This quick example covers the basics of Tune, but there’s a lot more to unpack. The
tune.run function is quite powerful and takes a lot of arguments for you to configure
your runs. To understand these different configuration options, we first need to
introduce you to the key concepts of Tune.

How Does Tune Work?
To effectively work with Tune, you must understand six key concepts, four of which
you used in the previous example. Here’s an overview of Ray Tune’s components and
how you should think about them:

Search spaces
These spaces determine which parameters to select. Search spaces define the
range of values for each parameter and how they should be sampled. They
are defined as dictionaries and use Tune’s sampling functions to specify valid
hyperparameter values. You have already seen tune.uniform, but there are many
more options to choose from.

Trainables
A Trainable is Tune’s formal representation of an objective you want to “tune.”
Tune has a class-based API as well, but we will use only the function-based API
in this book. For us, a Trainable is a function with a single argument: a search
space, which reports scores to Tune. The easiest way to report a score is by
returning a dictionary with the value you’re interested in.

Trials
By triggering tune.run(...), Tune will set up trials and schedule them for
execution on your cluster. A trial contains all the necessary information about a
single run of your objective, given a set of hyperparameters.

106 | Chapter 5: Hyperparameter Optimization with Ray Tune

https://oreil.ly/6beij
https://oreil.ly/6beij


Analyses
Completing a tune.run call returns an ExperimentAnalysis object, with the
results of all trials. You can use this object to drill down into the results of your
trials.

Search algorithms
Tune supports a large variety of search algorithms, which are at the core of
how to tune your hyperparameters. So far you’ve implicitly encountered Tune’s
default search algorithm, which randomly selects hyperparameters from the
search space.

Schedulers
The last, crucial component of a Tune experiment is that of a scheduler. Schedu‐
lers plan and execute what the search algorithm selects. By default, Tune sched‐
ules trials selected by your search algorithm on a first-in-first-out (FIFO) basis.
In practice, you can think of schedulers as a way to speed up your experiments,
for instance by stopping unsuccessful trials early.

Figure 5-1 sums up these major Tune components and their relationships.

Figure 5-1. The core components of Ray Tune

In this chapter we exclusively use tune.run to illustrate Tune’s
functionality. Tune also had an API called Tuner added in Ray 2.0
as part of Ray AIR, which you will learn more about in Chapter 7
and use within Ray AIR in Chapter 10.
At the time of this writing, tune.run is still the more mature
API. For instance, experiments using tune.run(...) return an
ExperimentAnalysis object, a powerful tool for analyzing your
results. Analogous calls using the Tuner API return a so-called
ResultGrid instead. In the long run ResultGrid will succeed
ExperimentAnalysis, but it is not yet at feature parity.
To learn more, see the Tune API documentation on this topic.

An Introduction to Tune | 107

https://oreil.ly/pITtJ


2 In open source software, it’s important to determine who is responsible for maintaining an integration. We
will discuss this more in Chapter 11, which covers Ray’s ecosystem as a whole. In the case of Tune, among the
integrations listed here, the Hyperopt and Optuna integrations are maintained by the Ray Tune team; the rest
are community-sponsored.

Note that internally Tune runs are started on the driver process of your Ray Cluster,
which spawns several worker processes (using Ray actors) that execute individual
trials of your HPO experiment. Your trainables, defined on the driver, have to be
sent to the workers, and trial results need to be communicated to the driver running
tune.run(...).

Search spaces, trainables, trials, and analyses don’t need much additional explana‐
tion, and we’ll see more examples of each of those components in the rest of this
chapter. But search algorithms, searchers for short, and schedulers need a bit more
elaboration.

Search algorithms
All advanced search algorithms provided by Tune, and the many third-party HPO
libraries it integrates with, fall under the umbrella of Bayesian optimization. Unfortu‐
nately, going into the details of specific Bayesian search algorithms is far beyond
the scope of this book. The basic idea is that you update your beliefs about which
hyperparameter ranges are worth exploring based on the results of your previous
trials. Techniques using this principle make more informed decisions and, hence,
tend to be more efficient than independently sampling parameters (e.g., at random).

Apart from the basic random search we’ve seen already, and grid search, which
picks hyperparameters from a predefined “grid” of choices, Tune integrates with a
wide range of Bayesian optimization searchers. For instance, Tune integrates with
the popular Hyperopt and Optuna libraries,2 and you can use the popular TPE (Tree-
structured Parzen Estimator) searcher with Tune through both of these libraries.
Not only that, Tune also integrates with tools such as Ax, BlendSearch, FLAML,
Dragonfly, scikit-Optimize, Bayesian optimization, HpBandSter, Nevergrad, ZOOpt,
SigOpt, and HEBO. If you need to run HPO experiments with any of these tools on a
cluster or want to easily switch between them, Tune is the way to go.

To make things more concrete, let’s rewrite our basic random search Tune example
from earlier to use the Bayesian optimization library. To do so, make sure you install
this library in your Python environment first, e.g., with pip install bayesian-
optimization:

from ray.tune.suggest.bayesopt import BayesOptSearch

algo = BayesOptSearch(random_search_steps=4)

108 | Chapter 5: Hyperparameter Optimization with Ray Tune



tune.run(
    tune_objective,
    config=search_space,
    metric="score",
    mode="min",
    search_alg=algo,
    stop={"training_iteration": 10},
)

Note that we “warm start” our Bayesian optimization with four random steps at the
beginning, and we explicitly stop the trial runs after 10 training iterations.

Because we’re not just randomly selecting parameters with BayesOptSearch: the
search_alg we use in our Tune run needs to know which metric to optimize for
and whether to minimize or optimize this metric. As we’ve argued before, we want to
achieve a "min" "score".

Schedulers
Next, let’s discuss how to use trial schedulers in Tune to make your runs more
efficient. We also use this section to introduce a slightly different way to report your
metrics to Tune within an objective function.

So let’s say that instead of computing a score straight-up, like we did in the previous
examples, we compute an intermediate score in a loop. This is a situation that often
occurs in supervised machine learning scenarios, when training a model for several
iterations (we’ll see concrete applications of this in “Machine Learning with Tune” on
page 115). With good hyperparameter choices selected, this immediate score might
stagnate way before the loop in which it is computed. In other words, if we’re not
seeing enough incremental changes, why not stop the trial early? This is exactly one
of the cases Tune’s schedulers are built for.

Here’s a quick example of such an objective function. This is a toy example, but it will
help us think about the optimal hyperparameters we want Tune to find more easily
than if we started with a complex example:

def objective(config):

    for step in range(30):  
        score = config["weight"] * (step ** 0.5) + config["bias"]

        tune.report(score=score)  

search_space = {"weight": tune.uniform(0, 1), "bias": tune.uniform(0, 1)}

Often you may want to compute intermediate scores, e.g., in a “training loop.”

You can use tune.report to let Tune know about these intermediate scores.

An Introduction to Tune | 109



The score we want to minimize here is the square root of a positive number times a
weight, plus adding a bias term. It’s clear that both of these hyperparameters need to
be as small as possible to minimize the score for any positive x. Given that the square
root function “flattens out,” we might not have to compute all 30 passes through
the loop to find sufficiently good values for our two hyperparameters. If each score
computation took an hour, stopping early could be a huge boost in making your
experiments run quicker.

Let’s illustrate this idea by using the popular Hyperband algorithm as our trial sched‐
uler. This scheduler needs to be passed a metric and mode (again, we min-imize our
score). We also make sure to run for 10 samples so as not to stop prematurely:

from ray.tune.schedulers import HyperBandScheduler

scheduler = HyperBandScheduler(metric="score", mode="min")

analysis = tune.run(
    objective,
    config=search_space,
    scheduler=scheduler,
    num_samples=10,
)

print(analysis.get_best_config(metric="score", mode="min"))

Note that in this case we did not specify a search algorithm, which means that
Hyperband will run on parameters selected by random search. We also could have
combined this scheduler with another search algorithm instead. This would have
allowed us to pick better trial hyperparameters and stop bad trials early. However,
note that not every scheduler can be combined with search algorithms. Check Tune’s
scheduler compatibility matrix for more information.

To wrap up this discussion, apart from Hyperband, Tune includes distributed imple‐
mentations of early stopping algorithms such as the Median Stopping Rule, ASHA,
Population Based Training (PBT), and Population Based Bandits (PB2).

Configuring and Running Tune
Before looking into more concrete machine learning examples using Ray Tune, let’s
dive into some useful topics that help you get more out of your Tune experiments,
such as properly utilizing resources, stopping and resuming trials, adding callbacks to
your Tune runs, or defining custom and conditional search spaces.

110 | Chapter 5: Hyperparameter Optimization with Ray Tune

https://oreil.ly/B—​eH
https://oreil.ly/B—​eH


Specifying resources
By default, each Tune trial will run on one CPU and leverage as many CPUs as
available for concurrent trials. For instance, if you run Tune on a laptop with 8 CPUs,
any of the experiments computed so far in this chapter will spawn eight concurrent
trials and allocate one CPU for each trial. Changing this behavior can be controlled
using the resources_per_trial argument of a Tune run.

You can also determine the number of GPUs used per trial. Plus, Tune allows you
to use fractional resources; i.e., you can share resources between trials. So, let’s say
that you have a machine with 12 CPUs and 2 GPUs and you request the following
resources for your objective:

from ray import tune

tune.run(
    objective,
    config=search_space,
    num_samples=10,
    resources_per_trial={"cpu": 2, "gpu": 0.5}
)

That means Tune can schedule and execute up to four concurrent trials on your
machine, as this would max out GPU utilization on this machine (while you’d still
have four idle CPUs for other tasks). If you want, you can also specify the amount of
"memory" used by a trial by passing the number of bytes into resources_per_trial.
Also note that should you need to explicitly restrict the number of concurrent
trials, you can do so by passing in the max_concurrent_trials parameter to your
tune.run(...). In the preceding example, if you want to always keep one GPU
available for other tasks, you can limit the number of concurrent trials to two by
setting max_concurrent_trials = 2.

Note that everything we just exemplified for resources on a single machine naturally
extends to any Ray Cluster and its available resources. In any case, Ray will always try
to schedule the next trials, but it will wait and ensure enough resources are available
before executing them.

Callbacks and metrics
If you’ve spent some time investigating the outputs of the Tune runs we’ve started
in this chapter so far, you’ll have noticed that each trial comes equipped with a lot
of information by default, such as the trial ID, its execution date, and much more.
What’s interesting is that Tune not only allows you to customize the metrics you want
to report, you can also hook into a tune.run by providing callbacks. Let’s compute a
quick, representative example that does both.

An Introduction to Tune | 111



3 If you want to learn more about how to use callbacks in Tune or create your own callbacks, check out the user
guide on callbacks and metrics in Tune.

Slightly modifying a previous example, let’s say we want to log a specific message
whenever a trial returns a result. To do so, all you need to do is implement the
on_trial_result method on a Callback object from the ray.tune package.3 Here’s
how that would look for an objective function that reports a score:

from ray import tune
from ray.tune import Callback
from ray.tune.logger import pretty_print

class PrintResultCallback(Callback):
    def on_trial_result(self, iteration, trials, trial, result, **info):
        print(f"Trial {trial} in iteration {iteration}, "
              f"got result: {result['score']}")

def objective(config):
    for step in range(30):
        score = config["weight"] * (step ** 0.5) + config["bias"]
        tune.report(score=score, step=step, more_metrics={})

Note that, apart from the score, we also report step and more_metrics to Tune. In
fact, you could expose any other metric you’d like to track there, and Tune would
add it to its trial metrics. Here’s how you’d run a Tune experiment with our custom
callback and print the custom metrics we just defined:

search_space = {"weight": tune.uniform(0, 1), "bias": tune.uniform(0, 1)}

analysis = tune.run(
    objective,
    config=search_space,
    mode="min",
    metric="score",
    callbacks=[PrintResultCallback()])

best = analysis.best_trial
print(pretty_print(best.last_result))

Running this code will result in the following outputs (additional to what you’ll see in
any other Tune run). Note that we need to specify mode and metric explicitly here so
that Tune knows what we mean by best_result. First, you should see the output of
our callback, while the trials are running:

...
Trial objective_85955_00000 in iteration 57, got result: 1.5379782083952644
Trial objective_85955_00000 in iteration 58, got result: 1.5539087627537493
Trial objective_85955_00000 in iteration 59, got result: 1.569535794562848

112 | Chapter 5: Hyperparameter Optimization with Ray Tune

https://oreil.ly/1CDj2
https://oreil.ly/1CDj2


Trial objective_85955_00000 in iteration 60, got result: 1.5848760187255326
Trial objective_85955_00000 in iteration 61, got result: 1.5999446700996236
...

Then, at the very end of the program, we print the metrics of the best available trial,
which includes the three custom metrics we defined. The following output omits
some default metrics to make it more readable. We recommend that you run an
example like this on your own, in particular to get used to reading the outputs of
Tune trials (which can be a bit overwhelming due to their concurrent nature):

Result logdir: /Users/maxpumperla/ray_results/objective_2022-05-23_15-52-01
...
done: true
experiment_id: ea5d89c2018f483183a005a1b5d47302
experiment_tag: 0_bias=0.73356,weight=0.16088
hostname: mac
iterations_since_restore: 30
more_metrics: {}
score: 1.5999446700996236
step: 29
trial_id: '85955_00000'
...

We used on_trial_result as an example of a method to implement a custom Tune
Callback, but you have many other useful options that are relatively self-explanatory.
It’s not very helpful to list them all here, but some particularly useful callback meth‐
ods are on_trial_start, on_trial_error, on_experiment_end, and on_checkpoint.
The latter hints at an important aspect of Tune runs that we’ll discuss next.

Checkpoints, stopping, and resuming
The more Tune trials you kick off and the longer they each run individually, espe‐
cially in a distributed setting, the more you need a mechanism to protect you against
failures, stop a run, or pick a run up again from previous results. Tune makes
this possible by periodically creating checkpoints for you. The checkpoint cadence is
dynamically adjusted by Tune to ensure at least 95% of the time is spent on running
trials, and not too many resources are devoted to storing checkpoints.

In the example we just computed, the checkpoint directory, or logdir, used by default
is of the form ~/ray_results/<your-objective>_<date>_<time>. If you know this
checkpoint directory of your experiment, you can easily resume it like so:

analysis = tune.run(
    objective,
    name="<your-logdir>",
    resume=True,
    config=search_space)

Similarly, you can stop your trials by defining stopping conditions and explicitly
passing them to your tune.run. The easiest option for doing that is by providing a

An Introduction to Tune | 113



dictionary with a stopping condition. Here’s how you stop running our objective
analysis after reaching a training_iteration count of 10, a built-in metric of all
Tune runs:

tune.run(
    objective,
    config=search_space,
    stop={"training_iteration": 10})

One of the drawbacks of specifying a stopping condition this way is that it assumes
the metric in question is increasing. For instance, the score we compute starts high
and is something we want to minimize. To formulate a flexible stopping condition for
our score, the best way is to provide a stopping function as follows:

def stopper(trial_id, result):
    return result["score"] < 2

tune.run(
    objective,
    config=search_space,
    stop=stopper)

In situations that require a stopping condition with more context or explicit state,
you can also define a custom Stopper class to pass into the stop argument of your
Tune run, but we won’t cover this case here.

Custom and conditional search spaces
The last more advanced topic we’ll cover here is that of complex search spaces. So
far, we’ve looked only at hyperparameters that were independent of each other, but in
practice, some often depend on others. Also, while Tune’s built-in search spaces have
quite a lot to offer, sometimes you want to sample parameters from a more exotic
distribution or your own modules.

Here’s how you can handle both situations in Tune. Continuing with our simple
objective example, let’s say that instead of Tune’s tune.uniform you want to use the
random.uniform sampler from the numpy package for your weight parameter. And
then your bias parameter should be weight times a standard normal variable. Using
tune.sample_from you can tackle this situation (or more complex and nested ones)
like this:

from ray import tune
import numpy as np

search_space = {
    "weight": tune.sample_from(
        lambda context: np.random.uniform(low=0.0, high=1.0)
    ),

114 | Chapter 5: Hyperparameter Optimization with Ray Tune

https://oreil.ly/1GBqm


4 In case you were wondering why the “config” argument in tune.run was not called search_space, the
historical reason lies in this interoperability with RLlib config objects.

    "bias": tune.sample_from(
        lambda context: context.config.weight * np.random.normal()
    )}

tune.run(objective, config=search_space)

There are many more interesting features to explore in Ray Tune, but let’s switch
gears here and look into some machine learning applications using Tune.

Machine Learning with Tune
As we’ve seen, Tune is versatile and allows you to tune hyperparameters for any
objective you give it. In particular, you can use it with any machine learning frame‐
work you’re interested in. This section provides two examples. First, we’re going to
use Tune to optimize parameters of an RLlib experiment, and then we’ll tune a Keras
model using Optuna through Tune.

Using RLlib with Tune
RLlib and Tune have been designed to work together, so you can quite easily set
up an HPO experiment for your existing RLlib code. In fact, RLlib trainers can be
passed into the first argument of tune.run, as Trainable. You can choose between
the actual trainer class, like DQNTrainer, or its string representation, like "DQN". As
Tune metric you can pass any metric tracked by your RLlib experiment, for instance
"episode_reward_mean". And the config argument to tune.run is just your RLlib
trainer configuration, but you can use the full power of Tune’s search space API
to sample hyperparameters like the learning rate or training batch size.4 Here’s a
full example of what we just described, running a tuned RLlib experiment on the
CartPole-v0 Gym environment:

from ray import tune

analysis = tune.run(
    "DQN",
    metric="episode_reward_mean",
    mode="max",
    config={
        "env": "CartPole-v1",
        "lr": tune.uniform(1e-5, 1e-4),
        "train_batch_size": tune.choice([10000, 20000, 40000]),
    },
)

Machine Learning with Tune | 115



Tuning Keras Models
To wrap up this chapter, let’s look at a slightly more involved example. As we men‐
tioned, this is not primarily a machine learning book but rather an introduction
to Ray and its libraries. Thus we can neither introduce you to the basics of ML
nor spend much time on introducing ML frameworks in detail. So, in this section
we assume familiarity with Keras and its API and some basic knowledge about
supervised learning. If you do not have these prerequisites, you should still be able
to follow along and focus on the Ray Tune–specific parts. You can view the following
example as a more realistic scenario of applying Tune to machine learning workloads.

From a bird’s-eye view, we’ll take the following steps:

1. Load a common dataset.1.
2. Prepare it for an ML task.2.
3. Define a Tune objective by creating a deep learning model with Keras that reports3.

an accuracy metric to Tune.
4. Use Tune’s Hyperopt integration to define a search algorithm that tunes a set of4.

hyperparameters of our Keras model.

The Tune workflow remains the same: we define an objective and a search space and
then use tune.run with the configuration we want. On a high level, the process of
using Tune with any ML framework works as shown in Figure 5-2.

Figure 5-2. Tune sets up a distributed HPO for your ML models by executing trials on
Ray workers in your cluster and reporting metrics back to the driver

To define a dataset to train on, let’s write a simple load_data utility function that
loads the famous MNIST data that ships with Keras. MNIST consists of 28 × 28
pixel images of handwritten digits. We normalize the pixel values to be between 0
and 1 and make the labels for those 10 digits categorical variables. Here’s how you
can do this purely with Keras’s built-in functionality (make sure to use pip install
tensorflow before running this):

116 | Chapter 5: Hyperparameter Optimization with Ray Tune



5 This can even lead to a rare condition in which one worker starts downloading the data and another one
checks for and sees a local copy. But since the download is not complete, the second worker will try to open
a potentially corrupted file. This goes to show that, while Ray takes care of a lot of things in the background,
you still need to be mindful about how you write your code.

from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical

def load_data():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    num_classes = 10
    x_train, x_test = x_train / 255.0, x_test / 255.0
    y_train = to_categorical(y_train, num_classes)
    y_test = to_categorical(y_test, num_classes)
    return (x_train, y_train), (x_test, y_test)

load_data()

Note that after defining load_data, we call it once so that the data gets downloaded
locally. That’s because when you call mnist.load_data(), it first looks for a locally
cached copy. If we didn’t load the data first, several Tune workers would try to
download the data in parallel, which can lead to problems.5

Next, we define a Tune objective function, or trainable, by loading the data we just
defined, setting up a sequential Keras model with hyperparameters selected from the
config we pass into our objective, and then compile and fit the model. To define
our deep learning model, we first flatten the MNIST input images to vectors and
then add two fully connected layers (called Dense in Keras) and a Dropout layer in
between.

The hyperparameters we want to tune are the activation function of the first Dense
layer, the Dropout rate, and the number of “hidden” output units of the first layer. We
could tune any other hyperparameter of this model the same way; this selection is just
an example.

We could manually report a metric of interest in the same way we did in other
examples in this chapter (e.g., by returning a dictionary in our objective or using
tune.report(...)). But since Tune comes with a proper Keras integration, we can
use the so-called TuneReportCallback as a custom Keras callback that we pass into
our model’s fit method. This is what our Keras objective function looks like:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Dropout
from ray.tune.integration.keras import TuneReportCallback

Machine Learning with Tune | 117



def objective(config):
    (x_train, y_train), (x_test, y_test) = load_data()
    model = Sequential()
    model.add(Flatten(input_shape=(28, 28)))
    model.add(Dense(config["hidden"], activation=config["activation"]))
    model.add(Dropout(config["rate"]))
    model.add(Dense(10, activation="softmax"))

    model.compile(loss="categorical_crossentropy", metrics=["accuracy"])
    model.fit(x_train, y_train, batch_size=128, epochs=10,
              validation_data=(x_test, y_test),
              callbacks=[TuneReportCallback({"mean_accuracy": "accuracy"})])

Next, let’s use a custom search algorithm to tune this objective. Specifically, we’re
using the HyperOptSearch algorithm, which gives us access to Hyperopt’s TPE algo‐
rithm through Tune. To use this integration, make sure to install Hyperopt on your
machine (for instance with pip install hyperopt==0.2.7). HyperOptSearch allows
us to define a list of promising initial hyperparameter choices to investigate.

This is entirely optional, but sometimes you might have good guesses to start from.
In our case, we go with a dropout "rate" of 0.2, 128 "hidden" units, and a rectified
linear unit (ReLU) "activation" function initially. Other than that, we can define
a search space with the tune utility just as we did before. Finally, we can get an
analysis object to determine the best hyperparameters found by passing everything
into a tune.run call:

from ray import tune
from ray.tune.suggest.hyperopt import HyperOptSearch

initial_params = [{"rate": 0.2, "hidden": 128, "activation": "relu"}]
algo = HyperOptSearch(points_to_evaluate=initial_params)

search_space = {
    "rate": tune.uniform(0.1, 0.5),
    "hidden": tune.randint(32, 512),
    "activation": tune.choice(["relu", "tanh"])
}

analysis = tune.run(
    objective,
    name="keras_hyperopt_exp",
    search_alg=algo,
    metric="mean_accuracy",
    mode="max",
    stop={"mean_accuracy": 0.99},
    num_samples=10,
    config=search_space,
)
print("Best hyperparameters found were: ", analysis.best_config)

118 | Chapter 5: Hyperparameter Optimization with Ray Tune



Note that we’re using the full power of Hyperopt here, without having to learn any
of its specifics. Hyperopt itself is not distributed (by default). By using Hyperopt
through the Tune API, we can leverage it for distributed HPO on a Ray Cluster.

We chose the combination of Keras and Hyperopt as example of using Tune with an
advanced ML framework and a third-party HPO library. But we could have chosen
any other machine learning library and practically any other HPO library supported
by Tune. If you’re interested in diving deeper into any of the many integrations Tune
has to offer, check out the Ray Tune documentation examples.

Summary
Tune is arguably one of the most versatile HPO tools you can choose today. It’s
feature-rich, offering many search algorithms, advanced schedulers, complex search
spaces, custom stoppers, and many other features that we couldn’t cover in this chap‐
ter. Also, it seamlessly integrates with most notable HPO tools, such as Optuna or
Hyperopt, making it easy to migrate from these tools or simply leverage their features
through Tune. You can view Ray Tune as a flexible, distributed HPO framework that
extends others that might work only on single machines.

Summary | 119

https://oreil.ly/rKtZr




CHAPTER 6

Data Processing with Ray

Edward Oakes

In Chapter 5 you learned how to tune hyperparameters for your machine learning
experiments. Of course, the key component to applying machine learning in practice
is data. In this chapter we’ll explore the core set of data processing capabilities on Ray:
Ray Data.

While not meant to replace more general data processing systems such as Apache
Spark or Apache Hadoop, Ray Data offers basic data processing capabilities and a
standard way to load, transform, and pass data to different parts of a Ray application.
This enables an ecosystem of libraries on Ray to speak the same language so users can
mix and match functionality in a framework-agnostic way to meet their needs.

The central component of the Ray Data ecosystem, Ray Datasets, offers the core
abstractions for loading, transforming, and passing references to data in a Ray Clus‐
ter. Datasets are the “glue” that enables different libraries to interoperate on top of
Ray. You’ll see this in action in “External Library Integrations” on page 134, where we
show how you can do dataframe processing using the full expressiveness of the Dask
API using Dask on Ray and transform the result into a dataset. The main benefits of
Ray Datasets are:

Flexibility
It supports a wide range of data formats, work seamlessly with library integra‐
tions like Dask on Ray, and can be passed between Ray tasks and actors without
copying data.

Performance for ML workloads
It offers important features like accelerator support, pipelining, and global ran‐
dom shuffles that accelerate ML training and inference workloads.

121



This chapter will familiarize you with the core concepts for doing data processing
on Ray and help you understand how to accomplish common patterns as well as
why you would choose to use different pieces to accomplish a task. We assume a
basic familiarity with data processing concepts such as map, filter, groupby, and
partition, but it’s not intended to be a tutorial on data science in general or a deep
dive into the internals of how these operations are implemented. Readers with a
limited data science background should not have a problem following along.

We’ll start introducing the core building block: Ray Datasets. This will cover the
architecture, basics of the API, and an example of how Ray Datasets can enable build‐
ing complex data-intensive applications. Then, we’ll briefly cover external library
integrations on Ray, focusing on Dask on Ray. Finally, we’ll bring it all together by
building a scalable end-to-end machine learning pipeline in a single Python script.

The notebook for this chapter is available on GitHub along with
the data used in the end-to-end example.

Ray Datasets
The main goal of Ray Datasets is to support a scalable, flexible abstraction for data
processing on Ray. Datasets are intended to be the standard way to read, write, and
transfer data across the full ecosystem of Ray libraries. One of the most powerful
uses of Ray Datasets is acting as the data ingest and preprocessing layer for machine
learning workloads, allowing you to efficiently scale up training using Ray Train and
Ray Tune. We explore this in more detail in “Building an ML Pipeline” on page 136.

If you’ve worked with other distributed data processing APIs such as Apache Spark’s
Resilient Distributed Datasets in the past, the Ray Datasets API will be very familiar.
The core of the API leans on functional programming and offers standard function‐
ality such as reading and writing different data sources; performing basic transforma‐
tions like map, filter, and sort; and performing some simple aggregations such as
groupby.

Under the hood, Ray Datasets implements distributed Apache Arrow. Apache Arrow
is a unified columnar data format for data processing libraries and applications.
Integrating with Apache Arrow means that Datasets get interoperability with many of
the most popular processing libraries, such as NumPy and Pandas, out of the box.

A Ray Dataset consists of a list of Ray object references, each of which points at a
“block” of data. These blocks are either Arrow tables or Python lists (for data that
isn’t supported by the Arrow format) in Ray’s shared memory object store, and the

122 | Chapter 6: Data Processing with Ray

https://oreil.ly/CjHSJ
https://oreil.ly/5Ga8-
https://arrow.apache.org


compute over the data such as for map or filter operations happens in Ray tasks (and
sometimes actors).

Because Ray Datasets relies on the core Ray primitives of tasks and objects in the
shared memory object store, it inherits key benefits of Ray: scalability to hundreds
of nodes, efficient memory usage due to sharing memory across processes on the
same node, as well as object spilling and recovery to gracefully handle failures.
Additionally, because Datasets are just lists of object references, they can also be
passed between tasks and actors efficiently without needing to make a copy of the
data, which is crucial for making data-intensive applications and libraries scalable.

Ray Datasets Basics
This section will give an overview of Ray Datasets, covering how to get started read‐
ing, writing, and transforming datasets. This is not a comprehensive reference but
rather an introduction to the basic concepts so we can build up to some interesting
examples later, showing what makes Ray Datasets powerful. For up-to-date informa‐
tion on what’s supported and exact syntax, see the Ray Datasets documentation.

To follow along with the examples in this section, make sure Ray Datasets is installed
locally:

pip install "ray[data]==2.2.0"

Creating a Ray Dataset
First, let’s create a simple Dataset and perform some basic operations on it:

import ray

# Create a dataset containing integers in the range [0, 10000).
ds = ray.data.range(10000)

# Basic operations: show the size of the dataset, get a few samples, 
# print the schema.
print(ds.count())  # -> 10000
print(ds.take(5))  # -> [0, 1, 2, 3, 4]
print(ds.schema())  # -> <class 'int'>

Here we created a Dataset containing the numbers from 0 to 10,000 and then printed
some basic information about it: the total number of records, a few samples, and the
schema.

Reading from and writing to storage
Of course, for real workloads you’ll often want to read from and write to persistent
storage to load your data and write the results. Writing and reading Ray Datasets
is simple; for example, to write a Dataset to a CSV file and then load it back into
memory, we just need to use the built-in write_csv and read_csv utilities:

Ray Datasets | 123

https://oreil.ly/aRTsX


1 If you’re interested in following an example that reads actual data from an S3 bucket, see the Batch Inference
example in Ray’s documentation.

# Save the dataset to a local file and load it back.
ray.data.range(10000).write_csv("local_dir")
ds = ray.data.read_csv("local_dir")
print(ds.count())

Datasets supports a number of common serialization formats such as CSV, JSON, and
Parquet and can read from or write to local disk as well as remote storage like HDFS
or AWS S3.

In the preceding example, we provided just a local file path ("local_dir") so the
dataset was written to a directory on the local machine. If we wanted to write to
and read from S3 instead, we would provide a path like "s3://my_bucket/" and
Datasets would automatically handle efficiently reading and writing remote storage,1

parallelizing the requests across many tasks to improve throughput.

Note that Ray Datasets also supports custom data sources that you can use to write to
any external data storage system that isn’t supported out of the box.

Built-in transformations
Now that we understand the basic APIs around how to create and inspect Datasets,
let’s take a look at some of the built-in operations we can do on them. The following
code sample shows three basic operations that Ray Datasets supports:

ds1 = ray.data.range(10000)
ds2 = ray.data.range(10000)

ds3 = ds1.union(ds2)  
print(ds3.count())  # -> 20000

# Filter the combined dataset to only the even elements.

ds3 = ds3.filter(lambda x: x % 2 == 0)  
print(ds3.count())  # -> 10000
print(ds3.take(5))  # -> [0, 2, 4, 6, 8]

# Sort the filtered dataset.

ds3 = ds3.sort()  
print(ds3.take(5))  # -> [0, 0, 2, 2, 4]

union two Datasets together. The result is a new Dataset that contains all the
records of both.

filter the elements of a Dataset to include only even integers by providing a
custom filter function.

124 | Chapter 6: Data Processing with Ray

https://oreil.ly/9C82a


sort the Dataset.

In addition to these operations, Datasets also support common aggregations you
might expect such as groupby, sum, min, etc. You can also pass a user-defined function
for custom aggregations.

Blocks and repartitioning
One important thing to keep in mind when using Ray Datasets is the concept of
blocks. Blocks are the underlying chunks of data that make up a Dataset; operations
are applied to the underlying data one block at a time. If the number of blocks in a
Dataset is too high, each block will be small, and there will be a lot of overhead for
each operation. If the number of blocks is too small, operations won’t be able to be
parallelized as efficiently.

If we take a peek under the hood of the previous example, we can see that the initial
datasets we created each had 200 blocks by default. When we combined them, the
resulting Dataset had 400 blocks. Given that the number of blocks is important for
efficiency, we may want to reshuffle the data to match our original 200 blocks and
retain the same parallelism. This process of changing the number of blocks is called
repartitioning, and Ray Datasets offers a simple .repartition(num_blocks) API to
achieve it. Let’s use the API to repartition our resulting dataset back into 200 blocks:

ds1 = ray.data.range(10000)
print(ds1.num_blocks())  # -> 200
ds2 = ray.data.range(10000)
print(ds2.num_blocks())  # -> 200
ds3 = ds1.union(ds2)
print(ds3.num_blocks())  # -> 400

print(ds3.repartition(200).num_blocks())  # -> 200

Blocks also control the number of files that are created when we write a Dataset to
storage (so if you want all of the data to be coalesced into a single output file, you
should call .repartition(1) before writing it).

Schemas and data formats
To this point, we’ve been operating on simple Ray Datasets made up only of integers.
However, for more complex data processing we often want to have a schema, allow‐
ing us to more easily comprehend the data and enforce types on each column.

Given that Datasets are meant to be the point of interoperation for applications and
libraries on Ray, they are designed to be agnostic to a specific datatype and offer
flexibility to read, write, and convert between many popular data formats. Datasets
support Arrow’s columnar format, which enables converting between different types

Ray Datasets | 125



of structured data such as Python dictionaries, DataFrames, and serialized Parquet
files.

The simplest way to create a Dataset with a schema is to create it from a list of Python
dictionaries:

ds = ray.data.from_items([{"id": "abc", "value": 1}, {"id": "def", "value": 2}])
print(ds.schema())  # -> id: string, value: int64

In this case, the schema was inferred from the keys in the dictionaries we passed in.
We can also convert to/from data types from popular libraries such as Pandas:

pandas_df = ds.to_pandas()  # pandas_df will inherit the schema from our Dataset.

Here we went from a Dataset to a Pandas DataFrame, but this also works in reverse: if
you create a Dataset from a DataFrame, it will automatically inherit the schema from
the DataFrame.

Computing Over Ray Datasets
In the previous section, we introduced some of the functionality built in with Ray
Datasets such as filtering, sorting, and creating unions. However, one of the most
powerful parts of Ray Datasets is that it allows you to harness the flexible compute
model of Ray and perform computations efficiently over large amounts of data.

The primary way to perform a custom transformation on a Dataset is using .map().
This allows you to pass a custom function that will be applied to the records of a
Dataset. A basic example might be to square the records of a Dataset:

ds = ray.data.range(10000).map(lambda x: x ** 2)
ds.take(5)  # -> [0, 1, 4, 9, 16]

In this example, we passed a simple lambda function, and the data we operated on
was integers, but we could pass any function here and operate on structured data that
supports the Arrow format.

We can also choose to map batches of data instead of individual records
using .map_batches(). Some types of computations are much more efficient when
they’re vectorized, meaning that they use an algorithm or implementation that is more
efficient operating on a set of items instead of one at a time.

Revisiting our simple example of squaring the values in the Dataset, we can rewrite
it to be performed in batches and use the numpy.square-optimized implementation
instead of the naive Python implementation:

import numpy as np

ds = ray.data.range(10000).map_batches(lambda batch: np.square(batch).tolist())
ds.take(5)  # -> [0, 1, 4, 9, 16]

126 | Chapter 6: Data Processing with Ray



2 Parquet is a structured, column-oriented format that enables efficient compression, data storage, and data
retrieval. Many example and real-world datasets use Parquet, so it is used in the example provided. However,

Vectorized computations are especially useful on GPUs when performing deep learn‐
ing training or inference. However, generally performing computations on GPUs also
has significant fixed cost due to needing to load model weights or other data into the
GPU RAM. For this purpose, Ray Datasets supports mapping data using Ray actors.
Ray actors are long-lived and can hold state, as opposed to stateless Ray tasks, so
we can cache expensive operations costs by running them in the actor’s constructor
(such as loading a model onto a GPU).

For example, to perform batch inference using Datasets, we need to pass a class
instead of a function, specify that this computation should run using actors, and
use .map_batches() so we can perform vectorized inference. Datasets will automati‐
cally autoscale a group of actors to perform the map operation:

def load_model():
    # Returns a dummy model for this example.
    # In reality, this would likely load some model weights onto a GPU.
    class DummyModel:
        def __call__(self, batch):
            return batch

    return DummyModel()

class MLModel:
    def __init__(self):
        # load_model() will only run once per actor that's started.
        self._model = load_model()

    def __call__(self, batch):
        return self._model(batch)

ds.map_batches(MLModel, compute="actors")

To run the inference on a GPU, we would pass num_gpus=1 to the map_batches call to
specify that the actors running the map function each require a GPU.

Dataset Pipelines
By default, Dataset operations are blocking, meaning they run synchronously from
start to finish and there is only a single operation happening at a time. This pattern
can be very inefficient for some workloads, however. For example, consider the
following set of Dataset transformations on Parquet data that might be used to do
batch inference for a machine learning model:2

Ray Datasets | 127



the code could easily be modified to use a different format by changing the read_parquet and write_parquet
calls.

ds = (ray.data.read_parquet("s3://my_bucket/input_data")  

      .map(cpu_intensive_preprocessing)  

      .map_batches(gpu_intensive_inference, compute="actors", num_gpus=1)  

      .repartition(10))  

ds.write_parquet("s3://my_bucket/output_predictions") 

There are five stages to this process, and each stresses different parts of the system:

Reading from remote storage requires ingress bandwidth to the cluster and may
be limited by the throughput of the storage system. In this stage, a group of Ray
tasks is spawned that will read from remote storage in parallel, and the resulting
blocks of data are stored in the Ray object store.

Preprocessing the inputs requires CPU resources. The objects from the first
phase are passed into a group of tasks that will execute the cpu_intensive_
preprocessing function on each block.

Vectorized inference on the model requires GPU resources. The same process as
in the second stage is repeated for gpu_intensive_inference, except this time
the function is run on actors that are each allocated a GPU, and multiple blocks
are passed into each function call (in batches). Actors are used for this step to
avoid repeatedly reloading the model used for inference onto the GPU.

Repartitioning requires network bandwidth within the cluster. After completing
stage 3, more tasks are spawned to repartition the data into 10 blocks and write
each of those 10 blocks to remote storage.

Writing to remote storage requires egress bandwidth from the cluster and may be
limited by the throughput of storage once again.

Figure 6-1 depicts a basic implementation where each stage runs in sequence. This
naive implementation idles resources because each stage is blocking and run in
sequence. For example, because GPU resources are used only in the final stage, they
will be idle waiting for all of the data to be loaded and preprocessed.

128 | Chapter 6: Data Processing with Ray



Figure 6-1. A naive Dataset computation, leading to idle resources between stages

In this scenario, it would be more efficient to pipeline the stages instead and allow
them to overlap as shown in Figure 6-2. This means that as soon as some data has
been read from storage, it is fed into the preprocessing stage, then to the inference
stage, and so on.

Figure 6-2. An optimized DatasetPipeline that enables overlapping compute between
stages and reduces idle resources

This pipelining will improve the overall resource usage of the end-to-end workload,
improving throughput and therefore decreasing the cost it takes to run the computa‐
tion (fewer idle resources is better!).

Datasets can be converted to DatasetPipelines using ds.window(), enabling the pipe‐
lining behavior that we want in this scenario. A window specifies the number of
blocks that will be passed through a stage in the pipeline before being passed to
the next stage. This behavior can be tuned using the blocks_per_window parameter,
which defaults to 10.

Let’s rewrite the inefficient pseudocode to use a DatasetPipeline instead:

ds = (ray.data.read_parquet("s3://my_bucket/input_data")
      .window(blocks_per_window=5)
      .map(cpu_intensive_preprocessing)
      .map_batches(gpu_intensive_inference, compute="actors", num_gpus=1)
      .repartition(10))
ds.write_parquet("s3://my_bucket/output_predictions")

Ray Datasets | 129

https://oreil.ly/Hr2d_


The only modification made was the addition of a .window() call after read_parquet
and before the preprocessing stage. Now the Dataset has been converted to a Dataset‐
Pipeline and its stages will proceed in parallel in five-block windows, decreasing idle
resources and improving efficiency.

DatasetPipelines can also be created using ds.repeat() to repeat stages in a pipeline
a finite or infinite number of times. This will be explored further in the next section,
where we’ll use it for a training workload. Of course, pipelining can be equally
beneficial for training performance in addition to inference.

Example: Training Copies of a Classifier in Parallel
One of the key benefits of Datasets is that they can be passed between tasks and
actors. In this section, we’ll explore how this functionality can be used to write effi‐
cient implementations of complex distributed workloads such as distributed hyper‐
parameter tuning and machine learning training. We’ll implement an example of
distributed training of ML models in this section, a topic that we’ll cover in much
more detail in Chapter 7 when we introduce you to Ray Train.

As discussed in Chapter 5, a common pattern in machine learning training is to
explore a range of hyperparameters to find the ones that result in the best model.
We may want to run across a wide range of hyperparameters, and doing this naively
could be very expensive. Ray Data allows us to easily share the same in-memory data
across a range of parallel training runs in a single Python script: we can load and
preprocess the data once and then pass a reference to it to many downstream actors
who can read the data from shared memory.

Additionally, sometimes when working with very large datasets, it is not feasible to
load the full training data into memory in a single process or on a single machine.
In this case, it’s common to shard the data, which means to give each worker its own
subset of the data that can fit into memory. This local subset of the data is called
a data shard. After each worker trains on its shard of data in parallel, the results
are combined either synchronously or asynchronously using a parameter server. Two
important considerations can make this difficult to get right:

• Many distributed training algorithms take a synchronous approach, requiring the•
workers to synchronize their weights after each training epoch. This means there
needs to be some coordination between the workers to maintain consistency
between which batch of data they are operating on.

• It’s important that each worker gets a random sample of the data during each•
epoch. A global random shuffle has been shown to perform better than local
shuffle or no shuffle.

130 | Chapter 6: Data Processing with Ray



3 SGD stands for stochastic gradient descent, which is a common optimization algorithm used in machine
learning, and specifically deep learning.

4 In this and the following two chapters, we’re discussing more advanced ML examples that need additional
dependencies. We pin the versions of these dependencies here and in the book’s GitHub repo to ensure the
examples work as expected. Having said that, the examples very likely work with a relatively wide range of
versions, as long as you make sure they’re not too old.

Figure 6-3 illustrates how the ray.data package is used to create shards of data
forming a Ray Dataset from a given input dataset.

Figure 6-3. Creating a Ray Dataset from input data with the ray.data package

Let’s walk through an example of how we can implement this type of pattern using
Ray Datasets. In the example, we will train multiple copies of a machine learning
model using different hyperparameters across different workers in parallel.

We’ll be training a scikit-learn SGDClassifier algorithm on a generated binary classi‐
fication dataset, and the hyperparameter we’ll tune is the regularization term of this
classifier.3 The actual details of the ML task and model aren’t too important to this
example: you could replace the model and data with any number of examples. The
main thing to focus on here is how we orchestrate the data loading and computation
using Datasets.

To follow along with the examples in this section, make sure you have Ray Datasets
and scikit-learn installed locally:4

pip install "ray[data]==2.2.0" "scikit-learn==1.0.2"

First, let’s define our TrainingWorker that will train a copy of the classifier on the
data:

from sklearn import datasets
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import train_test_split

@ray.remote
class TrainingWorker:

Ray Datasets | 131

https://oreil.ly/learning_ray_repo


    def __init__(self, alpha: float):
        self._model = SGDClassifier(alpha=alpha)

    def train(self, train_shard: ray.data.Dataset):
        for i, epoch in enumerate(train_shard.iter_epochs()):
            X, Y = zip(*list(epoch.iter_rows()))
            self._model.partial_fit(X, Y, classes=[0, 1])

        return self._model

    def test(self, X_test: np.ndarray, Y_test: np.ndarray):
        return self._model.score(X_test, Y_test)

There are three important things to note about the TrainingWorker:

• It’s a simple wrapper around the SGDClassifier and instantiates it with a given•
alpha value.

• The main training function happens in the train method. For each epoch, it•
trains the classifier on the data available.

• We also have a test method that can be used to run the trained model against a•
testing set.

Now, let’s instantiate a number of TrainingWorker instances with different hyper‐
parameters (alpha values):

ALPHA_VALS = [0.00008, 0.00009, 0.0001, 0.00011, 0.00012] 

print(f"Starting {len(ALPHA_VALS)} training workers.")
workers = [TrainingWorker.remote(alpha) for alpha in ALPHA_VALS]

Next, we generate training and validation data and convert the training data to a
Dataset. Here, we’re using .repeat() to create a DatasetPipeline. This defines the
number of epochs that our training will run for. In each epoch, the subsequent
operations will be applied to the Dataset, and the workers will be able to iterate over
the resulting data. We also shuffle the data randomly and shard it to be passed to the
training workers, each getting an equal chunk:

X_train, X_test, Y_train, Y_test = train_test_split(  
    *datasets.make_classification()
)

train_ds = ray.data.from_items(list(zip(X_train, Y_train)))  

shards = (train_ds.repeat(10)  

          .random_shuffle_each_window()  

          .split(len(workers), locality_hints=workers))  

ray.get([
    worker.train.remote(shard) 

132 | Chapter 6: Data Processing with Ray



    for worker, shard in zip(workers, shards

)])  

Generate training and validation data for a classification problem.

Convert the training data to a Dataset by using from_items.

Define a DatasetPipeline using .repeat. This is similar to using .window as we
showed earlier, but it allows us to iterate over the same dataset multiple times (in
this case, 10).

Shuffle the data randomly each time it is repeated.

We want each worker to have its own local shard of the data, so we split the
DatasetPipeline into multiple smaller ones that can be passed to each worker.

Wait for training to complete on all the workers.

To run the training on the workers, we invoke their train method and pass in
one shard of the DatasetPipeline to each. We then block, waiting for training to
complete across all the workers. To summarize what happens during this phase:

1. Each epoch, each worker gets a random shard of the data.1.
2. The worker trains its local model on the shard of data assigned to it.2.
3. Once a worker has finished training on the current shard, it blocks until the other3.

workers have finished.
4. The preceding three steps repeat for the remaining epochs (in this case, 10 total).4.

Finally, we can test the trained models from each worker on some test data to
determine which alpha value produced the most accurate model:

# Get validation results from each worker.
print(ray.get([worker.test.remote(X_test, Y_test) for worker in workers]))

In reality, for this type of workload you should reach for Ray Tune or Ray Train,
which we’ll cover in the next chapter, but this example conveys the power of Ray
Datasets for machine learning workloads. In just a few snippets of Python code, we
implemented a complex distributed hyperparameter tuning and training workflow
that could easily be scaled up to hundreds of machines and is agnostic to any
framework or specific ML task.

Ray Datasets | 133



External Library Integrations
While Ray Datasets supports a number of common data processing functionalities
out of the box, as we’ve discussed, it’s not a replacement for full data processing
systems. Instead, as shown in Figure 6-4, it’s more focused on performing “last mile”
processing such as basic data loading, cleaning, and featurization before ML training
or inference.

Figure 6-4. A typical workflow using Ray for machine learning: use external systems for
primary data processing and ETL, use Ray Datasets for last-mile preprocessing

However, a number of other, more fully featured DataFrame and relational data
processing systems integrate with Ray, such as:

• Dask on Ray•
• RayDP (Spark on Ray)•
• Modin (Pandas on Ray)•
• MARS on Ray•

These are standalone data processing libraries you may be familiar with outside the
context of Ray. Each of these tools has an integration with the Ray Core that enables
more expressive data processing than comes with the built-in Ray Datasets while still
using Ray’s deployment tooling, scalable scheduling, and shared memory object store
for exchanging data. As shown in Figure 6-5, this complements Ray Datasets and
enables end-to-end data processing on Ray.

Figure 6-5 shows the benefit of Ray Data ecosystem integrations, enabling more
expressive data processing on Ray. These libraries integrate with Ray Datasets to feed
into downstream libraries such as Ray Train.

134 | Chapter 6: Data Processing with Ray



Figure 6-5. Ray Data ecosystem integrations enable more expressive data processing
on Ray

For the purposes of this book, we’ll explore Dask on Ray in slightly more depth to
give you a feel for what these integrations look like. If you’re interested in the details
of a specific integration, see the latest Ray documentation for up-to-date information.

To follow along with the examples in this section, install Ray and Dask:

pip install "ray[data]==2.2.0" "dask==2022.2.0"

Dask is a Python library for parallel computing that is specifically targeted at scaling
analytics and scientific computing workloads to a cluster. One of the most popular
features of Dask is Dask DataFrames, which offers a subset of the Pandas DataFrame
API that can be scaled to a cluster of machines in cases where processing in memory
on a single node is not feasible. DataFrames work by creating a task graph that is
submitted to a scheduler for execution. The most typical way to execute Dask Data‐
Frames operations is using the Dask distributed scheduler, but there is a pluggable
API that allows other schedulers to execute these task graphs as well.

Ray comes packaged with a Dask scheduler backend, allowing Dask DataFrame task
graphs to be executed as Ray tasks and therefore use the Ray scheduler and shared
memory object store. This doesn’t require modifying the core DataFrames code at all;
instead, to run using Ray, all you need to do is first connect to a running Ray Cluster
(or run Ray locally) and then enable the Ray scheduler backend:

import ray
from ray.util.dask import enable_dask_on_ray

ray.init()  # Start or connect to Ray.
enable_dask_on_ray()  # Enable the Ray scheduler backend for Dask.

External Library Integrations | 135

https://oreil.ly/5MpG-
https://dask.org
https://oreil.ly/k3yJb


Now we can run regular Dask DataFrames code and have it scaled across the Ray
Cluster. For example, we might want to do some time-series analysis using standard
DataFrame operations like filter and groupby and compute the standard deviation
(example taken from Dask documentation):

import dask

df = dask.datasets.timeseries()
df = df[df.y > 0].groupby("name").x.std()
df.compute()  # Trigger the task graph to be evaluated.

If you’re used to Pandas or other DataFrame libraries, you might wonder why we
need to call df.compute(). This is because Dask is lazy by default and will compute
results only on demand, allowing it to optimize the task graph that will be executed
across the cluster.

One of the most powerful aspects of Dask on Ray is that it integrates very nicely
with Ray Datasets. We can convert a Ray Dataset to a Dask DataFrame and vice versa
using built-in utilities:

import ray
ds = ray.data.range(10000)

# Convert the Dataset to a Dask DataFrame.
df = ds.to_dask()
print(df.std().compute())  # -> 2886.89568

# Convert the Dask DataFrame back to a Dataset.
ds = ray.data.from_dask(df)
print(ds.std())  # -> 2886.89568

This simple example might not look impressive because we’re able to compute the
standard deviation using either Dask DataFrames or Ray Datasets. However, as you’ll
see in the next section when we build an end-to-end ML pipeline, this enables power‐
ful workflows. For example, we can use the full expressiveness of DataFrames to do
our featurization and preprocessing and then pass the data directly into downstream
operations such as distributed training or inference while keeping everything in
memory. This highlights how Ray Datasets enables a wide range of use cases on top of
Ray and how integrations like Dask on Ray make the ecosystem even more powerful.

Building an ML Pipeline
Although we were able to build a simple distributed training application from scratch
in the previous section, there were many edge cases, opportunities for performance
optimization, and usability features that we would want to address to build a real-
world application. As you’ve learned in Chapters 4 and 5, Ray has an ecosystem of
libraries that enable us to build production-ready ML applications. In this section,

136 | Chapter 6: Data Processing with Ray



5 Another challenge of relying on many tools is cultural. Knowledge transfer of best practices can be costly,
especially in larger companies.

we’ll explore how to use Datasets as the “glue layer” to build an ML pipeline from end
to end.

To successfully productionize a machine learning model, we need to collect and
catalog data using standard ETL processes. However, that’s not the end of the story:
to train a model, we also often need to do featurization of the data before feeding
into our training process, and how we feed the data into training can strongly impact
cost and performance. After training a model, we’ll also want to run inference across
many different datasets—that’s the whole point of training the model, after all!

Though this might seem like just a chain of steps, in practice the data processing
workflow for ML is an iterative process of experimentation to define the right
set of features and train a high-performing model on them. Efficiently loading,
transforming, and feeding the data into training and inference is also crucial for
performance, which translates directly to cost for compute-intensive models. Imple‐
menting such ML pipelines often means stitching together multiple systems and
materializing intermediate results to remote storage between the stages. This has two
major downsides:

• It requires orchestrating many different systems and programs for a single work‐•
flow. This can be a lot for any ML practitioner to handle, so many people
use workflow orchestration systems like Apache Airflow. While Airflow has its
benefits, it’s also a lot of complexity to introduce (especially in development).

• Running our ML workflow across multiple systems means we need to read from•
and write to storage between each stage.5 This incurs significant overhead and
cost due to data transfer and serialization.

In contrast, using Ray we are able to build a complete ML pipeline as a single
application that can be run as a single Python script as depicted in Figure 6-6. The
ecosystem of built-in and third-party libraries makes it possible to mix and match
the right functionality for a given use case and build scalable, production-ready
pipelines. Importantly, Ray Datasets acts as the glue layer that enables efficient data
loading, preprocessing, and computing while avoiding expensive serialization costs
and keeping intermediate data in shared memory.

Figure 6-6 shows a simplified version of the typical ML workflow and where Ray
fits in that flow. ML’s multiple steps often require iteration; without Ray this means
stitching together many independent systems for one end-to-end process. Ray acts
as a unified compute layer, enabling most of the workflow to be run as a single
application.

Building an ML Pipeline | 137

https://airflow.apache.org


Figure 6-6. Ray acting as unified compute layer for complex ML workflows

In the next chapter we’re going to show you a concrete example of building an
end-to-end ML pipeline using Ray Datasets and other libraries in the Ray ecosystem
in practice.

Summary
This chapter introduced Ray Datasets, a core building block in Ray. Ray Datasets
offers built-in functionality for distributed data processing, but its true power lies in
its integrations with both first- and third-party libraries. We’ve covered only a small
portion of its functionality. For more details, API references, and examples, see the
documentation.

We’ve also shown you a simple example of distributed training of a scikit-learn
classifier using Ray Datasets and discussed external library integrations such as Dask
on Ray. Lastly, we’ve indicated the value of building end-to-end ML pipelines using
the Ray ecosystem, which allows you to run your entire workflow in a single Python
script. For data scientists and machine learning engineers, this means faster iteration
time, better ML models, and ultimately more business value.

138 | Chapter 6: Data Processing with Ray

https://oreil.ly/fmokZ


CHAPTER 7

Distributed Training with Ray Train

Edward Oakes & Richard Liaw

In Chapter 6 we discussed how to train copies of a simple model on shards of data
using Ray Datasets—but there’s much more to distributed training than that. As we
indicated in Chapter 1, Ray has a dedicated library for distributed training called Ray
Train. It comes with an extensive suite of machine learning training integrations and
allows you to scale your experiments seamlessly on Ray Clusters.

We will start this chapter by showing you why you might need to scale your ML
training and then introduce you to the different ways of doing so. After that, we’ll
introduce Ray Train and walk through an extensive end-to-end example. We’ll also
cover some key concepts you need to know to use Ray Train, such as preprocessors,
trainers, and checkpoints. Finally, we’ll cover some of the more advanced functional‐
ity that Ray Train provides. As always, you can use the notebook for this chapter to
follow along.

The Basics of Distributed Model Training
Machine learning often requires a lot of heavy computation. Depending on the type
of model that you’re training, whether it be a gradient boosted tree or a neural
network, you may face some common problems with training ML models:

• The time it takes to finish training is too long.•
• The data is too large to fit into one machine.•
• The model itself is too large to fit into a single machine.•

139

https://oreil.ly/vc5ej


1 This applies specifically to the gradient computation in neural networks.

For the first case, training can be accelerated by processing data with increased
throughput. Some ML algorithms, such as neural networks, can parallelize parts of
the computation to speed up training.1

In the second case, your choice of algorithm may require you to fit all the available
data from a dataset into memory, but the given single-node memory may not be
sufficient. If that’s the case, you would need to split the data across multiple nodes
and train in a distributed manner. On the other hand, sometimes your algorithm may
not require data to be distributed, but if you’re using a distributed database system
to begin with, you still want a training framework that can leverage your distributed
data.

When your model doesn’t fit into a single machine, you may need to split it up into
multiple parts spread across multiple machines. The approach of splitting models
across multiple machines is called model parallelism. To run into this issue, you
first need a model that is large enough to not fit into a single machine. Usually,
large companies like Google or Meta need model parallelism, and they also rely on
in-house solutions to handle the distributed training.

The first two problems often arise much earlier in ML development than the third.
The solutions we just sketched for these problems fall under the umbrella of data-
parallel training. Instead of splitting up the model across multiple machines, you rely
on distributed data to speed up training.

Specifically for the first problem, if you can speed up your training process, hopefully
with minimal or no loss in accuracy, and you can do so cost-efficiently, why not go
for it? And if you have distributed data, whether by necessity for your algorithm or
the way you store your data, you need a training solution to deal with it. As you will
see, Ray Train is built for efficient, data-parallel training. Figure 7-1 summarizes the
two basic types of distributed training.

Figure 7-1. Data parallelism versus model parallelism in distributed training

140 | Chapter 7: Distributed Training with Ray Train



Introduction to Ray Train by Example
Ray Train is a library for distributed data-parallel training on Ray. It offers key
tools for different parts of the training workflow, from feature processing to scalable
training to integrations with ML tracking tools, to export mechanisms for models.

In a basic ML training pipeline you will use the following key components of Ray
Train:

Trainers
Ray Train has several Trainer classes that make it possible to do distributed
training. Trainers are wrapper classes around third-party training frameworks
like XGBoost, Pytorch, and TensorFlow providing integration with core Ray
actors (for distribution), Ray Tune, and Ray Datasets.

Predictors
Once you have a trained model, you can use it to get predictions. For batches of
input data you use so-called batch predictors, which are also used to evaluate the
performance of a model on a validation set.

Additionally, Ray Train provides several common Preprocessor objects and utilities
to process dataset objects into consumable features for Trainers. Finally, Ray Train
provides a Checkpoint class that allows you to save and restore the state of a training
run. In our first walk-through we will not use any preprocessors, but we will cover
them in more detail later.

Ray Train is built with first-class support for training on large datasets. Along the
same philosophy that you should not have to think about how to parallelize your
code, you can simply “connect” your large dataset to Ray Train without thinking
about how to ingest and feed your data into different parallel workers.

Let’s put these components into practice by walking through our first Ray Train
example. To load the training data, we’re going to leverage our knowledge from
Chapter 6 and make heavy use of Ray Datasets.

Predicting Big Tips in NYC Taxi Rides
This section walks through a practical, end-to-end example of building a deep learn‐
ing pipeline using Ray. We will build a binary classification model to predict whether
a taxi ride will result in a big tip (>20% of the fare) using the public New York City
Taxi and Limousine Commission (TLC) Trip Record Data. Our workflow will closely
resemble that of a typical ML practitioner:

1. Load the data, do some basic preprocessing, and compute features we’ll use in1.
our model.

2. Define a neural network and train it using distributed data-parallel training.2.

Introduction to Ray Train by Example | 141

https://oreil.ly/nrJgK
https://oreil.ly/nrJgK


3. Apply the trained neural network to a fresh batch of data.3.

The example will use Dask on Ray and train a PyTorch neural network, but note that
nothing here is specific to either of those libraries: Ray Datasets and Ray Train can be
used with a wide range of popular machine learning tools. To follow along with the
example code in this section, install Ray, PyTorch, and Dask:

pip install "ray[data,train]==2.2.0" "dask==2022.2.0" "torch==1.12.1"
pip install "xgboost==1.6.2" "xgboost-ray>=0.1.10"

In the following examples, we’ll be loading the data from local disk to make it easy
to run the examples on your machine. The data is available in the book’s GitHub
repository. The file paths in the next examples assume you’ve cloned the repository
and are running from within its top-level directory.

Loading, Preprocessing, and Featurization
The first step in training our model is to load and preprocess it. To do this, we’ll
be using Dask on Ray, for which you’ve already seen a first example in Chapter 6.
Dask on Ray gives us a convenient DataFrames API and the ability to scale up the
preprocessing across a cluster and efficiently pass it into our training and inference
operations. Here is our code for preprocessing data and building features for our
model, defined in a single load_dataset function:

import ray
from ray.util.dask import enable_dask_on_ray

import dask.dataframe as dd

LABEL_COLUMN = "is_big_tip"
FEATURE_COLUMNS = ["passenger_count", "trip_distance", "fare_amount",
                   "trip_duration", "hour", "day_of_week"]

enable_dask_on_ray()

def load_dataset(path: str, *, include_label=True):
    columns = ["tpep_pickup_datetime", "tpep_dropoff_datetime", "tip_amount",
               "passenger_count", "trip_distance", "fare_amount"]

    df = dd.read_parquet(path, columns=columns)  

    df = df.dropna()  
    df = df[(df["passenger_count"] <= 4) &
            (df["trip_distance"] < 100) &
            (df["fare_amount"] < 1000)]

    df["tpep_pickup_datetime"] = dd.to_datetime(df["tpep_pickup_datetime"])
    df["tpep_dropoff_datetime"] = dd.to_datetime(df["tpep_dropoff_datetime"])

    df["trip_duration"] = (df["tpep_dropoff_datetime"] -

142 | Chapter 7: Distributed Training with Ray Train

https://oreil.ly/DhcUB
https://oreil.ly/DhcUB


                           df["tpep_pickup_datetime"]).dt.seconds
    df = df[df["trip_duration"] < 4 * 60 * 60] # 4 hours.
    df["hour"] = df["tpep_pickup_datetime"].dt.hour

    df["day_of_week"] = df["tpep_pickup_datetime"].dt.weekday  

    if include_label:

        df[LABEL_COLUMN] = df["tip_amount"] > 0.2 * df["fare_amount"]  

    df = df.drop(  
        columns=["tpep_pickup_datetime", "tpep_dropoff_datetime", "tip_amount"]
    )

    return ray.data.from_dask(df).repartition(100)  

Drop unused columns of the initial Dask DataFrame loaded from Parquet files.

Do basic cleaning, and drop null values and outliers.

Add three new features: trip duration, hour the trip started, and day of the week.

Calculate the label column: if the tip was more or less than 20% of the fare.

Drop all unused columns.

Return a repartitioned Ray Dataset created from Dask.

This involves basic data loading and cleaning as well as transforming some columns
into a format that can be used as features in our ML model. For instance, we
transform the pickup and drop-off date-times, which are provided as a string, into
three numerical features: trip_duration, hour, and day_of_week. This is made easy
by Dask’s built-in support for Python datetime utilities. If this data is going to be used
for training, we also need to compute the label column.

Finally, once we’ve computed our preprocessed Dask DataFrame, we transform it into
a Ray Dataset so we can pass it into our training and inference processes later.

Defining a Deep Learning Model
Now that we’ve cleaned and prepared the data, we need to define a model architecture
that we’ll use for the model. In practice, this would likely be an iterative process
and involve researching the state of the art for similar problems. For the sake of
our example, we’ll keep things simple and use a basic PyTorch neural network that
we call FarePredictor. The neural network has three linear transformations starting
with the dimension of our feature vector, and then it outputs a value between 0
and 1 using a Sigmoid activation function. We also use batch normalization layers in

Introduction to Ray Train by Example | 143

https://oreil.ly/sZPhd


the network to improve training. This output value will be rounded to produce the
binary prediction of whether or not the ride will result in a big tip:

import torch
import torch.nn as nn
import torch.nn.functional as F

class FarePredictor(nn.Module):
    def __init__(self):
        super().__init__()

        self.fc1 = nn.Linear(6, 256)
        self.fc2 = nn.Linear(256, 16)
        self.fc3 = nn.Linear(16, 1)

        self.bn1 = nn.BatchNorm1d(256)
        self.bn2 = nn.BatchNorm1d(16)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.bn1(x)
        x = F.relu(self.fc2(x))
        x = self.bn2(x)
        x = torch.sigmoid(self.fc3(x))

        return x

Distributed Training with Ray Train
Now that we’ve defined the neural network architecture, we need a way to efficiently
train it on our data. This dataset is very large, so our best bet is to perform data-
parallel training.

This means we train the model on multiple machines in parallel, each of which has a
copy of the model and a subset of the data. We will use Ray Train to define a scalable
training process that will use PyTorch DataParallel under the hood. We won’t go into
conceptual details of the training process here, but we’ll discuss them in the sections
following this end-to-end example.

The upcoming example uses imports from the ray.air module.
We mentioned Ray AIR in Chapter 1 and will introduce it formally
in Chapter 10. For now, treat this module as a useful utility for
defining and running your distributed training processes.
In particular, we’re using a so-called AIR session that can be
used to report metrics collected during the training process. This
follows a usage pattern similar to the tune.report API that we
discussed in Chapter 5.

144 | Chapter 7: Distributed Training with Ray Train

https://oreil.ly/A_xcS


The first thing we need to do is define the core logic needed to train on a batch of
data on each worker in each epoch. This will take in a local shard of the full dataset,
run it through the local copy of the model, and perform backpropagation to update
the model weights. After each epoch, the worker will use Ray Train utilities to report
the result and save the current model weights for use later:

from ray.air import session
from ray.air.config import ScalingConfig
import ray.train as train
from ray.train.torch import TorchCheckpoint, TorchTrainer

def train_loop_per_worker(config: dict):  
    batch_size = config.get("batch_size", 32)
    lr = config.get("lr", 1e-2)
    num_epochs = config.get("num_epochs", 3)

    dataset_shard = session.get_dataset_shard("train")  

    model = FarePredictor()

    dist_model = train.torch.prepare_model(model)  

    loss_function = nn.SmoothL1Loss()
    optimizer = torch.optim.Adam(dist_model.parameters(), lr=lr)

    for epoch in range(num_epochs):  
        loss = 0
        num_batches = 0

        for batch in dataset_shard.iter_torch_batches(  
                batch_size=batch_size, dtypes=torch.float
        ):
            labels = torch.unsqueeze(batch[LABEL_COLUMN], dim=1)
            inputs = torch.cat(
                [torch.unsqueeze(batch[f], dim=1) for f in FEATURE_COLUMNS], 
                dim=1
            )
            output = dist_model(inputs)
            batch_loss = loss_function(output, labels)
            optimizer.zero_grad()
            batch_loss.backward()
            optimizer.step()

            num_batches += 1
            loss += batch_loss.item()

        session.report(  
            {"epoch": epoch, "loss": loss},
            checkpoint=TorchCheckpoint.from_model(dist_model)
        )

Introduction to Ray Train by Example | 145



2 The code loads only a subset of the data for testing; to run at scale we would use all partitions of the data when
calling load_dataset and increase num_workers when training the model.

Pass a config dictionary into our training loop to specify some parameters at
runtime.

Retrieve the data shard for the current worker, using Ray Train’s get_data_shard
utility.

Prepare the PyTorch model for distributed training by applying prepare_model.

Define a standard PyTorch training loop, iterating over batches of data and
performing backpropagation.

The only nonstandard part is the use of iter_torch_batches to iterate over the
data shard.

After each epoch, report the loss computed and a model checkpoint using a Ray
session.

In case you’re not familiar with PyTorch, note that the code between the definition of
the loss_function and aggregating the batch_loss to our loss is a standard training
loop for a PyTorch model (except for iterating over batches of the dataset shard,
which is specific to Ray).

Now that the training process has been defined, we need to load the training and
validation data to feed into our training workers. Here, we call the load_dataset
function defined earlier that will do preprocessing and featurization.2

This dataset is passed into a TorchTrainer along with some configuration parameters
such as the batch size, number of epochs, and number of workers to use. Each worker
will have access to a shard of the data locally and can iterate over it. After training has
completed, we can fetch the final trained checkpoint from the returned result object:

trainer = TorchTrainer(

    train_loop_per_worker=train_loop_per_worker,  

    train_loop_config={  
        "lr": 1e-2, "num_epochs": 3, "batch_size": 64
    },

    scaling_config=ScalingConfig(num_workers=2),  

    datasets={  
        "train": load_dataset("nyc_tlc_data/yellow_tripdata_2020-01.parquet")
    },
)

146 | Chapter 7: Distributed Training with Ray Train



result = trainer.fit()  
trained_model = result.checkpoint

Each TorchTrainer requires you to specify a train_loop_per_worker.

Optionally, if your train loop takes in a config dictionary, you can specify it as
train_loop_config.

Every Ray Train Trainer needs a so-called ScalingConfig to know how to scale
training on your Ray Cluster.

Another required argument of each Trainer is a datasets dictionary. We define
a "train" Dataset here, and that is what we use in our training loop.

You can simply .fit() a TorchTrainer to start training.

The last line exports our trained model as a checkpoint for later use in downstream
applications like serving and inference. Ray Train generates these checkpoints to
serialize intermediate state for training. Checkpoints can include both models and
other training artifacts, such as preprocessors.

Distributed Batch Inference
Once we’ve trained a model and gotten the best accuracy, the next step is to actually
apply it in practice. Sometimes this means powering a low-latency service, which
we’ll explore in Chapter 8, but often the task is to apply the model across batches of
data as they come in.

Let’s use the trained model weights from our trained_model and apply them across a
new batch of data (in this case, it’ll just be another chunk of the same public dataset).
To do this, first we need to load, preprocess, and featurize the data in the same
way we did for training. Then we will load our model and map it across the whole
dataset. Ray Datasets allows us to do this efficiently with Ray actors, even using GPUs
just by changing one parameter. We simply load the trained model checkpoint and
call .predict_pipelined() on it. This will use Ray Datasets to perform distributed
batch inference across the data:

from ray.train.torch import TorchPredictor
from ray.train.batch_predictor import BatchPredictor

batch_predictor = BatchPredictor(trained_model, TorchPredictor)
ds = load_dataset(
    "nyc_tlc_data/yellow_tripdata_2021-01.parquet", include_label=False)

batch_predictor.predict_pipelined(ds, blocks_per_window=10)

Introduction to Ray Train by Example | 147



This example showed how Ray Train and Datasets can be used to implement an
end-to-end machine learning workflow as a single application. We were able to fea‐
turize the dataset, train and validate an ML model, and then apply that model across
a different dataset in a single Python script. Ray Datasets acted as the glue layer,
connecting the different stages and avoiding expensive serialization costs between
them. We also used checkpoints to store the model and ran a Ray Train batch
prediction job to apply the model to a new dataset.

Now, that you’ve seen your first example of Ray Train, let’s take a closer look at its
primary abstraction, the Trainer.

More on Trainers in Ray Train
As you’ve seen in the example of using a TorchTrainer, Trainers are framework-
specific classes that run model training in a distributed fashion. All Ray Trainer
classes share a common interface. At this point, it’s enough to know about two aspects
of this interface, namely:

• The .fit() method, which fits a given Trainer with the given datasets, configu‐•
ration, and desired scaling properties

• The .checkpoint property, which returns the Ray Checkpoint object for this•
Trainer

Ray Train’s Trainers integrate with common machine learning frameworks such as
PyTorch, Hugging Face, TensorFlow, Horovod, scikit-learn, and more. There’s even
a Trainer specifically for RLlib models, which we don’t cover here. Let’s discuss
another PyTorch example to point out specific aspects of the Trainer API, with an
emphasis on how to migrate an existing PyTorch model to Ray Train.

Gradient Boosting Frameworks
Ray Train also offers support for gradient boosted decision tree frameworks.

XGBoost is an optimized distributed gradient boosting library designed to be highly
efficient, flexible, and portable. It implements ML algorithms under the gradient
boosting framework. XGBoost provides a parallel tree boosting that solves many data
science problems quickly and accurately.

LightGBM is a gradient boosting framework based on tree-based learning algorithms.
Compared to XGBoost, it is a relatively new framework but one that is quickly
becoming popular in both academic and production use cases.

To use these frameworks, you can use the XGBoostTrainer and LightGBMTrainer
classes, respectively.

148 | Chapter 7: Distributed Training with Ray Train



In this example we want to focus on the details of Ray Train itself, so we’ll use a
much simpler training dataset and a small neural network that takes random noise
as input. We define a three-layer NeuralNetwork, an explicit training_loop, similar
to the one we saw in the previous section, that you can use to train the model. For
clarity, we extract the training code run for each epoch in a helper function called
train_one_epoch:

import torch
import torch.nn as nn
import torch.nn.functional as F
from ray.data import from_torch

num_samples = 20
input_size = 10
layer_size = 15
output_size = 5
num_epochs = 3

class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(input_size, layer_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(layer_size, output_size)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

def train_data():

    return torch.randn(num_samples, input_size)  

input_data = train_data()
label_data = torch.randn(num_samples, output_size)

train_dataset = from_torch(input_data)  

def train_one_epoch(model, loss_fn, optimizer):  
    output = model(input_data)
    loss = loss_fn(output, label_data)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

def training_loop():  
    model = NeuralNetwork()

More on Trainers in Ray Train | 149



    loss_fn = nn.MSELoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
    for epoch in range(num_epochs):
        train_one_epoch(model, loss_fn, optimizer)

Use a randomly generated dataset.

Create a Ray Dataset from this data with from_torch.

Extract the PyTorch code to train one epoch into a helper function.

This training loop can be run as is to train your PyTorch model on a single
machine.

Typically, if you wanted to distribute your training without Ray Train, you would
need to do these two things:

• Establish a backend that coordinates interprocess communication.•
• Instantiate multiple parallel processes on each node that you want to distribute•

your training across.

In contrast, let’s see how easy it is to use Ray Train to distribute your training process.

Migrating to Ray Train with Minimal Code Changes
With Ray Train, you can make a one-line change to your code to take care of both
interprocess communication and process instantiation under the hood.

The code change is made by calling prepare_model on the PyTorch model that you
plan to train. This change is literally the only difference between the training_loop
defined before and the following distributed_training_loop:

from ray.train.torch import prepare_model

def distributed_training_loop():
    model = NeuralNetwork()

    model = prepare_model(model)  
    loss_fn = nn.MSELoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
    for epoch in range(num_epochs):
        train_one_epoch(model, loss_fn, optimizer)

Prepare the model for distributed training by calling prepare_model.

150 | Chapter 7: Distributed Training with Ray Train



Then, we can instantiate a TorchTrainer model, which has three required arguments:

train_loop_per_worker

This function trains your model for each worker. It has access to the datasets
provided and can be fed an optional config dictionary that can be passed to your
trainer as train_loop_config. This function will typically report metrics, e.g.,
via a session.

datasets

This dictionary can contain several keys with Ray Datasets as values. It’s kept
flexible so that you can have training data, validation data, or any other type of
data needed for your training loop.

scaling_config

This ScalingConfig object specifies how your training should scale. For
instance, you can specify the number of training workers with num_workers and
the use of GPUs with the use_gpu flag. We’ll elaborate on this more in the next
section.

Here’s how you set up your Trainer in our example:

from ray.air.config import ScalingConfig
from ray.train.torch import TorchTrainer

trainer = TorchTrainer(
    train_loop_per_worker=distributed_training_loop,
    scaling_config=ScalingConfig(
        num_workers=2,
        use_gpu=False
    ),
    datasets={"train": train_dataset}
)

result = trainer.fit()

With an initialized Trainer, you can call fit(), which will execute the training across
your Ray Cluster. Figure 7-2 summarizes working with a TorchTrainer.

More on Trainers in Ray Train | 151



Figure 7-2. Working with a TorchTrainer requires you to specify a training loop,
datasets, and a scaling configuration

Scaling Out Trainers
The Ray Train philosophy is that the user should not need to think about how to
parallelize their code. Specifying a scaling_config allows you to scale your training
without writing distributed logic and to declaratively specify the compute resources
used by a Trainer. The nice thing about this specification is that you don’t need
to think about the underlying hardware. In particular, you can use hundreds of
workers by specifying the parameters of your cluster nodes in your ScalingConfig
accordingly:

import ray
from ray.air.config import ScalingConfig
from ray.train.xgboost import XGBoostTrainer

ray.init(address="auto")  

scaling_config = ScalingConfig(num_workers=200, use_gpu=True)  

trainer = XGBoostTrainer(  
    scaling_config=scaling_config,
    # ...
)

Connect to an existing, large Ray Cluster here.

Define a ScalingConfig according to the cluster’s available resources.

We can then use Ray Train’s XGBoost integration to train a model on this cluster.

152 | Chapter 7: Distributed Training with Ray Train



Preprocessing with Ray Train
Data preprocessing is a common technique for transforming raw data into features
for an ML model, and we’ve seen many examples in this and the previous chapter. So
far we’ve “manually” preprocessed our data by writing custom functions to transform
our data into the right format. But Ray Train has several built-in preprocessors for
common use cases and also provides interfaces to define your own custom logic.

The Preprocessor is the core class offered by Ray Train for handling data prepro‐
cessing. Each preprocessor has the following APIs:

.transform()

Used to process and apply a processing transformation to a dataset.

.fit()

Used to calculate and store aggregate state about the dataset on a preprocessor.
Returns self for chaining.

.fit_transform()

Syntactic sugar for performing transformations that require aggregate state. May
be optimized at the implementation level for specific preprocessors.

.transform_batch()

Used to apply the same transformation on batches for prediction.

We often want to make sure we can use the same data preprocessing operations at
training time and at serving time. Training-serving skew, a major problem in deploy‐
ing ML, describes a situation where there is a difference between performance during
training and performance during serving. This skew is often caused by a discrepancy
between how you handle data in the training and serving pipelines. Thus, you want to
make sure you have consistent data handling for training and serving.

You can use the preceding preprocessors by passing them to the constructor of a
trainer. That means once you’ve created a preprocessor, you don’t have to apply
it to your Ray Datasets manually. Instead, you can pass it to your trainer, and Ray
Train will take care of applying it in a distributed fashion. Here is how this works
schematically:

from ray.data.preprocessors import StandardScaler
from ray.train.xgboost import XGBoostTrainer

trainer = XGBoostTrainer(
    preprocessor=StandardScaler(...),
    # ...
)
result = trainer.fit()

More on Trainers in Ray Train | 153



Some preprocessing operators such as one-hot encoders are easy to run in training
and transfer to serving. However, other operators such as those that do standardiza‐
tion are a bit trickier, since you don’t want to do large data crunching (to find the
mean of a particular column) during serving time.

Fortunately, the Ray Train preprocessors are serializable so you can easily get consis‐
tency from training to serving just by serializing these operators. For instance, you
can simply pickle a preprocessor like this:

import pickle
from ray.data.preprocessors import StandardScaler

preprocessor=StandardScaler(...)
pickle.dumps(preprocessor)

Next, let’s discuss a concrete example of a training procedure using preprocessors, by
also showing you how to tune your Trainer’s hyperparameters.

Integrating Trainers with Ray Tune
Ray Train provides an integration with Ray Tune that allows you to perform HPO in
just a few lines of code. Tune will create one trial per hyperparameter configuration.
In each trial, a new Trainer will be initialized and run the training function with its
generated configuration.

In the following code, we create an XGBoostTrainer and specify hyperparameter
ranges for common hyperparameters. Specifically, we’re going to choose between
two different preprocessors in our training scenario. To be precise, we will use a
StandardScaler, which translates and scales each specified column by its mean
and standard deviation (the resulting columns will thus follow a standard normal
distribution) and MinMaxScaler, which simply scales each column to the range [0, 1].

Here’s the corresponding parameter space we will search over next:

import ray

from ray.air.config import ScalingConfig
from ray import tune
from ray.data.preprocessors import StandardScaler, MinMaxScaler

dataset = ray.data.from_items(
    [{"X": x, "Y": 1} for x in range(0, 100)] +
    [{"X": x, "Y": 0} for x in range(100, 200)]
)
prep_v1 = StandardScaler(columns=["X"])
prep_v2 = MinMaxScaler(columns=["X"])

param_space = {
    "scaling_config": ScalingConfig(

154 | Chapter 7: Distributed Training with Ray Train



        num_workers=tune.grid_search([2, 4]),
        resources_per_worker={
            "CPU": 2,
            "GPU": 0,
        },
    ),
    "preprocessor": tune.grid_search([prep_v1, prep_v2]),
    "params": {
        "objective": "binary:logistic",
        "tree_method": "hist",
        "eval_metric": ["logloss", "error"],
        "eta": tune.loguniform(1e-4, 1e-1),
        "subsample": tune.uniform(0.5, 1.0),
        "max_depth": tune.randint(1, 9),
    },
}

We can now create a Trainer as before, this time going with an XGBoostTrainer and
then passing it to an instance of a Tuner from Ray Tune, which we can .fit() just
like the trainer itself:

from ray.train.xgboost import XGBoostTrainer
from ray.air.config import RunConfig
from ray.tune import Tuner

trainer = XGBoostTrainer(
    params={},
    run_config=RunConfig(verbose=2),
    preprocessor=None,
    scaling_config=None,
    label_column="Y",
    datasets={"train": dataset}
)

tuner = Tuner(
    trainer,
    param_space=param_space,
)

results = tuner.fit()

Note that we’re using another component of a Ray Trainer here that you haven’t seen
before, the RunConfig. This configuration is used for all runtime options of a Trainer,
in our case the log verbosity of the experiment (0 would be silent; 1 gives only status
updates; 2, the default, gives status updates and brief results; and 3 gives detailed
results).

Compared to other distributed hyperparameter tuning solutions, Ray Tune and Ray
Train have some unique features. Ray’s solution is fault-tolerant, and it has the ability

More on Trainers in Ray Train | 155



3 MLflow and TensorBoard are open source projects for ML experiment tracking and visualization. They are
very useful for monitoring the progress of your machine learning model.

to specify the dataset and preprocessor as a parameter, as well as to adjust the number
of workers during training time.

Using Callbacks to Monitor Training
To explore one more feature of Ray Train, you may want to plug in your training
code with your favorite experiment management framework. Ray Train provides an
interface to fetch intermediate results and callbacks to process or log them. It comes
with built-in callbacks for popular tracking frameworks, but you can implement your
own callback via Tune’s LoggerCallback interface.

For instance, you can log results in JSON format using the JsonLoggerCallback,
to TensorBoard using the TBXLoggerCallback, or to MLflow using the MLFLowLogger
Callback.3 The following example shows how you can use all three in one single
training run by specifying a list of callbacks:

from ray.air.callbacks.mlflow import MLflowLoggerCallback
from ray.tune.logger import TBXLoggerCallback, JsonLoggerCallback

training_loop = ...
trainer = ...

trainer.fit(
    training_loop,
    callbacks=[
        MLflowLoggerCallback(),
        TBXLoggerCallback(),
        JsonLoggerCallback()
])

Summary
In this chapter, we’ve discussed the basics of distributed model training and showed
you how to run data-parallel training with Ray Train. We walked you through an
extensive example that used both Ray Data and Ray Train on an interesting dataset.
Specifically, we demonstrated how to use Dask on Ray to load, preprocess, and
featurize your datasets, and then use Ray Train to run a distributed PyTorch training
loop. We then discussed Ray Trainers in more detail and showed how they integrate
with Ray Tune via Tuners, how you can use them with preprocessors, and how you
can use callbacks to monitor training.

156 | Chapter 7: Distributed Training with Ray Train



CHAPTER 8

Online Inference with Ray Serve

Edward Oakes

In Chapters 6 and 7 you learned how to use Ray to process data, train ML models,
and apply them in a batch inference setting. However, many of the most exciting use
cases for machine learning involve online inference.

Online inference is the process of using ML models to enhance API endpoints that
users interact with directly or indirectly. This is important in situations where latency
matters: you can’t simply apply models to data behind the scenes and serve the
results. There are many real-world examples of use cases where online inference can
provide a lot of value, for example:

Recommendation systems
Providing recommendations for products (e.g., online shopping) or content (e.g.,
social media) is a bread-and-butter use case for machine learning. While it’s
possible to do this offline, recommendation systems often benefit from reacting
to users’ preferences in real time. This requires performing online inference
using recent behavior as a key feature.

Chat bots
Online services often have real-time chat windows to provide support to custom‐
ers from the comfort of their keyboard. Traditionally, these chat windows were
staffed by customer support staff, but a recent trend to reduce labor costs and
improve time-to-resolution is replacing them with ML-powered chat bots that
can be online 24/7. These chat bots require a sophisticated mix of multiple
machine learning techniques and must be able to respond to customer input in
real time.

157



Estimating arrival times
Ride sharing, navigation, and food delivery services all rely on being able to
provide an accurate estimate of arrival times (e.g., for your driver, yourself, or
your dinner). Providing accurate estimates is very difficult because it requires
accounting for real-world factors such as traffic patterns, weather, and accidents.
Estimates are also refreshed many times over the course of one trip.

These are just a few examples of how applying machine learning in an online setting
can provide a lot of value in application domains that are traditionally very difficult
(imagine writing logic by hand to estimate arrival times!). The list of applications
goes on: a number of nascent domains such as self-driving cars, robotics, and video-
processing pipelines are also being redefined by machine learning.

All these applications share one crucial requirement: latency. In the case of online
services, low latency is paramount for providing a good user experience. For applica‐
tions that interact with the real world (such as robotics or self-driving cars), higher
latency can have even stronger implications for safety or accuracy.

This chapter will provide a gentle introduction to Ray Serve, a Ray-native library that
enables building online inference applications on top of Ray. First, we will discuss
the challenges of online inference that Ray Serve addresses. Then, we’ll cover the
architecture of Ray Serve and introduce its core functionality. Finally, we will use
Ray Serve to build an end-to-end online inference API consisting of multiple natural
language processing models. You can follow along with the code in the notebook for
this chapter.

Key Characteristics of Online Inference
In the previous section we discussed that the main goal of online inference is to inter‐
act with ML models with low latency. However, this has long been a key requirement
for API backends and web servers, so a natural question is: what’s different about
serving ML models?

ML Models Are Compute Intensive
Many of the challenges in online inference are a result of one key characteristic:
ML models are very compute intensive. Compared to traditional web serving where
requests are primarily handled by I/O-intensive database queries or other API calls,
most ML models boil down to performing many linear algebra computations: pro‐
vide a recommendation, estimate an arrival time, or detect an object in an image.
This is especially true for the recent trend of “deep learning,” which is an arm
of ML characterized by neural networks that are growing larger over time. Often,
deep learning models can also benefit significantly from using specialized hardware

158 | Chapter 8: Online Inference with Ray Serve

https://oreil.ly/k9VlL
https://oreil.ly/k9VlL


such as GPUs or TPUs, which have special-purpose instructions optimized for ML
computations and enable vectorized computations across multiple inputs in parallel.

Many online inference applications must be run 24/7. When combined with the
fact that ML models are compute intensive, operating online inference services can
be very expensive, requiring allocation of many CPUs and GPUs at all times. The
primary challenges of online inference boil down to serving models in a way that
minimizes end-to-end latency while also reducing cost. Key properties that online
inference systems provide to satisfy these requirements include:

• Support for specialized hardware such as GPUs and TPUs.•
• The ability to scale the resources used for a model up and down in response to•

request load.
• Support for request batching to take advantage of vectorized computations.•

ML Models Aren’t Useful in Isolation
Often when ML is discussed in the academic or research setting, the focus is on
an individual, isolated task such as object recognition or classification. However,
real-world applications are not usually so clear cut and well defined. Instead, a
combination of multiple ML models and business logic is required to solve a problem
from end to end. For example, consider a product recommendation use case. While
we could apply a multitude of known ML techniques to the core problem of making a
recommendation, a lot of equally important challenges exist around the edges, many
of which will be specific to each use case:

• Validating inputs and outputs to ensure the result returned to the user makes•
sense semantically. Often, we may have some manual rules such as avoiding
returning the same recommendation to a user multiple times in succession.

• Fetching up-to-date information about the user and available products and con‐•
verting it into features for the model (in some cases, this may be performed by an
online feature store).

• Combining the results of multiple models using manual rules such as filtering the•
top results or selecting the model with highest confidence.

Implementing an online inference API requires the ability to integrate all of these
pieces into one unified service. Therefore, it’s important to have the flexibility to
compose multiple models along with custom business logic. These pieces can’t be
viewed in isolation: the “glue” logic often needs to evolve alongside the models
themselves.

Key Characteristics of Online Inference | 159



An Introduction to Ray Serve
Ray Serve is a scalable compute layer for serving ML models on top of Ray. Serve
is framework-agnostic, meaning that it isn’t tied to a specific ML library; rather, it
treats models as ordinary Python code. Additionally, it allows you to flexibly combine
normal Python business logic alongside ML models. This makes it possible to build
online inference services completely: a Serve application could validate user input,
query a database, perform scalable inference across multiple ML models, and com‐
bine, filter, and validate the output—all in the process of handling a single inference
request. Indeed, combining the results of multiple ML models is one of the key
strengths of Ray Serve, as you’ll see in “Multimodel Inference Graphs” on page 166.

While flexible, Ray Serve has purpose-built features for compute-heavy ML models,
enabling dynamic scaling and resource allocation to ensure that request load can
be handled efficiently across many CPUs and/or GPUs. Here, Serve inherits a lot of
benefits from being built on top of Ray: it’s scalable to hundreds of machines, offers
flexible scheduling policies, and offers low-overhead communication across processes
using Ray’s core APIs.

This section incrementally introduces core functionality from Ray Serve with a focus
on how it helps address the challenges of online inference previously outlined. To
follow along with the code samples in this section, you’ll need the following Python
packages installed locally:

pip install "ray[serve]==2.2.0" "transformers==4.21.2" "requests==2.28.1"

Running the examples assumes that you have the code saved locally in a file named
app.py in the current working directory.

Architectural Overview
Ray Serve is built on top of Ray, so it inherits a lot of benefits such as scalability,
low-overhead communication, an API well suited to parallelism, and the ability to
leverage shared memory via the object store. The core primitive in Ray Serve is a
deployment, which you can think of as a managed group of Ray actors that can be
addressed together and that will handle requests load-balanced across them. Each
actor in a deployment is called a replica in Ray Serve. Often, a deployment will map
one-to-one with an ML model, but deployments can contain arbitrary Python code,
so they might also house business logic.

Ray Serve enables exposing deployments over HTTP and defining the input parsing
and output logic. However, one of the most important features of Ray Serve is
that deployments can also call into each other directly using a native Python API,
which will translate to direct actor calls between the replicas. This enables flexible,
high-performance composition of models and business logic; you’ll see this in action
later in the section.

160 | Chapter 8: Online Inference with Ray Serve



1 Deployments can also send traffic to each other directly. This enables building more complex applications
involving model composition or mixing ML models with business logic.

Figure 8-1 provides a basic view of how a Ray Serve application runs on top of a
Ray Cluster: multiple deployments are placed across a Ray Cluster. Each deployment
is made up of one more “replicas,” each of which is a Ray actor. Incoming traffic is
routed through an HTTP proxy that will load-balance requests across the replicas.1

Figure 8-1. The architecture of a Ray Serve application

Under the hood, the deployments making up a Ray Serve application are managed
by a centralized controller actor. This is a detached actor managed by Ray that will
be restarted upon failure. The controller is in charge of creating and updating replica
actors, broadcasting updates to other actors in the system, and performing health
checking and failure recovery. If a replica or an entire Ray node crashes for any
reason, the controller will detect the failures and ensure that the actors are recovered
and can continue serving traffic.

Defining a Basic HTTP Endpoint
This section will introduce Ray Serve by defining a simple HTTP endpoint wrapping
a single ML model. The model we’ll deploy is a sentiment classifier: given a text
input, it will predict if the output had a positive or negative sentiment. We’ll be
using a pretrained sentiment classifier from the Hugging Face Transformers library,
which provides a simple Python API for pretrained models that will abstract away the
details of the model and allow us to focus on the serving logic.

To deploy this model using Ray Serve, we need to define a Python class and turn
it into a Serve deployment using the @serve.deployment decorator. The decorator
allows us to pass a number of useful options to configure the deployment; we will
explore some of those options in “Scaling and Resource Allocation” on page 163:

An Introduction to Ray Serve | 161

https://huggingface.co


from ray import serve

from transformers import pipeline

@serve.deployment
class SentimentAnalysis:
    def __init__(self):
        self._classifier = pipeline("sentiment-analysis")

    def __call__(self, request) -> str:
        input_text = request.query_params["input_text"]
        return self._classifier(input_text)[0]["label"]

There are a few important points to note here. First, we instantiate our model in
the constructor of the class. This model may be very large, so downloading it and
loading it into memory can be slow (up to several minutes). In Ray Serve, the code in
the constructor will be run only once in each replica on startup, and any properties
can be cached for future use. Second, we define the logic to handle a request in the
__call__ method. This takes a Starlette HTTP request as input and can return any
JSON-serializable output. In this case, we’ll return a single string from the output of
our model: "POSITIVE" or "NEGATIVE".

Once a deployment is defined, we use the .bind() API to instantiate a copy of it.
This is where we can pass optional arguments to the constructor to configure the
deployment (such as a remote path to download model weights from). Note that this
doesn’t actually run the deployment but packages it with its arguments (this will be
more important later when we combine multiple models):

basic_deployment = SentimentAnalysis.bind()

We can run the bound deployment using the serve.run Python API or correspond‐
ing serve run CLI command. Assuming you save the preceding code in a file called
app.py, you can run it locally with the following command:

serve run app:basic_deployment

This will instantiate a single replica of our deployment and host it behind a local
HTTP server. To test it, we can use the Python requests package:

import requests

print(requests.get(
    "http://localhost:8000/", params={"input_text": "Hello friend!"}
).json())

Testing the sentiment classifier on a sample input text of "Hello friend!", it cor‐
rectly classifies the text as positive!

162 | Chapter 8: Online Inference with Ray Serve



2 Under the hood, Ray Serve serializes the user-provided FastAPI app object. Then, when each deployment
replica runs, Ray Serve deserializes and runs the FastAPI app the same way it would be run in a typical web
server. At runtime, there will be an independent FastAPI server running in each Ray Serve replica.

This example is effectively the “hello world” of Ray Serve: we deployed a single
model behind a basic HTTP endpoint. Note, however, that we had to manually parse
the input HTTP request and feed it into our model. For this basic example it was
just a single line of code, but real-world applications often take a more complex
schema as input, and hand-writing HTTP logic can be tedious and error-prone. To
enable writing more expressive HTTP APIs, Serve integrates with the FastAPI Python
framework.2

A Serve deployment can wrap a FastAPI app, using its expressive APIs for parsing
inputs and configuring HTTP behavior. In the following example, we rely on FastAPI
to handle parsing the input_text query parameter, allowing removal of the boiler‐
plate parsing code:

from fastapi import FastAPI

app = FastAPI()

@serve.deployment
@serve.ingress(app)
class SentimentAnalysis:
    def __init__(self):
        self._classifier = pipeline("sentiment-analysis")

    @app.get("/")
    def classify(self, input_text: str) -> str:
        return self._classifier(input_text)[0]["label"]

fastapi_deployment = SentimentAnalysis.bind()

The modified deployment should have exactly the same behavior on this example
(try it using serve run!), but it will gracefully handle invalid inputs. These may
look like minor benefits for this simple example, but for more complex APIs this
can make a world of difference. We won’t delve deeper into the details of FastAPI
here, but for more information on its features and syntax, check out their excellent
documentation.

Scaling and Resource Allocation
As mentioned, machine learning models are often compute hungry. Therefore, it’s
important to be able to allocate the correct amount of resources to your ML applica‐
tion to handle request loads while minimizing cost. Ray Serve allows you to adjust the

An Introduction to Ray Serve | 163

https://oreil.ly/fLnjY
https://oreil.ly/fLnjY
https://oreil.ly/vrxao


resources dedicated to a deployment in two ways: by tuning the number of replicas
of the deployment and tuning the resources allocated to each replica. By default, a
deployment consists of a single replica that uses a single CPU, but these parameters
can be adjusted in the @serve.deployment decorator (or using the corresponding
deployment.options API).

Let’s modify the SentimentClassifier example to scale out to multiple replicas and
adjust the resource allocation so that each replica uses two CPUs instead of one (in
practice, you would want to profile and understand your model to set this parameter
correctly). We’ll also add a print statement to log the process ID of the process
handling each request to show that the requests are now load balanced across two
replicas:

app = FastAPI()

@serve.deployment(num_replicas=2, ray_actor_options={"num_cpus": 2})
@serve.ingress(app)
class SentimentAnalysis:
    def __init__(self):
        self._classifier = pipeline("sentiment-analysis")

    @app.get("/")
    def classify(self, input_text: str) -> str:
        import os
        print("from process:", os.getpid())
        return self._classifier(input_text)[0]["label"]

scaled_deployment = SentimentAnalysis.bind()

Running this new version of our classifier with serve run app:scaled_deployment
and querying it using requests as we did previously, you should see that there are
now two copies of the model handling requests! We could easily scale up to tens or
hundreds of replicas just by tweaking num_replicas in the same way: Ray enables
scaling to hundreds of machines and thousands of processes in a single cluster.

In this example we scaled to a static number of replicas with each replica consuming
two full CPUs, but Serve also supports more expressive resource allocation policies.
For example:

• Enabling a deployment to use GPUs simply requires setting num_gpus instead of•
num_cpus. Serve supports the same resource types as Ray Core, so deployments
can also use TPUs or other custom resources.

• Resources can be fractional, allowing replicas to be efficiently bin-packed.•
For example, if a single replica doesn’t saturate a full GPU, you can allocate
num_gpus=0.5 to it and multiplex with another model.

164 | Chapter 8: Online Inference with Ray Serve



• For applications with varying request load, a deployment can be configured to•
dynamically autoscale the number of replicas based on the number of requests
currently in flight.

For more details about resource allocation options, refer to the latest Ray Serve
documentation.

Request Batching
Many machine learning models can be efficiently vectorized, meaning that multiple
computations can be run in parallel more efficiently than running them sequentially.
This is especially beneficial when running models on GPUs that are purpose-built
for efficiently performing many computations in parallel. In the context of online
inference this offers a path for optimization: serving multiple requests (possibly from
different sources) in parallel can drastically improve the throughput of the system
(and therefore save cost).

Two high-level strategies take advantage of request batching: client-side batching
and server-side batching. In client-side batching, the server accepts multiple inputs
in a single request, and clients include logic to send them in batches instead of one
at a time. This is useful in situations where a single client is frequently sending
many inference requests. Server-side batching, in contrast, enables the server to batch
multiple requests without requiring any modification on the client. This can also be
used to batch requests across multiple clients, which enables efficient batching even
in situations with many clients that send relatively few requests each.

Ray Serve offers a built-in utility for server-side batching, the @serve.batch deco‐
rator, that requires just a few code changes. This batching support uses Python’s
asyncio capabilities to enqueue multiple requests into a single function call. The
function should take in a list of inputs and return the corresponding list of outputs.

Once again, let’s revisit the sentiment classifier from earlier and this time modify it
to perform server-side batching. The underlying Hugging Face pipeline supports
vectorized inference; all we need to do is pass a list of inputs, and it will return the
corresponding list of outputs. We’ll split the call to the classifier into a new method,
classify_batched, that will take a list of input texts as input, perform inference
across them, and return the outputs in a formatted list. classify_batched will use
the @serve.batch decorator to automatically perform batching. The behavior can be
configured using the max_batch_size and batch_timeout_wait_s parameters. Here
we’ll set the max batch size to 10 and wait for up to 100 ms:

app = FastAPI()

@serve.deployment
@serve.ingress(app)

An Introduction to Ray Serve | 165

https://oreil.ly/zuynD
https://oreil.ly/zuynD


class SentimentAnalysis:
    def __init__(self):
        self._classifier = pipeline("sentiment-analysis")

    @serve.batch(max_batch_size=10, batch_wait_timeout_s=0.1)
    async def classify_batched(self, batched_inputs):
        print("Got batch size:", len(batched_inputs))
        results = self._classifier(batched_inputs)
        return [result["label"] for result in results]

    @app.get("/")
    async def classify(self, input_text: str) -> str:
        return await self.classify_batched(input_text)

batched_deployment = SentimentAnalysis.bind()

Notice that both the classify and classify_batched methods now use Python’s
async and await syntax, meaning that many of these calls can run concurrently in the
same process.

To test this behavior, we’ll use the serve.run Python API to send requests using the
Python-native handle to our deployment:

import ray
from ray import serve
from app import batched_deployment

handle = serve.run(batched_deployment)  
ray.get([handle.classify.remote("sample text") for _ in range(10)])

Get a handle to the deployment so we can send requests in parallel.

The handle returned by serve.run can be used to send multiple requests in parallel:
here, we send 10 requests in parallel and wait for them all to return. Without batch‐
ing, each request would be handled sequentially, but because we enabled batching, we
should see the requests handled all at once (evidenced by batch size printed in the
classify_batched method). Running on a CPU, this might be marginally faster than
running sequentially, but running the same handler on a GPU we would observe a
significant speedup for the batched version.

Multimodel Inference Graphs
Up until now, we’ve been deploying and querying a single Serve deployment wrap‐
ping one ML model. As described earlier, ML models often are not useful in isolation:
many applications require multiple models to be composed together and for business
logic to be intertwined with machine learning. The real power of Ray Serve is its
ability to compose multiple models along with regular Python logic into a single
application. This is possible by instantiating many different deployments and passing

166 | Chapter 8: Online Inference with Ray Serve



a reference between them. Each of these deployments can use all of the features
we’ve discussed up to this point: they can be independently scaled, perform request
batching, and use flexible resource allocations.

This section illustrates common multimodel serving patterns but doesn’t actually
contain any ML models yet. The focus is on the core capabilities that Serve provides.

Core feature: binding multiple deployments
All types of multimodel inference graphs in Ray Serve center around the ability to
pass a reference to one deployment into the constructor of another. To do this, we use
another feature of the .bind() API: a bound deployment can be passed to another
call to .bind(), and this will resolve to a “handle” to the deployment at runtime.
This enables deployments to be deployed and instantiated independently and then
call each other at runtime. Here is the most basic example of a multideployment Serve
application:

@serve.deployment
class DownstreamModel:
    def __call__(self, inp: str):
        return "Hi from downstream model!"

@serve.deployment
class Driver:
    def __init__(self, downstream):
        self._d = downstream

    async def __call__(self, *args) -> str:
        return await self._d.remote()

downstream = DownstreamModel.bind()
driver = Driver.bind(downstream)

In this example, the downstream model is passed into the “driver” deployment. Then
at runtime the driver deployment calls into the downstream model. The driver could
take any number of models passed in, and the downstream model could even take
other downstream models of its own.

Pattern 1: Pipelining
The first common multimodel pattern among ML applications is “pipelining”: calling
multiple models in sequence, where the input of one model depends on the output of
the previous. Image processing, for example, often consists of a pipeline with multiple
stages of transformations such as cropping, segmentation, and object recognition
or optical character recognition (OCR). Each of these models may have different

An Introduction to Ray Serve | 167



properties, with some of them being lightweight transformations that can run on a
CPU and others being heavyweight deep learning models that run on a GPU.

Such pipelines can easily be expressed using Serve’s API. Each stage of the pipeline
is defined as an independent deployment, and each deployment is passed into a
top-level “pipeline driver.” In the following example, we pass two deployments into a
top-level driver, and the driver calls them in sequence. Note that many requests to the
driver could be happening concurrently; therefore, it is possible to efficiently saturate
all stages of the pipeline:

@serve.deployment
class DownstreamModel:
    def __init__(self, my_val: str):
        self._my_val = my_val

    def __call__(self, inp: str):
        return inp + "|" + self._my_val

@serve.deployment
class PipelineDriver:
    def __init__(self, model1, model2):
        self._m1 = model1
        self._m2 = model2

    async def __call__(self, *args) -> str:
        intermediate = self._m1.remote("input")
        final = self._m2.remote(intermediate)
        return await final

m1 = DownstreamModel.bind("val1")
m2 = DownstreamModel.bind("val2")
pipeline_driver = PipelineDriver.bind(m1, m2)

To test this example, you can once again use the serve run API. Sending a test
request to the pipeline returns "'input|val1|val2'" as output: each downstream
“model” appended its own value to construct the final result. In practice, each of these
deployments could be wrapping its own ML model, and a single request may flow
across many physical nodes in a cluster.

Pattern 2: Broadcasting
In addition to sequentially chaining models together, it’s often useful to broadcast an
input or intermediate result to multiple models in parallel. This could be to perform
“ensembling,” or combining the results of multiple independent models into a single
result, or used in a situation where different models may perform better on different
inputs. Often the results of the models need to be combined in some way into a final
result: either simply concatenated or maybe a single result chosen from the lot.

168 | Chapter 8: Online Inference with Ray Serve



This is expressed very similarly to the pipelining example: a number of downstream
models are passed into a top-level driver. In this case, it’s important that we call
the models in parallel: waiting for the result of each before calling the next would
dramatically increase the overall latency of the system:

@serve.deployment
class DownstreamModel:
    def __init__(self, my_val: str):
        self._my_val = my_val

    def __call__(self):
        return self._my_val

@serve.deployment
class BroadcastDriver:
    def __init__(self, model1, model2):
        self._m1 = model1
        self._m2 = model2

    async def __call__(self, *args) -> str:
        output1, output2 = self._m1.remote(), self._m2.remote()
        return [await output1, await output2]

m1 = DownstreamModel.bind("val1")
m2 = DownstreamModel.bind("val2")
broadcast_driver = BroadcastDriver.bind(m1, m2)

Testing this endpoint after running it once again with serve run returns '["val1",
"val2"]', the combined output of the two models called in parallel.

Pattern 3: Conditional logic
Finally, while many ML applications fit roughly into one of the preceding patterns,
often having static control flow can be very limiting. Take, for instance, the example
of building a service to extract license plate numbers from user-uploaded images. In
this case, we’ll likely need to build an image processing pipeline as discussed, but
we also don’t simply want to feed any image into the pipeline blindly. If the user
uploads something other than a car or an image that is low quality, we likely want to
short circuit, avoid calling into the heavyweight and expensive pipeline, and provide a
useful error message. Similarly, in a product recommendation use case we may want
to select a downstream model based on user input or the result of an intermediate
model. Each of these examples requires embedding custom logic alongside our ML
models.

We can accomplish this trivially using Serve’s multimodel API because our computa‐
tion graph is defined as ordinary Python logic rather than as a statically defined
graph. For instance, in the next example, we use a simple random number generator

An Introduction to Ray Serve | 169



(RNG) to decide which of two downstream models to call into. In a real-world
example, the RNG could be replaced with business logic, a database query, or the
result of an intermediate model:

@serve.deployment
class DownstreamModel:
    def __init__(self, my_val: str):
        self._my_val = my_val

    def __call__(self):
        return self._my_val

@serve.deployment
class ConditionalDriver:
    def __init__(self, model1, model2):
        self._m1 = model1
        self._m2 = model2

    async def __call__(self, *args) -> str:
        import random
        if random.random() > 0.5:
            return await self._m1.remote()
        else:
            return await self._m2.remote()

m1 = DownstreamModel.bind("val1")
m2 = DownstreamModel.bind("val2")
conditional_driver = ConditionalDriver.bind(m1, m2)

Each call to this endpoint returns either "val1" or "val2" with 50/50 probability.

End-to-End Example: Building an NLP-Powered API
In this section, we’ll use Ray Serve to build an end-to-end natural language pro‐
cessing (NLP) pipeline hosted for online inference. Our goal will be to provide a
Wikipedia summarization endpoint that will leverage multiple NLP models and some
custom logic to provide a succinct summary of the most relevant Wikipedia page for
a given search term.

This task will bring together many of the concepts and features we’ve discussed:

• We’ll be combining custom business logic along with multiple ML models.•
• The inference graph will consist of all three multimodel patterns: pipelining,•

broadcasting, and conditional logic.
• Each model will be hosted as a separate Serve deployment so they can be inde‐•

pendently scaled and given their own resource allocation.

170 | Chapter 8: Online Inference with Ray Serve



3 We’ve created this app.py file for you in the book’s GitHub repository. After cloning the repo and installing all
the dependencies, you should be able to run serve run app:<deployment_name> directly from the notebook
directory for each deployment we’re referencing in a serve run call in this chapter.

• One of the models will leverage vectorized computation via batching.•
• The API will be defined using Ray Serve’s FastAPI for input parsing and defining•

our output schema.

Our online inference pipeline will be structured as shown in Figure 8-2:

1. The user will provide a keyword search term.1.
2. We’ll fetch the content for the most relevant Wikipedia article for the search2.

term.
3. A sentiment analysis model will be applied to the article. Anything with a “nega‐3.

tive” sentiment will be rejected, and we’ll return early.
4. The article content will be broadcast to summarizer and named entity recogni‐4.

tion models.
5. We’ll return a composed result based on the summarizer and named entity5.

recognition outputs.

Figure 8-2. The architecture for an NLP pipeline to summarize Wikipedia articles

This pipeline will be exposed over HTTP and return the results in a structured
format. By the end of this section, we’ll have the pipeline running from end to end
locally and ready to scale up on a cluster. Let’s get started!

Before we dive into the code, you’ll need the following Python packages installed
locally:

pip install "ray[serve]==2.2.0" "transformers==4.21.2"
pip install "requests==2.28.1" "wikipedia==1.4.0"

Additionally, in this section we’ll assume that all the code samples are available locally
in a file called app.py so we can run the deployments using serve run from the same
directory.3

End-to-End Example: Building an NLP-Powered API | 171

https://oreil.ly/E0Zzg


Fetching Content and Preprocessing
The first step is to fetch the most relevant page from Wikipedia given a user-provided
search term. For this, we will leverage the Wikipedia package on PyPI to do the heavy
lifting. We’ll first search for the term and then select the top result and return its page
content. If no results are found, we’ll return None—this edge case will be handled later
when we define the API:

from typing import Optional

import wikipedia

def fetch_wikipedia_page(search_term: str) -> Optional[str]:
    results = wikipedia.search(search_term)
    # If no results, return to caller.
    if len(results) == 0:
        return None

    # Get the page for the top result.
    return wikipedia.page(results[0]).content

NLP Models
Next, we need to define the ML models that will do the heavy lifting of our API. We’ll
be using the Hugging Face Transformers library as it provides convenient APIs to
pretrained state-of-the-art ML models so we can focus on the serving logic.

The first model we’ll use is a sentiment classifier, the same one we used in the
preceding examples. The deployment for this model will take advantage of vectorized
computations using Serve’s batching API:

from ray import serve
from transformers import pipeline
from typing import List

@serve.deployment
class SentimentAnalysis:
    def __init__(self):
        self._classifier = pipeline("sentiment-analysis")

    @serve.batch(max_batch_size=10, batch_wait_timeout_s=0.1)
    async def is_positive_batched(self, inputs: List[str]) -> List[bool]:
        results = self._classifier(inputs, truncation=True)
        return [result["label"] == "POSITIVE" for result in results]

    async def __call__(self, input_text: str) -> bool:
        return await self.is_positive_batched(input_text)

172 | Chapter 8: Online Inference with Ray Serve

https://huggingface.co


We’ll also use a text summarization model to provide a succinct summary for the
selected article. This model takes an optional max_length argument to cap the length
of the summary. Because we know this is the most computationally expensive of the
models, we set num_replicas=2; that way, if we have many requests coming in at the
same time, it can keep up with the throughput of the other models. In practice, we
may need more replicas to keep up with the input load, but we could know that only
from profiling and monitoring:

@serve.deployment(num_replicas=2)
class Summarizer:
    def __init__(self, max_length: Optional[int] = None):
        self._summarizer = pipeline("summarization")
        self._max_length = max_length

    def __call__(self, input_text: str) -> str:
        result = self._summarizer(
            input_text, max_length=self._max_length, truncation=True)
        return result[0]["summary_text"]

The final model in our pipeline will be a named entity recognition model: this will
attempt to extract named entities from the text. Each result will have a confidence
score, so we can set a threshold to accept only results above a certain threshold. We
may also want to cap the total number of entities returned. The request handler for
this deployment calls the model and then uses some basic business logic to enforce
the provided confidence threshold and limit the number of entities:

@serve.deployment
class EntityRecognition:
    def __init__(self, threshold: float = 0.90, max_entities: int = 10):
        self._entity_recognition = pipeline("ner")
        self._threshold = threshold
        self._max_entities = max_entities

    def __call__(self, input_text: str) -> List[str]:
        final_results = []
        for result in self._entity_recognition(input_text):
            if result["score"] > self._threshold:
                final_results.append(result["word"])
            if len(final_results) == self._max_entities:
                break

        return final_results

HTTP Handling and Driver Logic
With the input preprocessing and ML models defined, we’re ready to define the
HTTP API and driver logic. First, we define the schema of the response that we’ll
return from the API using Pydantic. The response includes whether the request was
successful and a status message in addition to our summary and named entities. This

End-to-End Example: Building an NLP-Powered API | 173

https://oreil.ly/BM7rt


will allow us to return a helpful response in error conditions such as when no result is
found or the sentiment analysis comes back as negative:

from pydantic import BaseModel

class Response(BaseModel):
    success: bool
    message: str = ""
    summary: str = ""
    named_entities: List[str] = []

Next, we need to define the actual control flow logic that will run in the driver
deployment. The driver itself will not do any of the actual heavy lifting; instead, it will
call into our three downstream model deployments and interpret their results. It will
also house the FastAPI app definition, parsing the input and returning the correct
Response model based on the results of the pipeline:

from fastapi import FastAPI

app = FastAPI()

@serve.deployment
@serve.ingress(app)
class NLPPipelineDriver:
    def __init__(self, sentiment_analysis, summarizer, entity_recognition):
        self._sentiment_analysis = sentiment_analysis
        self._summarizer = summarizer
        self._entity_recognition = entity_recognition

    @app.get("/", response_model=Response)
    async def summarize_article(self, search_term: str) -> Response:
        # Fetch the top page content for the search term if found.
        page_content = fetch_wikipedia_page(search_term)
        if page_content is None:
            return Response(success=False, message="No pages found.")

        # Conditionally continue based on the sentiment analysis.
        is_positive = await self._sentiment_analysis.remote(page_content)
        if not is_positive:
            return Response(success=False, message="Only positivitiy allowed!")

        # Query the summarizer and named entity recognition models in parallel.
        summary_result = self._summarizer.remote(page_content)
        entities_result = self._entity_recognition.remote(page_content)
        return Response(
            success=True,
            summary=await summary_result,
            named_entities=await entities_result
        )

174 | Chapter 8: Online Inference with Ray Serve



4 The models we use in this example are quite large, so be warned that it will likely take several minutes to
download them the first time you run this example.

Fetch the page content in the main handler’s body using our fetch_wikipedia_page
logic (if no result is found, an error is returned). Then, we call into the sentiment
analysis model. If this returns negative, we terminate early and return an error
to avoid calling the other expensive ML models. Finally, we broadcast the article
contents to both the summary and named entity recognition models in parallel.
The results of the two models are stitched together into the final response, and we
return success. Remember that we may have many calls to this handler running
concurrently: the calls to the downstream models don’t block the driver, and it could
coordinate calls to many replicas of the heavyweight models.

Putting It All Together
At this point, we have defined all the core logic. All that’s left is to bind the graph of
deployments together and run it:

sentiment_analysis = SentimentAnalysis.bind()
summarizer = Summarizer.bind()
entity_recognition = EntityRecognition.bind(threshold=0.95, max_entities=5)
nlp_pipeline_driver = NLPPipelineDriver.bind(
    sentiment_analysis, summarizer, entity_recognition)

First, we need to instantiate each of the deployments with any relevant input argu‐
ments. For example, here we pass a threshold and limit for the entity recognition
model. The most important piece we pass is a reference to each of the three models
into the driver so it can coordinate the computation. Now that we’ve defined the full
NLP pipeline, we can run it using serve run:4

serve run app:nlp_pipeline_driver

This will deploy each of the four deployments locally and make the driver available
at http://localhost:8000. We can query the pipeline using the requests to see it in
action. First, let’s try querying for an entry on Ray Serve:

import requests

print(requests.get(
    "http://localhost:8000/", params={"search_term": "rayserve"}
).text)

'{"success":false,"message":"No pages found.",
  "summary":"","named_entities":[]}'

End-to-End Example: Building an NLP-Powered API | 175



Unfortunately, this page doesn’t exist yet! The first chunk of validation business logic
kicks in and returns a “No pages found” message. Let’s try looking for something
more common:

print(requests.get(
    "http://localhost:8000/", params={"search_term": "war"}
).text)

'{"success":false,"message":"Only positivitiy allowed!,
  "summary":"","named_entities":[]}'

Maybe we were just interested in learning about history, but this article was a bit
too negative for our sentiment classifier. Let’s try something more neutral this time—
what about science?

print(requests.get(
    "http://localhost:8000/", params={"search_term": "physicist"}
).text)

'{"success":true,"message":"","summary":" Physics is the natural science that
studies matter, its fundamental constituents, its motion and behavior through
space and time, and the related entities of energy and force . During the
Scientific Revolution in the 17th century these natural sciences emerged as
unique research endeavors in their own right . Physics intersects with many
interdisciplinary areas of research, such as biophysics and quantum chemistry .
","named_entities":["Scientific","Revolution", "Ancient","Greek","Egyptians"]}'

This example successfully ran through the full pipeline: the API responded with a
cogent summary of the article and a list of relevant named entities.

To recap, in this section we built an online NLP API using Ray Serve. This inference
graph consisted of multiple ML models in addition to custom business logic and
dynamic control flow. Each model can be independently scaled and have its own
resource allocation, and we can exploit vectorized computations using server-side
batching. Because we were able to test the API locally, the next step would be to
deploy to production. Ray Serve makes it easy to deploy on Kubernetes or other
cloud provider offerings using the Ray Cluster launcher, and we could easily scale up
to handle many users by tweaking the resource allocations for our deployments.

Summary
This chapter introduced Ray Serve, a Ray-native library for building online inference
APIs. Ray Serve is focused on solving the unique challenges of serving machine
learning models in production, offering functionality to efficiently scale models and
allocate resources as well as compose multiple models along with business logic.
Additionally, like all of Ray, Serve is designed to be a general-purpose solution that
avoids vendor lock-in.

176 | Chapter 8: Online Inference with Ray Serve



Although we walked through an end-to-end example of a multimodel pipeline, this
chapter has covered only a small portion of Ray Serve’s functionality and best practi‐
ces for real-world applications. For more detail and examples, read the Ray Serve
documentation.

Summary | 177

https://oreil.ly/-fg0u
https://oreil.ly/-fg0u




1 Ray itself is not opinionated about how you set up your cluster. In fact, you have many options, many of
which are described in this chapter. Apart from the open source solutions we’re describing here, there are also
fully managed commercial solutions available, such as those offered by Anyscale or Domino Data Lab.

2 While this chapter technically has an accompanying notebook, the material presented here is not well-suited
for development in an interactive Python session. We recommend that you work through these examples on
the command line. No matter where you decide to work, make sure to have Ray installed with pip install
"ray==2.2.0".

CHAPTER 9

Ray Clusters

Richard Liaw

So far we have focused on teaching you the basics of Ray for building machine
learning applications. You know how to parallelize your Python code with Ray Core
and run reinforcement learning experiments with RLlib. You’ve also seen how to
preprocess data with Ray Datasets, tune hyperparameters with Ray Tune, and train
models with Ray Train. But one of the key features that Ray brings is the ability to
scale out seamlessly onto multiple machines. Outside a lab environment or a big tech
company, it may be difficult set up multiple machines and join them into a single Ray
Cluster. This chapter is all about how to do that.1

Cloud technology has commoditized access to cheap machines for anyone. But it is
often quite difficult to figure out the right APIs to handle the cloud provider tools.
The Ray team has provided a couple of tools that abstract the complexity away. There
are three primary ways of launching or deploying a Ray Cluster. You can do so
manually, via a Kubernetes operator, or via the cluster launcher CLI tool.

In the first part of this chapter we’ll cover these three methods in detail.2 We only
briefly explain manual cluster creation and the cluster launcher CLI, and we spend
most of our time explaining how to use the Kubernetes operator. After that, we’ll
cover how to run Ray Clusters on the cloud and how to autoscale them up and down.

179

https://oreil.ly/eGru2


3 Depending on your setup or work situation, this might not be a realistic assumption for you. Don’t worry,
we’ll cover ways to create Ray Clusters that don’t require you to have any machines running. In any case,
knowing the steps involved for manual Ray Cluster creation is useful to fall back on.

4 If you already have remote Redis instances, you can use them by specifying the environment variable
RAY_REDIS_ADDRESS=ip1:port1,ip2:port2.... Ray will use the first address as primary and the rest as
shards.

Manually Creating a Ray Cluster
Let’s start with the most basic way of creating a Ray Cluster. To build a Ray Cluster
manually we assume that you have a list of machines that can communicate with each
other and have Ray installed on them.3

To start with, you can choose any machine to be the head node. On this node, run the
following command:

ray start --head --port=6379

This command will print out the IP address of the Ray GCS server that was started,
namely, the local node IP address plus the port number you specified:4

...
Next steps
To connect to this Ray runtime from another node, run
  ray start --address='<head-address>:6379'

If connection fails, check your firewall settings and network configuration.

You need this <head-address> to connect your other nodes to the cluster, so make
sure to copy it. If you omit the --port argument, Ray will use a random port.

Next, we can connect every other node in your cluster to the head node by running a
single command on each node:

ray start --address=<head-address>

Make sure to pass the correct <head-address>, which should look something like
123.45.67.89:6379. Running this command, you should see output of the following
form:

--------------------
Ray runtime started.
--------------------

To terminate the Ray runtime, run
  ray stop

If you wish to specify that a machine has 10 CPUs and 1 GPU, you can do this with
the flags --num-cpus=10 and --num-gpus=1. If you see Ray runtime started., then

180 | Chapter 9: Ray Clusters



5 If you want to learn more about the specific flags used in the upcoming examples, we suggest reviewing the
official reference guide.

the node successfully connected to the head node at the --address. You should now
be able to connect to the cluster with ray.init(address='auto').

If the head node and the new node you want to connect are on
a separate subnetwork with Network Address Translation (NAT),
you can’t use the <head-address> printed by the command starting
the head node as --address. In this case, you need to find the
address that will reach the head node from the new node. If the
head node has a domain address like compute04.berkeley.edu,
you can use that in place of an IP address and rely on the DNS.
If you see Unable to connect to GCS at ..., it means the head
node is inaccessible at the given --address. This could be for
several reasons. For example, maybe the head node is not actually
running, a different version of Ray is running at the specified
address, the specified address is wrong, or firewall settings are
preventing access.

If the connection fails, to check whether each port can be reached from a node, you
can use a tool such as nmap or nc. Here’s an example of how to run a check with both
tools in a successful case:5

$ nmap -sV --reason -p $PORT $HEAD_ADDRESS
Nmap scan report for compute04.berkeley.edu (123.456.78.910)
Host is up, received echo-reply ttl 60 (0.00087s latency).
rDNS record for 123.456.78.910: compute04.berkeley.edu
PORT     STATE SERVICE REASON         VERSION
6379/tcp open  redis?  syn-ack
Service detection performed. Please report any incorrect
  results at https://nmap.org/submit/ .
$ nc -vv -z $HEAD_ADDRESS $PORT
Connection to compute04.berkeley.edu 6379 port [tcp/...] succeeded!

If your node cannot access the port and IP address specified, you might see:

$ nmap -sV --reason -p $PORT $HEAD_ADDRESS
Nmap scan report for compute04.berkeley.edu (123.456.78.910)
Host is up (0.0011s latency).
rDNS record for 123.456.78.910: compute04.berkeley.edu
PORT     STATE  SERVICE REASON       VERSION
6379/tcp closed redis   reset ttl 60
Service detection performed. Please report any incorrect
  results at https://nmap.org/submit/ .
$ nc -vv -z $HEAD_ADDRESS $PORT
nc: connect to compute04.berkeley.edu port 6379 (tcp) failed: Connection refused

Manually Creating a Ray Cluster | 181

https://nmap.org/book/man.html


Now, if you want to stop the Ray processes on any node, simply run ray stop. That’s
the manual way of creating a Ray Cluster. Let’s move on to discussing the deployment
of your Ray Clusters with the popular Kubernetes orchestration framework.

Deployment on Kubernetes
Kubernetes is an industry-standard platform for cluster resource management. It
allows software teams to seamlessly deploy, manage, and scale their business appli‐
cations in a wide variety of production environments. It was initially developed
by Google, but many organizations have now adopted Kubernetes as their cluster
resource management solution.

The community-maintained KubeRay project is the standard way of deploying and
managing Ray Clusters on Kubernetes. The KubeRay operator helps deploy and
manage Ray Clusters on top of Kubernetes (Figure 9-1). Clusters are defined as a
custom RayCluster resource and managed by a fault-tolerant Ray controller. The
operator automates provisioning, management, autoscaling, and operations of Ray
Clusters deployed to Kubernetes. The main features of this operator are:

• Management of first-class RayCluster via a custom resource.•
• Support for heterogeneous worker types in a single Ray Cluster.•
• Built-in monitoring via Prometheus.•
• Use of PodTemplate to create Ray pods.•
• Updated status based on the running pods.•
• Automatically populate environment variables in the containers.•
• Automatically prefix your container command with the Ray start command.•
• Automatically adding the volumeMount at /dev/shm for shared memory.•
• Use of ScaleStrategy to remove specific nodes in specific groups.•

Figure 9-1. An overview of KubeRay

182 | Chapter 9: Ray Clusters

https://oreil.ly/LwUPr


Setting Up Your First KubeRay Cluster
You can deploy the operator by cloning the KubeRay repository and calling the
following command:

export KUBERAY_VERSION=v0.3.0

kubectl create -k "github.com/ray-project/kuberay/manifests/\
cluster-scope-resources?ref=${KUBERAY_VERSION}&timeout=90s"

kubectl apply -k "github.com/ray-project/kuberay/manifests/\
base?ref=${KUBERAY_VERSION}&timeout=90s"

You can verify that the operator has been deployed using this command:

kubectl -n ray-system get pods

When deployed, the operator will watch for Kubernetes events (create/delete/update)
for the raycluster resource updates. Upon these events, the operator can create a
cluster consisting of a head pod and multiple worker pods, delete a cluster, or update
the cluster by adding or removing worker pods. Now let’s deploy a new Ray Cluster
using a provided default cluster configuration (we’ll get to this YAML file later):

wget "https://raw.githubusercontent.com/ray-project/kuberay/\
${KUBERAY_VERSION}/ray-operator/config/samples/ray-cluster.complete.yaml"

kubectl create -f ray-cluster.complete.yaml

The KubeRay operator configures a Kubernetes service targeting the Ray head pod.
To identify the service, run:

kubectl get service --selector=ray.io/cluster=raycluster-complete

The output of this command should resemble the following structure:

NAME                           TYPE        CLUSTER-IP     EXTERNAL-IP
raycluster-complete-head-svc   ClusterIP   xx.xx.xxx.xx   <none>
   PORT(S)                       AGE
   6379/TCP,8265/TCP,10001/TCP   6m10s

The three ports indicated in the output correspond to the following services of the
Ray head pod:

6379

The Ray head’s GCS service. Ray worker pods connect to this service when
joining the cluster.

8265

Exposes the Ray Dashboard and the Ray Job Submission service.

10001

Exposes the Ray Client server.

Deployment on Kubernetes | 183

https://oreil.ly/a8MlJ


You should note that the Docker images we’re using are quite large and can take
a while to download. Also, even if you see the expected output from kubectl get
service, that doesn’t mean your cluster is ready to use yet. You should look at the
pod status and make sure they are all actually in “Running” state.

Interacting with the KubeRay Cluster
You might be wondering why we spend so much time on Kubernetes, since you’re
most likely just interested in learning how to run Ray scripts on it. That’s understand‐
able, and we’ll get to that in a moment.

First, let’s use the following Python script as the desired script to run on the cluster.
We’ll name it script.py (for simplicity), and the script will connect to the Ray Cluster
and run a couple standard Ray commands:

import ray
ray.init(address="auto")
print(ray.cluster_resources())

@ray.remote
def test():
    return 12

ray.get([test.remote() for i in range(12)])

There are three primary ways to run this script: using kubectl exec, Ray Job Sub‐
mission, or Ray Client. We’ll cover them in the following sections.

Running Ray programs with kubectl

To start with, you can directly interact with the head pod via kubectl exec. Use this
command to get a Python interpreter on the head pod:

kubectl exec `kubectl get pods -o custom-columns=POD:metadata.name |\
  grep raycluster-complete-head` -it -c ray-head -- python

With this Python terminal, you can connect and run your own Ray application:

import ray
ray.init(address="auto")
...

There are other ways of interacting with these services without kubectl, but they
will require some networking setup. The easiest route, and the one we’ll take in what
follows, is to use port-forwarding.

184 | Chapter 9: Ray Clusters



Using the Ray Job Submission server
You can run scripts on the cluster by using the Ray Job Submission server. You can
use the server to send a script or a bundle of dependencies and run custom scripts
with that set of dependencies. To start, you’ll need to port-forward the job submission
server port:

kubectl port-forward service/raycluster-complete-head-svc 8265:8265

Now, submit the script by setting the RAY_ADDRESS variable to the job server submis‐
sion endpoint and using the Ray Job Submission CLI:

export RAY_ADDRESS="http://localhost:8265"

ray job submit --working-dir=. -- python script.py

You’ll see an output that looks like:

Job submission server address: http://127.0.0.1:8265
2022-05-20 23:35:36,066 INFO dashboard_sdk.py:276
 -- Uploading package gcs://_ray_pkg_533a957683abeba8.zip.
2022-05-20 23:35:36,067 INFO packaging.py:416
 -- Creating a file package for local directory '.'.

-------------------------------------------------------
Job 'raysubmit_U5hfr1rqJZWwJmLP' submitted successfully
-------------------------------------------------------

Next steps
  Query the logs of the job:
    ray job logs raysubmit_U5hfr1rqJZWwJmLP
  Query the status of the job:
    ray job status raysubmit_U5hfr1rqJZWwJmLP
  Request the job to be stopped:
    ray job stop raysubmit_U5hfr1rqJZWwJmLP

Tailing logs until the job exits (disable with --no-wait):
{'memory': 47157884109.0, 'object_store_memory': 2147483648.0,
 'CPU': 16.0, 'node:127.0.0.1': 1.0}

------------------------------------------
Job 'raysubmit_U5hfr1rqJZWwJmLP' succeeded
------------------------------------------

You can use --no-wait to run the job in the background.

Ray Client
To connect to the cluster via Ray Client from your local machine, first make sure the
local Ray installation and Python minor version match the Ray and Python versions
running in the Ray Cluster. To do that, you can run ray --version and python
--version on both instances. In practice, you will be using a container, in which

Deployment on Kubernetes | 185



case you can simply make sure you run everything in the same container. Also, if the
versions don’t match, you will see a warning message informing you of the issue.

Next, run the following command:

kubectl port-forward service/raycluster-complete-head-svc 10001:10001

This command will block. The local port 10001 will now be forwarded to the Ray
head’s Ray Client server.

To run a Ray workload on your remote Ray Cluster, open a local Python shell and
start a Ray Client connection:

import ray
ray.init(address="ray://localhost:10001")
print(ray.cluster_resources())

@ray.remote
def test():
    return 12

ray.get([test.remote() for i in range(12)])

With this method, you can just run the Ray program directly on your laptop (instead
of needing to ship the code over via kubectl or job submission).

Exposing KubeRay
In the previous examples, we used port-forwarding as a simple way to access the
Ray head’s services. For production use cases, you may want to consider other means
of exposing these services. The following notes are generic to services running on
Kubernetes.

By default, the Ray service is accessible from anywhere within the Kubernetes cluster
where the Ray operator is running. For example, to use the Ray Client from a
pod in the same Kubernetes namespace as the Ray Cluster, use ray.init("ray://
raycluster-complete-head-svc:10001").

To connect from another Kubernetes namespace, use ray.init("ray://raycluster-
complete-head-svc.default.svc.cluster.local:10001"). (If the Ray Cluster is a
nondefault namespace, use the namespace in place of default.)

If you are trying to access the service from outside the cluster, use an ingress control‐
ler. Any standard ingress controller should work with Ray Client and Ray Dashboard.
Pick a solution compatible with your networking and security requirements—further
guidance is beyond the scope of this book.

186 | Chapter 9: Ray Clusters



Configuring KubeRay
Let’s take a closer look at the configuration for a Ray Cluster running on Kubernetes.
The example file kuberay/ray-operator/config/samples/ray-cluster.complete.yaml is a
good reference. Here is a condensed view of a Ray Cluster config’s most salient
features:

apiVersion: ray.io/v1alpha1
kind: RayCluster
metadata:
  name: raycluster-complete
spec:
  headGroupSpec:
    rayStartParams:
      port: '6379'
      num-cpus: '1'
      ...
    template: # Pod template
        metadata: # Pod metadata
        spec: # Pod spec
            containers:
            - name: ray-head
              image: rayproject/ray:1.12.1
              resources:
                limits:
                  cpu: "1"
                  memory: "1024Mi"
                requests:
                  cpu: "1"
                  memory: "1024Mi"
              ports:
              - containerPort: 6379
                name: gcs
              - containerPort: 8265
                name: dashboard
              - containerPort: 10001
                name: client
              env:
                - name: "RAY_LOG_TO_STDERR"
                  value: "1"
              volumeMounts:
                - mountPath: /tmp/ray
                  name: ray-logs
            volumes:
            - name: ray-logs
              emptyDir: {}
  workerGroupSpecs:
  - groupName: small-group
    replicas: 2
    rayStartParams:
        ...
    template: # Pod template

Deployment on Kubernetes | 187



        ...
  - groupName: medium-group
    ...

It’s ideal, when possible, to size each Ray pod such that it takes
up the entire Kubernetes node on which it is scheduled. In other
words, it’s best to run one large Ray pod per Kubernetes node;
running multiple Ray pods on one Kubernetes node introduces
unnecessary overhead. However, running multiple Ray pods on
one Kubernetes node makes sense in some situations, such as if:

• Many users are running Ray Clusters on a Kubernetes cluster•
with limited compute resources.

• You or your organization is not directly managing Kubernetes•
nodes (e.g., when deploying on GKE Autopilot).

Some of the primary configuration values that you may use are:

headGroupSpec and workerGroupSpecs
A Ray Cluster consists of a head pod and a number of worker pods. The head
pod’s configuration is specified under headGroupSpec. Configuration for worker
pods is specified under workerGroupSpecs. There may be multiple worker
groups, each group with its own configuration template. The replicas field
of a workerGroup specifies the number of worker pods of each group to keep in
the cluster.

rayStartParams

This is a string-string map of arguments to the Ray pod’s ray start entry point.
For the full list of arguments, refer to the documentation for ray start. We
make special note of the num-cpus and num-gpus field arguments:

num-cpus

This field tells the Ray Scheduler how many CPUs are available to the Ray
pod. The CPU count can be autodetected from the Kubernetes resource
limits specified in the group spec’s pod template. It is sometimes useful to
override this autodetected value. For example, setting num-cpus:"0" will pre‐
vent Ray workloads with nonzero CPU requirements from being scheduled
on the head node.

num-gpus

This specifies the number of GPUs available to the Ray pod. At the time of
writing, this field is not detected from the group spec’s pod template. Thus,
num-gpus must be set explicitly for GPU workloads.

188 | Chapter 9: Ray Clusters

https://oreil.ly/O5gEs


template

This is where the bulk of the headGroup or workerGroup’s configuration goes.
The template is a Kubernetes Pod template that determines the configuration for
the pods in the group.

resources

It’s important to specify container CPU and memory requests and limits for each
group spec. For GPU workloads, you may also wish to specify GPU limits, e.g.,
nvidia.com/gpu: 1 if using an Nvidia GPU device plug-in.

nodeSelector and tolerations
You can control the scheduling of a worker group’s Ray pods by setting the
nodeSelector and tolerations fields of the pod spec. Specifically, these fields
determine on which Kubernetes nodes the pods may be scheduled. Note that
the KubeRay operator operates at the level of pods—KubeRay is agnostic to the
setup of the underlying Kubernetes nodes. Kubernetes node configuration is left
to your Kubernetes cluster’s admins.

Ray container images
It’s important to specify the images used by your cluster’s Ray containers. The
head and workers of the clusters should all use the same Ray version. In most
cases, it makes sense to use the exact same container image for the head and all
workers of a given Ray Cluster. To specify custom dependencies for your cluster,
you should build an image based on one of the official rayproject/ray images.

Volume mounts
Volume mounts can be used to preserve logs or other application data originating
in your Ray containers. (See “Configuring Logging for KubeRay” on page 189.)

Container environment variables
Container environment variables may be used to modify Ray’s behavior. For
example, RAY_LOG_TO_STDERR will redirect logs to STDERR rather than writing
them to the container’s filesystem.

Configuring Logging for KubeRay
Ray Cluster processes typically write logs to the directory /tmp/ray/session_latest/logs
in the pod. These logs are also visible in the Ray Dashboard. To persist Ray logs
beyond the lifetime of a pod, you may use one of the following techniques:

Aggregate logs from the container’s filesystem
For this strategy, mount an empty-dir volume with mountPath /tmp/ray/ in the
Ray container (see the preceding example configuration). You can mount the log
volume into a sidecar container running a log aggregation tool such as Promtail.

Deployment on Kubernetes | 189

https://oreil.ly/LyEGy


6 To dynamically set up environments after the cluster has been deployed, you can use a runtime environment.

Container STDERR logging
An alternative is to redirect logging to STDERR. To do this, set the environment
variable RAY_LOG_TO_STDERR=1 on all Ray containers. In terms of Kubernetes
configuration, that means adding an entry to the env field of the Ray container in
each Ray groupSpec:

env:
    ...
    - name: "RAY_LOG_TO_STDERR"
      value: "1"
    ...

You may then use a Kubernetes logging tool geared toward aggregation from the
STDERR and STDOUT streams.

Using the Ray Cluster Launcher
The goal of the Ray Cluster Launcher is to make it easy to deploy a Ray Cluster on
any cloud. Here’s what it will do for you:

• Provision a new instance/machine using the cloud provider’s SDK.•
• Execute shell commands to set up Ray with the provided options.•
• Optionally run any custom, user-defined setup commands. This can be useful for•

setting environment variables and installing packages.6

• Initialize the Ray Cluster for you.•
• Deploy an autoscaler process.•

We will walk you through the details of autoscaling in “Autoscaling” on page 194. For
now, let’s focus on using the cluster launcher to deploy a Ray Cluster. To do so, you
need to provide a cluster configuration file.

Configuring Your Ray Cluster
To run your Ray Cluster, you must specify the resource requirements in a cluster
configuration file.

Here’s our “scaffold” cluster specification. This is just about the minimum you’ll need
to specify to launch your cluster. For more information about cluster YAML files, see
a large example here (let’s call it cluster.yaml):

# An unique identifier for the head node and workers of this cluster.
cluster_name: minimal

190 | Chapter 9: Ray Clusters



# The maximum number of workers nodes to launch in addition to the head
# node. min_workers default to 0.
max_workers: 1

# Cloud provider–specific configuration.
provider:
    type: aws
    region: us-west-2
    availability_zone: us-west-2a

# How Ray will authenticate with newly launched nodes.
auth:
    ssh_user: ubuntu

Using the Cluster Launcher CLI
Now that you have a cluster configuration file, you can use the Cluster Launcher CLI
to deploy the specified cluster:

ray up cluster.yaml

This single line of code will take care of everything done via the manual cluster
setup. It will interact with the cloud provider to provision the head node and start the
appropriate Ray services or processes on that node.

This single line of code will not automatically start all specified nodes. In fact, it will
start only a single “head” node, and run ray start --head ... on that head node.
A Ray autoscaling process will then use the provided cluster configuration to start the
worker nodes as a background thread after the head node has started.

Interacting with a Ray Cluster
After you start a cluster, you’ll often want to interact with it through a variety of
actions:

• Run a script on the cluster•
• Move files, logs, and artifacts off the cluster•
• SSH onto the nodes to inspect machine details•

There is a CLI for interacting with clusters launched by the Ray Cluster Launcher.
If you have an existing script (like a script.py, from earlier), you can run the script
on the cluster via ray job submit after you’ve port-forwarded the Job Submission
endpoint:

# Run in one terminal:
ray attach cluster.yaml -p 8265

Using the Ray Cluster Launcher | 191



# Run in a separate terminal:
export RAY_ADDRESS=http://localhost:8265
ray job submit --working-dir=. -- python script.py

--working-dir will move your local files onto the cluster, and python train.py will
be run on a shell on the cluster.

Let’s say after you run this script, you generate artifacts, like a results.log file that you
want to inspect. Use ray rsync-down to move the file back:

ray rsync-down cluster.yaml /path/on/cluster/results.log ./results.log

Working with Cloud Clusters
This section demonstrates how to deploy Ray Clusters on AWS and other cloud
providers.

AWS
First, install boto (pip install boto3) and configure your AWS credentials in
$HOME/.aws/credentials, as described in the boto docs.

Once boto is configured to manage resources on your AWS account, you should
be ready to launch your cluster. The provided example-full.yaml cluster config file
will create a small cluster with an m5.large head node (on-demand) configured to
autoscale up to two m5.large spot instance workers.

Test that it works by running the following commands from your local machine:

# Create or update the cluster. When the command finishes, it will print
# out the command that can be used to SSH into the cluster head node.
$ ray up ray/python/ray/autoscaler/aws/example-full.yaml

# Get a remote screen on the head node.
$ ray attach ray/python/ray/autoscaler/aws/example-full.yaml
# Try running a Ray program with 'ray.init(address="auto")'.

# Tear down the cluster.
$ ray down ray/python/ray/autoscaler/aws/example-full.yaml

192 | Chapter 9: Ray Clusters

https://oreil.ly/WnU8N
https://oreil.ly/rywrB
https://oreil.ly/fPFar


Using Other Cloud Providers
Ray Clusters can be deployed on most major clouds, including GCP and Azure. Here
is a template to get started for Google Cloud:

# A unique identifier for the head node and workers of this cluster.
cluster_name: minimal

# The maximum number of worker nodes to launch in addition to the head
# node. min_workers default to 0.
max_workers: 1

# Cloud-provider specific configuration.
provider:
    type: gcp
    region: us-west1
    availability_zone: us-west1-a
    project_id: null # Globally unique project id

# How Ray will authenticate with newly launched nodes.
auth:
    ssh_user: ubuntu

Here is a template to get started for Azure:

# An unique identifier for the head node and workers of this cluster.
cluster_name: minimal

# The maximum number of workers nodes to launch in addition to the head
# node. min_workers default to 0.
max_workers: 1

# Cloud-provider specific configuration.
provider:
    type: azure
    location: westus2
    resource_group: ray-cluster

# How Ray will authenticate with newly launched nodes.
auth:
    ssh_user: ubuntu
    # You must specify paths to matching private and public key pair files.
    # Use `ssh-keygen -t rsa -b 4096` to generate a new ssh key pair.
    ssh_private_key: ~/.ssh/id_rsa
    # Changes to this should match what is specified in file_mounts.
    ssh_public_key: ~/.ssh/id_rsa.pub

You can read more about this on the Ray documentation.

Working with Cloud Clusters | 193

https://oreil.ly/2Eog5


Autoscaling
Ray is designed to support highly elastic workloads that are most efficient on an
autoscaling cluster. At a high level, the autoscaler attempts to launch and terminate
nodes to ensure that workloads have sufficient resources to run, while minimizing the
idle resources. It does this by considering:

• User-specified hard limits (min/max workers)•
• User-specified node types (nodes in a Ray Cluster do not have to be•

homogenous)
• Information from the Ray Core’s scheduling layer about the current resource•

usage/demands of the cluster
• Programmatic autoscaling hints•

The autoscaler resource demand scheduler will look at the pending tasks, actors, and
placement groups, resource demands from the cluster. It will then try to add the
minimum list of nodes that can fulfill these demands.

When worker nodes are idle for more than idle_timeout_minutes, they will be
removed. The head node is never removed unless the cluster is torn down.

The autoscaler uses a simple binpacking algorithm to pack the user demands into
the available cluster resources. The remaining unfulfilled demands are placed on the
smallest list of nodes that satisfies the demand while maximizing utilization (starting
from the smallest node). You can learn more about the autoscaling algorithm in the
Autoscaling section of the Ray architecture whitepaper.

Ray also provides documentation and tooling for other cluster managers such as
YARN, SLURM, and LFS. You can read more about this in the Ray documentation.

Summary
In this chapter you learned how to spin up your own Ray Clusters so that you can
deploy your Ray applications on them. Besides manually setting up and shutting
down clusters, we had a closer look at deploying Ray Clusters on Kubernetes using
KubeRay. We also looked at the Ray Cluster Launcher in detail and discussed how
to work with cloud clusters on clouds such as AWS, GCP, and Azure. Finally, we
discussed how to use the Ray autoscaler to scale your Ray Clusters.

Now that you know more about scaling Ray Clusters, we’ll come back to the applica‐
tion side of things in Chapter 10 and discuss how all the Ray ML libraries we’ve seen
effectively come together to form the Ray AI Runtime.

194 | Chapter 9: Ray Clusters

https://oreil.ly/u0kzS
https://oreil.ly/t5M9i


CHAPTER 10

Getting Started with the Ray AI Runtime

We’ve come a long way since you read about Ray AIR in Chapter 1. Besides the
fundamentals of Ray Clusters and the basics of the Ray Core API, you’ve picked up
a good understanding of all higher-level libraries of Ray that can be leveraged in
AI workloads, namely, Ray RLlib, Tune, Train, Datasets, and Serve in the chapters
leading up to this one. The main reason we deferred a deeper discussion of Ray AIR
until now is that it’s so much easier to think about its concepts and compute complex
examples if you know its building blocks.

In this chapter we’ll introduce you to the core concepts of Ray AIR and how you can
use it to build and deploy common workflows. We’ll build an AIR application that
leverages many of Ray’s data science libraries that you already know about. We will
also tell you when and why to use AIR and give you a brief overview of its technical
underpinnings. An in-depth discussion of the relationship of AIR with other systems,
such as integrations and key differences, will be tackled in Chapter 11 when we talk
about Ray’s ecosystem as it relates to AIR.

Why Use AIR?
Running ML workloads with Ray has been a constant evolution over the last couple
of years. Ray RLlib and Tune were the first libraries built on top of Ray Core.
Components like Ray Train, Serve, and more recently Ray Datasets followed shortly
after. The addition of Ray AIR as an umbrella for all other Ray ML libraries is the
result of active discussions with and feedback from the ML community. Ray, as a
Python-native tool with good GPU support and stateful primitives (Ray actors) for
complex ML workloads, is a natural candidate for building a runtime like AIR.

Ray AIR is a unified toolkit for your ML workloads that offers many third-party
integrations for model training or accessing custom data sources. In the spirit of the

195



other ML libraries built on top of Ray Core, AIR hides lower-level abstractions and
provides an intuitive API that was inspired by common patterns from tools such as
scikit-learn.

At its core, Ray AIR was built for both data scientists and ML engineers alike. As
a data scientist, you can use it to build and scale your end-to-end experiments or
individual subtasks such as preprocessing, training, tuning, scoring, or serving of ML
models. As an ML engineer, you can go so far as to build a custom ML platform on
top of AIR or simply leverage its unified API to integrate it with other libraries from
your ecosystem. And Ray always gives you the flexibility to drop down and delve into
the lower-level Ray Core API.

As part of the Ray ecosystem, AIR can leverage all its benefits, which includes a
seamless transition from experimentation on a laptop to production workflows on a
cluster. You often see data science teams “hand over” their ML code to teams respon‐
sible for production systems. In practice this can be expensive and time-consuming,
as this process often involves modifying or even rewriting parts of the code. As we
will see, Ray AIR helps you with this transition because AIR takes care of concerns
such as scalability, reliability, and robustness for you.

Ray AIR already has a respectable number of integrations today, but it’s also fully
extensible. And as we will show you in the next section, its unified API provides a
smooth workflow that allows you to drop-in-replace many of its components. For
instance, you can use the same interface to define an XGBoost or PyTorch Trainer
with AIR, which makes experimentation with various ML models convenient.

At the same time, by choosing AIR you can avoid the problem of working with
several (distributed) systems and writing glue code for them that’s difficult to deal
with. Teams working with many moving parts often experience rapid deprecation
of integrations and a high maintenance burden. These issues can lead to migration
fatigue, a reluctance to adopt new ideas due to the anticipated complexity of system
changes.

As with every chapter, you can follow the code examples in the
accompanying Jupyter notebook.

196 | Chapter 10: Getting Started with the Ray AI Runtime

https://oreil.ly/ZrC5L
https://oreil.ly/ZrC5L


Key AIR Concepts by Example
AIR’s design philosophy is to provide you with the ability to tackle your ML workloads
in a single script, run by a single system. Let’s begin with AIR and its critical concepts
by walking through an extended usage example. Here’s what we’re going to do:

1. Load the breast cancer data set that you’ve already seen in Chapter 7 as a Ray1.
Dataset and use AIR to preprocess it.

2. Define an XGBoost model for training a classifier on this data.2.
3. Set up a so-called Tuner for our training procedure to tune its hyperparameters.3.
4. Store checkpoints of trained models.4.
5. Run batch prediction using AIR.5.
6. Deploy our predictor as a service with AIR.6.

You tackle these steps by building scalable pipelines with the AIR API. To follow
along this example, make sure to install the following requirements:

pip install "ray[air]==2.2.0" "xgboost-ray>=0.1.10" "xgboost>=1.6.2"
pip install "numpy>=1.19.5" "pandas>=1.3.5" "pyarrow>=6.0.1" "aiorwlock==1.3.0"

Figure 10-1 summarizes the steps we’re going to take in the following example,
alongside the AIR components we’ll use.

Figure 10-1. From data loading to inference with AIR as the single distributed system

Key AIR Concepts by Example | 197



1 This gives you parity between your training and serving pipelines, which makes working with AIR convenient
because you don’t have to reimplement pipelines for different use cases.

Ray Datasets and Preprocessors
The standard way to load data in Ray AIR is with Ray Datasets. AIR Preprocessors
are used to transform input data into features for ML experiments. We’ve already
briefly touched on preprocessors in Chapter 7 but have not discussed them in the
context of AIR yet.

Since Ray AIR Preprocessors operate on Datasets and leverage the Ray ecosystem,
they allow you to scale your preprocessing steps efficiently. During training an AIR
Preprocessor is fitted to the specified training data and can then later be used for both
training and serving.1 AIR comes packaged with many common preprocessors that
cover many use cases. If you don’t find the one you need, you can easily define a
custom preprocessor on your own.

In our example, we want to read a CSV file from an S3 bucket into a columnar
dataset first, using the read_csv utility. Then we split our dataset into a training and
a test dataset and define an AIR Preprocessor, StandardScaler, which normalizes all
specified columns of our dataset to have a mean of 0 and a variance of 1. Note that
just specifying a preprocessor does not transform the data just yet. Here is how you
implement this:

import ray
from ray.data.preprocessors import StandardScaler

dataset = ray.data.read_csv(
    "s3://anonymous@air-example-data/breast_cancer.csv"

    )  

train_dataset, valid_dataset = dataset.train_test_split(test_size=0.2)

test_dataset = valid_dataset.drop_columns(cols=["target"])  

preprocessor = StandardScaler(columns=["mean radius", "mean texture"])  

Load the breast cancer CSV file from S3 using Ray Datasets.

After defining a training and a test dataset, we drop the target column on the
test data.

Define an AIR Preprocessor to scale two variables of the dataset to be normally
distributed.

198 | Chapter 10: Getting Started with the Ray AI Runtime



Note that for simplicity we’re using the test dataset as a validation dataset in future
training as well, hence the naming convention.

Before moving on to the training step in AIR workflows, let’s look at the different
types of AIR Preprocessors that are available to you (Table 10-1). If you want to know
more about all available preprocessors, you can consult the user guide on this topic.
In this book we’re using preprocessors only for feature scaling, but the other types of
Ray AIR Preprocessors can be very useful as well.

Table 10-1. Ray AIR Preprocessors

Preprocessor type Examples
Feature scalers MaxAbsScaler, MinMaxScaler, Normalizer, PowerTransformer, StandardScaler

Generic preprocessors BatchMapper, Chain, Concatenator, SimpleImputer

Categorical encoders Categorizer, LabelEncoder, OneHotEncoder

Text encoders Tokenizer, FeatureHasher

Trainers
Once you have your training and test datasets ready and your preprocessors defined,
you can move on to specifying a Trainer that runs an ML algorithm on your data.
Trainers from the Ray Train package were introduced in Chapter 7; they provide
a consistent wrapper for training frameworks such as TensorFlow, PyTorch, or
XGBoost. In this example we’ll focus on the latter, but it’s important to note that
all other framework integrations work exactly the same way in terms of the Ray AIR
API.

Let’s define a so-called XGBoostTrainer, one of the many specific Trainer implemen‐
tations that come with Ray AIR. Defining such a trainer requires you to specify these
arguments:

• An AIR ScalingConfig that describes how you want to scale out training on•
your Ray Cluster

• A label_column that specifies which column of your dataset is used as a label in•
supervised learning with XGBoost

• A datasets argument with at least a train key and an optional valid key to•
specify the training and validation datasets, respectively

• An AIR preprocessor to compute the features of your ML model•
• Framework-specific parameters (e.g., the number of boosting rounds in•

XGBoost), as well as a common set of parameters called params visualized in
Figure 10-2:

from ray.air.config import ScalingConfig
from ray.train.xgboost import XGBoostTrainer

Key AIR Concepts by Example | 199

https://oreil.ly/WcV6W


2 Technically speaking, not every trainer needs to specify a datasets argument. You can also use framework-
specific data loaders, though we can’t show you any examples here.

trainer = XGBoostTrainer(

    scaling_config=ScalingConfig(  
        num_workers=2,
        use_gpu=False,
    ),
    label_column="target",

    num_boost_round=20,  
    params={
        "objective": "binary:logistic",
        "eval_metric": ["logloss", "error"],
    },

    datasets={"train": train_dataset, "valid": valid_dataset},  

    preprocessor=preprocessor,  
)

result = trainer.fit()  
print(result.metrics)

Every Trainer comes with a scaling configuration. Here we’re using two Ray
workers and no GPU.

XGBoostTrainers need specific configuration, as well as a training
objective and evaluation metrics to track.

The Trainer specifies the datasets it’s supposed to operate on.2

In the same way, you can provide AIR Preprocessors that the Trainer should
use.

After everything is defined, a simple fit call is enough to start the training
procedure.

Trainers provide scalable ML training that operates on AIR Datasets and preproces‐
sors. On top of that, they’re also built to integrate well with Ray Tune for HPO, as
we’ll see next.

To summarize this section, Figure 10-2 shows how AIR Trainers fit ML models on
Ray Datasets given AIR Preprocessors and a scaling configuration.

200 | Chapter 10: Getting Started with the Ray AI Runtime



Figure 10-2. AIR Trainers operate on Ray Datasets and use AIR Preprocessors and
scaling configurations

Tuners and Checkpoints
Tuners, introduced with Ray 2.0 as part of AIR, offer scalable hyperparameter tuning
through Ray Tune. Tuners work seamlessly with AIR Trainers, but also support arbi‐
trary training functions. In our example, instead of calling fit() on your trainer
instance from the previous section, you can pass your trainer into a Tuner. To do
so, a Tuner needs to be instantiated with a parameter space to search over, a so-called
TuneConfig. This config has all Tune-specific configurations like the metric you
want to optimize and an optional RunConfig that lets you configure runtime-specific
aspects such as the log verbosity of your Tune run.

Continuing with the XGBoostTrainer we defined earlier, here’s how you wrap that
trainer instance in a Tuner to calibrate the max_depth parameter of your XGBoost
model:

from ray import tune

param_space = {"params": {"max_depth": tune.randint(1, 9)}}
metric = "train-logloss"

from ray.tune.tuner import Tuner, TuneConfig
from ray.air.config import RunConfig

tuner = Tuner(

    trainer,  

    param_space=param_space,  
    run_config=RunConfig(verbose=1),

    tune_config=TuneConfig(num_samples=2, metric=metric, mode="min"),  
)

result_grid = tuner.fit()  

best_result = result_grid.get_best_result()
print("Best Result:", best_result)

Key AIR Concepts by Example | 201



Initialize your Tuner with a Trainer instance, which in turn specifies the scaling
configuration of the run.

Your Tuner also takes a param_space to search over.

It also needs a dedicated TuneConfig to tell Tune how to optimize your Trainer,
given its parameter space.

Tuner runs are started the same way as Trainers, namely, by calling .fit().

Whenever you run AIR Trainers or Tuners, they generate framework-specific check‐
points. You can use these checkpoints to load models for usage across several AIR
libraries, such as Tune, Train, or Serve. You can get a checkpoint by accessing the
result of a .fit() call on either a Trainer or a Tuner. In our example, that means you
can simply access a checkpoint on the best_result object, or any other entry from
the result_grid like this:

checkpoint = best_result.checkpoint
print(checkpoint)

The other main way to work with checkpoints is by creating one from an existing,
framework-specific model. Every ML framework supported by AIR can be used to do
this, but since it’s easiest to define a simple model with it, we’re going to show you
how this looks for a sequential TensorFlow Keras model:

from ray.train.tensorflow import TensorflowCheckpoint
import tensorflow as tf

model = tf.keras.Sequential([
    tf.keras.layers.InputLayer(input_shape=(1,)),
    tf.keras.layers.Dense(1)
])

keras_checkpoint = TensorflowCheckpoint.from_model(model)

Having checkpoints is great because they’re AIR’s native model exchange format.
You can also use them to pick up trained models at a later stage, without having
to worry about custom ways to store and load the models in question. Figure 10-3
schematically shows how AIR Tuners work with AIR Trainers.

202 | Chapter 10: Getting Started with the Ray AI Runtime



Figure 10-3. An AIR Tuner calibrates the hyperparameters of AIR Trainers

Batch Predictors
Once you have trained a model through AIR, that is, by fitting either a Trainer
or a Tuner, you can use the resulting AIR Checkpoint for prediction on batches
of data in Python. To do that you create a BatchPredictor from your Checkpoint
and then use its predict method on your Dataset. In our case we need to use the
framework-specific class of the predictor, namely, XGBoostPredictor, to tell AIR how
to load the checkpoint correctly:

from ray.train.batch_predictor import BatchPredictor
from ray.train.xgboost import XGBoostPredictor

checkpoint = best_result.checkpoint

batch_predictor = BatchPredictor.from_checkpoint(checkpoint, XGBoostPredictor) 

predicted_probabilities = batch_predictor.predict(test_dataset) 
predicted_probabilities.show()

Load an XGBoost model from a checkpoint into a BatchPredictor object.

Run batch inference on our test dataset to get predicted probabilities.

This can be visualized in Figure 10-4.

Figure 10-4. Using AIR BatchPredictors from AIR Checkpoints to run batch inference
on AIR Datasets

Key AIR Concepts by Example | 203



3 If you run the following example from a Jupyter notebook, you do not have to worry about it blocking
the notebook—it will run just fine. Starting a server like this is often implemented as a blocking call, but
PredictorDeployment isn’t.

Deployments
Instead of using a BatchPredictor and interacting with the model in question
directly, you can leverage Ray Serve to deploy an inference service that you can
query over HTTP. You do that by using the PredictorDeployment class and deploy
it using our checkpoint. The only slightly tricky part about this is that our model
operates on dataframes, which we can’t directly send over HTTP. That means we need
to explicitly tell our prediction service how to pick up and transform the payload we
define and create a dataframe from it. We do this by specifying an adapter for our
deployment:3

from ray import serve
from fastapi import Request
import pandas as pd
from ray.serve import PredictorDeployment

async def adapter(request: Request):  
    payload = await request.json()
    return pd.DataFrame.from_dict(payload)

serve.start(detached=True)

deployment = PredictorDeployment.options(name="XGBoostService")  

deployment.deploy(  
    XGBoostPredictor,
    checkpoint,
    http_adapter=adapter
)

print(deployment.url)

An adapter takes an HTTP request object and returns data in a format accepted
by our model.

After starting Serve we can create a deployment for our model.

To actually deploy the deployment object we need to pass in the model check
point, the adapter function, and the XGBoostPredictor class for correct model
loading.

204 | Chapter 10: Getting Started with the Ray AI Runtime



To test this deployment, let’s create some sample input from our test data that we
can throw at our service. For simplicity, we take the first item of our test dataset and
convert it to a Python dictionary so that the ubiquitous Requests library can post a
request to our deployment URL with it:

import requests

first_item = test_dataset.take(1)
sample_input = dict(first_item[0])

result = requests.post(  
    deployment.url,
    json=[sample_input]
)
print(result.json())

serve.shutdown()  

Posts our sample_input to deployment.url with requests.

After you’re finished using the service, you can safely shut down Ray Serve.

Figure 10-5 summarizes how AIR deployments with the PredictorDeployment class
work.

Figure 10-5. Creating PredictorDeployments from AIR Checkpoints to serve models that
users can interact with

Figure 10-6 gives you a quick visual overview of all the components and concepts
involved in Ray AIR, including pseudocode for all the main AIR components we’ve
covered in this chapter.

Key AIR Concepts by Example | 205



Figure 10-6. AIR combines many Ray libraries by providing a unified API for common
data science workloads

It’s important to stress again that we’ve been using a single Python script for this
example and a single distributed system in Ray AIR to do all the heavy lifting. In
fact, you can use this example script and scale it out to a large cluster that uses CPUs
for preprocessing and GPUs for training and separately configure the deployment
simply by modifying the parameters of the scaling configuration and similar options
in that script. This isn’t as easy or common as it may seem, and it is not unusual
for data scientists to have to use multiple frameworks (e.g., one for data loading and
processing, one for training, and one for serving).

206 | Chapter 10: Getting Started with the Ray AI Runtime



4 Of course, the model used for inference has to be loaded first, but since its parameters don’t change during
prediction, trained models can be considered static data in this case. We sometimes refer to this situation as
soft state.

5 Sometimes AIR uses Ray actors for stateless tasks for performance reasons, such as caching models in batch
inference.

You can also use Ray AIR with RLlib, but the integration is still in
its early stages. For instance, to integrate RLlib with AIR Trainers,
you’d use the RLTrainer that allows you to pass in all arguments
that you’d pass to a standard RLlib algorithm. After training, you
can store the resulting RL model in an AIR Checkpoint, just as
with any other AIR Trainer. To deploy your trained RL model,
you can use Serve’s PredictorDeployment class by passing your
checkpoint along with the RLPredictor class.
This API might be subject to change, but you can see an example of
how this works in the AIR documentation.

Workloads That Are Suited for AIR
Now that we’ve seen examples of AIR and its fundamental concepts, let’s zoom out
a little and discuss in principle which kinds of workloads you can run with it. We’ve
tackled all of these workloads already throughout the book, but it’s good to recap
them systematically. As the name suggests, AIR is built to capture common tasks in
AI projects. These tasks can be roughly classified in the following way:

Stateless computation
Tasks like preprocessing data or computing model predictions on a batch of data
are stateless.4 Stateless workloads can be computed independently in parallel.
If you recall our treatment of Ray tasks from Chapter 2, stateless computation
is exactly what they were built for. AIR primarily uses Ray tasks for stateless
workloads.5 Many big data processing tools fall into this category.

Stateful computation
In contrast, model training and hyperparameter tuning are stateful operations, as
they update the model state during their respective training procedure. Updating
stateful workers in such distributed training is a difficult topic that Ray handles
for you. AIR uses Ray actors for stateful computations.

Composite workloads
Combining stateless and stateful computation, for instance by first processing
features and then training a model, is quite common in AI workloads. In fact,
it’s rare for end-to-end projects to exclusively use one or the other. Running such
advanced composite workloads in a distributed fashion can be described as big

Workloads That Are Suited for AIR | 207

https://oreil.ly/gB-wg


6 Note that preprocessors can be stateful, but we haven’t discussed any examples of that scenario here.

data training, and AIR is built to handle both the stateless and stateful parts
efficiently.

Online serving
Lastly, AIR is built to handle scalable online serving of (multiple) models. The
transition from the previous three workloads to serving is frictionless by design,
as you still operate within the same AIR ecosystem.

Figure 10-7 illustrates the typical stateless tasks of Ray AIR.

Figure 10-7. Stateless AIR tasks

These four tasks map to Ray’s libraries straightforwardly. For instance, in this
chapter we’ve discussed several ways in which Ray Datasets are used for stateless
computation. You could run batch inference on a given Dataset by passing it into a
BatchPredictor loaded from an AIR Checkpoint. Or you could preprocess a Dataset
to produce features for later training.6

Likewise, there are three AIR libraries dedicated to stateful computations, namely,
Train, Tune, and RLlib. As we’ve seen, both Train and RLlib integrate seamlessly with
Tune in AIR by passing the respective Trainer objects into a Tuner.

When it comes to advanced composite workloads, Ray AIR and its combined usage
of both tasks and actors really shines. For instance, some ML training procedures
need to perform complex data processing tasks during training. Others may require
shuffling the training dataset before each epoch. Since Ray AIR’s training libraries
(based on actors) can seamlessly leverage data processing operations (mostly based
on tasks), even the most complex use cases can be reflected in AIR.

Also, since you can use any AIR Checkpoint with Ray Serve, AIR makes it easy to
switch from training to serving workloads, using the same infrastructure. We’ve seen
how you can use a PredictorDeployment to host a model behind an HTTP endpoint,
which is optimized for low latency and high throughput. By deploying AIR, you can

208 | Chapter 10: Getting Started with the Ray AI Runtime



7 On top of multiple replicas for single models, AIR also supports deployment of multiple models. This allows
you to compose multiple models or run A/B testing.

scale your prediction services to multiple replicas and use Ray’s autoscaling features
to adjust your cluster according to inbound traffic.7

You can use these types of workloads in different scenarios, too. For instance, you can
use AIR to replace and scale out a single component of an existing pipeline. Or you
can create your own end-to-end machine learning apps with AIR, as we’ve indicated
in this chapter. Lastly, you can also use AIR to build your own AI platform, a topic
that we’ll look at in Chapter 11.

Figure 10-8 summarizes how these four types of AI workloads are covered by AIR as
part of the Ray ecosystem.

Figure 10-8. The four types of AI workloads AIR enables you to run on Ray Clusters

Next, we’ll discuss several aspects of each of these four workload types of AIR in more
detail. Specifically, we will investigate how Ray executes such workloads internally.
Also, we’re going to dive a little deeper into the technical aspects behind Ray AIR,
such as how it manages memory or handles failures. We can give you only a brief
overview of these topics but will provide links to more advanced material as we go.

AIR Workload Execution
Let’s have a closer look at the execution model of AIR.

Stateless execution
Ray Datasets use Ray tasks or actors to execute transformations. Tasks are preferred
since they allow for easier and more flexible scheduling. The Datasets library uses a
scheduling strategy that evenly balances tasks and their output across your cluster.

Workloads That Are Suited for AIR | 209



8 All crucial AIR components such as Trainer or BatchPredictor support this pipelining feature.

Actors are used if a transformation has state or needs an expensive setup, like loading
large model checkpoints. In this case, loading large models in an actor once to
reuse it for inference tasks can benefit overall performance. When Ray Datasets is
using actors, these actors are created first, and the necessary data (in our example
the loaded model) is transferred to them before the transformation in question gets
executed.

In general, datasets are stored in Ray object store memory, while large datasets are
spilled to disk. But for stateless transformations there is often no need to keep inter‐
mediate results in memory. Using pipelining on Datasets, as we’ve shown in Chap‐
ter 6, data can instead be streamed to and from storage to increase performance.8 The
idea is to load only the fraction of the data currently needed to execute a transforma‐
tion. This can drastically reduce the memory footprint of the transformation and
often speed up the overall execution.

Stateful execution
Ray Train and RLlib spawn actors for their distributed training workers. As demon‐
strated multiple times, both libraries also integrate seamlessly with Tune. In Chapter 5
we detailed how Tune launches Trials, which in essence are groups of actors executing
a certain workload. If you use Train or RLlib with Tune, that in turn means that a
tree of actors gets created, namely, an actor for each Tune Trial, and subactors for the
parallel training workers requested by Train or RLlib.

In terms of workload execution, this naturally creates an inner and an outer layer.
Each subactor in a Tune Trial has full autonomy over its workload, as requested in
the respective Train or RLlib training run you specified. This represents the inner
execution layer. On the outer layer, Tune needs to monitor the status of individual
trials, which it does by periodically reporting metrics to the Trial driver. Figure 10-9
illustrates this nested creation and execution of Ray actors for this scenario.

Figure 10-9. Running distributed training on AIR with Tune

210 | Chapter 10: Getting Started with the Ray AI Runtime



Composite workload execution
Composite workloads leverage both task- and actor-based computation simultane‐
ously. This can lead to interesting resource allocation challenges. Trial actors need to
reserve their resources upfront, but stateless tasks don’t. The problem you can run
into is that all available resources might get reserved for your training actors with
none left for data loading tasks.

AIR prevents this by allowing Tune to reserve a maximum of 80% of a node’s
CPU. You can tune this parameter, but this is a sensible default that ensures basic
resource availability for stateless computations. In the common scenario in which
your training operations leverage GPUs and your data processing steps don’t, this
becomes a nonissue.

Online serving execution
For online serving Ray Serve manages a pool of stateless actors to serve your requests.
Some actors listen for incoming requests and call other actors to perform the predic‐
tions. Requests are automatically load-balanced using a round-robin algorithm to the
pool of actors hosting the models. Load metrics are sent to the Serve component to
perform autoscaling.

AIR Memory Management
In this section we take a bit of a deep dive into the specific memory management
techniques of AIR. We’ll discuss to what extent the Ray object store is used by AIR.
You can skip this section if you find it too technical. The upshot is that Ray employs
smart techniques that will ensure your data and compute are properly distributed and
scheduled.

When you load data using Ray Datasets, you already know that internally these
Datasets are partitioned into blocks of data in your cluster. A block is simply a
collection of Ray objects. Choosing the right block size is difficult and presents a
trade-off between the overhead of having to manage too many small blocks and
risking out-of-memory (OOM) exceptions due to blocks that are too large. AIR takes
a pragmatic approach and tries to distribute in such a way that blocks don’t exceed
512 MB. In case this can’t be ensured, a warning will be issued. Should a block not fit
into memory, AIR will spill your data to local disk.

Your stateful workloads will use the Ray object store to varying degrees. For instance,
RLlib uses Ray objects to broadcast model weights to individual rollout workers and
for experience data collection. Tune uses it to set up Trials by sending and retrieving
AIR Checkpoints. For technical reasons actors risk running into OOM issues if too

Workloads That Are Suited for AIR | 211



9 Stateful workloads use Python’s heap memory, which is not managed by Ray.
10 GCS can be deployed in high availability (HA) mode to prevent this, but that is typically beneficial only for

online serving workloads.

much memory is required relative to the allocated resources.9 If you know your
memory requirements in advance, you can adapt the memory in your ScalingConfig
accordingly, or simply ask for additional cpu resources.

In composite workloads stateful actors (e.g., for training) have to access data created
by stateless tasks (e.g., for preprocessing), which makes memory allocation more
challenging. Let’s look at two scenarios:

• If the actors responsible for training have enough space (in the object store) to fit•
all training data in memory, the situation is simple. First the preprocessing steps
run, and then all data blocks are downloaded to the respective nodes. Training
actors then simply iterate data that’s kept in memory.

• Otherwise, data processing needs pipelined execution, which means that data will•
be processed by tasks on the fly and will be downloaded on demand by training
Actors afterward. If the respective training actor is co-located on the node that
did the processing, data will be retrieved from shared memory.

AIR Failure Model
AIR offers fault tolerance for most stateless computations through lineage reconstruc‐
tion. This means Ray will reconstruct Dataset blocks if they are lost due to node
failures by resubmitting the necessary tasks, enabling workloads to scale to large
clusters. Note that fault tolerance does not apply to head node failures. And a crash of
the Global Control Service (GCS) storing cluster metadata will kill all your jobs in the
cluster.10

Jobs involving stateful computations primarily rely on checkpoint-based fault toler‐
ance. Tune will restart distributed trials from their last checkpoint as configured in
its failure configuration. With a configured checkpoint interval, this means that Tune
can run trials effectively on clusters consisting of “spot instances.” In addition, it is
possible to resume entire Tune experiments from the experiment-wide checkpoint in
case of whole-cluster failure.

Composite workloads inherit the fault-tolerance strategies of both stateless and
stateful workloads, retaining the best of both worlds. This means that lineage recon‐
struction applies to the stateless portion of the workload, and application-level check‐
pointing still applies to the overall computation.

212 | Chapter 10: Getting Started with the Ray AI Runtime



Autoscaling AIR Workloads
AIR libraries can run on autoscaling Ray Clusters that we introduced in Chapter 9.
For stateless workloads, Ray will autoscale automatically if there are queued tasks (or
queued Dataset compute actors). For stateful workloads, Ray will autoscale up if there
are pending placement groups (i.e., Tune trials) not yet scheduled in the cluster. Ray
will autoscale down when nodes are idle. A node is considered idle when there is no
resource usage on the node and also no Ray objects in memory or spilled on disk
on the node. Since most AIR libraries leverage objects, this means that nodes may be
kept if they are holding objects referenced by workers on other nodes (e.g., Dataset
block used by another trial).

You should be aware that autoscaling may result in less than ideal data balancing
in the cluster because nodes that are started earlier naturally run more tasks over
their lifetime. Consider limiting (e.g., starting with a certain minimum cluster size) or
disabling autoscaling to optimize the efficiency of data-intensive workloads.

Summary
In this chapter you’ve seen how all the Ray libraries we’ve introduced come together
to form the Ray AI Runtime. You’ve learned about all the key concepts that allow
you to build scalable ML projects, from experimentation to production. In particular,
you’ve seen how Ray Datasets are used for stateless computations such as feature
preprocessing, and how Ray Train, Tune, and RLlib are used for stateful computa‐
tions such as model training. Seamlessly combining these types of computations in
complex AI workloads and scaling them out to large clusters is a key strength of AIR.
Deploying your AIR projects comes essentially for free, as AIR fully integrates with
Ray Serve as well.

In Chapter 11 we’ll show you how Ray, and particularly AIR, fits into the broader
landscape of related tools. Knowing the rich set of integrations and extensions of
Ray’s ecosystem will help you understand how to leverage Ray in your own projects.

Summary | 213





CHAPTER 11

Ray’s Ecosystem and Beyond

Over the course of this book, you’ve seen many examples of Ray’s ecosystem. Now it’s
time to take a more systematic approach and show you the full extent of integrations
currently available for Ray. We do so by discussing this ecosystem as seen from Ray
AIR so that we can discuss it in the context of a representative AIR workflow.

Clearly, we can’t give you concrete code examples for a majority of the libraries in
Ray’s ecosystem. Instead, we have to be content with giving you another Ray AIR
example showcasing some integrations and discussing what others are available and
how to use them. Where appropriate, we’ll point you to more advanced resources to
deepen your understanding.

Now that you know much more about Ray and its libraries, this chapter is also the
right place to compare what Ray offers to similar systems. As you’ve seen, Ray’s eco‐
system is quite complex, can be seen from different angles, and is used for different
purposes. That means many aspects of Ray can be compared to other tools in the
market.

We’ll also comment on how to integrate Ray into more complex workflows in existing
ML platforms. To wrap things up, we’ll give you an idea how to continue your
journey of learning Ray after finishing this book.

The notebook for this chapter is available on GitHub.

215

https://oreil.ly/mUrmi


1 You can find the current list of integrations to the AIR ecosystems in the Ray documentation. More generally,
you find a list of integrations for Ray on the Ray Ecosystem page. On the latter, you find many more
integrations than the ones we discuss here, such as ClassyVision, Intel Analytics Zoo, John Snow Labs’ NLU,
Ludwig AI, PyCaret, and SpaCy.

A Growing Ecosystem
To give you a glimpse of Ray’s ecosystem by means of a concrete example,1 we’re
going to show you how to use Ray AIR with data and models from the PyTorch
ecosystem, how to log your hyperparameter tuning runs to MLflow, and how to
deploy your trained models with Ray’s Gradio integration. Along the way we give
you an overview and discuss usage patterns of other noteworthy integrations at each
respective stage.

To follow the code examples in this chapter, make sure to install the following
dependencies in your Python environment:

pip install "ray[air, serve]==2.2.0" "gradio==3.5.0" "requests==2.28.1"
pip install "mlflow==1.30.0" "torch==1.12.1" "torchvision==0.13.1"

We’re going to load and transform a dataset using utilities from the PyTorch frame‐
work and then convert this data into a Ray Dataset to work with it in Ray AIR.
We then define a standard PyTorch model and a simple training loop that we can
leverage in Ray Train. Next, we wrap this TorchTrainer in a Tuner and log trial
results to MLflow using the MLflowLogger that ships with Ray Tune. Finally, we’re
going to serve our trained model using Gradio running on Ray Serve.

In other words, the example we’re discussing takes common Python data science
libraries that you might already use and wraps them in an AIR workflow by leverag‐
ing Ray’s ecosystem integrations. The focus is more on these integrations and how
they interface with AIR and less on the concrete use case.

Data Loading and Processing
In Chapter 6 you learned about the basics of Ray Datasets, how to create them from
common Python data structures, how to load Parquet files from storage systems like
S3, and how to use Ray’s Dask on Ray integration to interface with Dask.

To give you yet another example of Ray Dataset’s capabilities, let’s see how you can
work with image data loaded through PyTorch’s torchvision extension. The idea
is simple. We’re going to load the common CIFAR-10 dataset available in PyTorch
through the torchvision.datasets package and then make it a Ray Dataset. Specifi‐
cally, we’re going to define a function called load_cifar that returns the CIFAR-10
data for training or testing:

216 | Chapter 11: Ray’s Ecosystem and Beyond

https://oreil.ly/S7_eb
https://oreil.ly/Wiqi1


from torchvision import transforms, datasets

def load_cifar(train: bool):

    transform = transforms.Compose([  
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    return datasets.CIFAR10(  
        root="./data",
        download=True,

        train=train,  
        transform=transform
    )

Uses a PyTorch transform to return normalized Tensor data.

Loads the CIFAR-10 dataset using the datasets module of the torchvision
package.

Makes it so that the loader function returns either training or testing data.

Note that so far we haven’t touched any Ray library, and you could have used any
other dataset or transform from PyTorch in the same way. To get Ray Datasets for
use with AIR, we’re going to supply our load_cifar data loader functions to the
from_torch utility from Ray AIR:

from ray.data import from_torch

train_dataset = from_torch(load_cifar(train=True))
test_dataset = from_torch(load_cifar(train=False))

The CIFAR-10 dataset is used for image classification tasks; it consists of 32-pixel
square images and comes with labels of a total of 10 categories. So far we’ve loaded
this dataset only in the form provided by PyTorch, but we still need to transform it
to use it with an AIR Trainer. You do this by creating an image and a label column
that we can then reference in a Trainer. The best way to do so is by mapping batches of
train and test data to a dictionary of NumPy arrays with precisely these two columns:

import numpy as np

def to_labeled_image(batch):  
    return {
        "image": np.array([image.numpy() for image, _ in batch]),
        "label": np.array([label for _, label in batch]),
    }

A Growing Ecosystem | 217



2 You can see the continually updated list of supported formats in the Ray Datasets documentation. The
supported output formats for Datasets largely overlap with the input formats.

train_dataset = train_dataset.map_batches(to_labeled_image)  
test_dataset = test_dataset.map_batches(to_labeled_image)

Transforms each batch of data by returning an image and a label NumPy array.

Applies map_batches to transform our initial datasets.

Before we move on to model training, Table 11-1 shows the supported input formats
of the Ray Datasets library.2

Table 11-1. The Ray Datasets ecosystem

Integration Type Description
Text, binary, image
files, CSV, JSON

Basic data formats Supporting such basic formats should not strictly speaking be considered an
integration, but it’s worth knowing that Ray Datasets can load and store
these formats.

NumPy, Pandas, Arrow,
Parquet, Python objects

Advanced data
formats

Ray Datasets supports working with common ML data libraries such as
NumPy and Pandas but can also read custom Python objects or read Parquet
files.

Spark, Dask, MARS,
Modin

Advanced third-
party integrations

Ray interoperates with more complex data processing systems by means of
community integrations, such as Spark on Ray (RayDP), Dask on Ray, MARS
on Ray, or Pandas on Ray (Modin).

We’ll talk about the relationship of Ray with systems such as Dask or Spark in more
detail in “Distributed Python Frameworks” on page 227.

Model Training
Having properly shaped our CIFAR-10 to train and test data using Ray Datasets, we
can now define a classifier to train our data on. As this is likely the most natural
scenario, we’re going to define a PyTorch model to define an AIR Trainer here. But
it’s worth reminding you of what you learned in Chapter 7: you could just as easily
switch frameworks at this point and work with Keras, Hugging Face, scikit-learn, or
any other library supported by AIR.

We will proceed in three steps: define a PyTorch model, specify the training loop
that AIR should run using this model, and define an AIR Trainer that we can fit on
our training data. To start with, let’s define a simple convolutional neural network
with max pooling and rectified linear (relu) activations with PyTorch that’s built to
operate on our CIFAR-10 dataset. If you know PyTorch, the following definition of

218 | Chapter 11: Ray’s Ecosystem and Beyond

https://oreil.ly/7pmuc


3 To convert any PyTorch model to Ray AIR, follow the user guide on this topic.

the neural network Net should be straightforward. If you don’t, it suffices to know
that to define a torch.nn.Module the only thing you need to provide is the definition
of a forward pass of your neural net:

import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = torch.flatten(x, 1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

You already know that to define an AIR TorchTrainer for our Net you need a train‐
ing dataset, a scaling, and an optional run configuration.3 You also need to tell AIR
what each worker should do when calling fit, by defining an explicit training loop
that grants you maximal flexibility for your training process. The training function
takes a config dictionary that we can use to specify properties at runtime.

The training loop we’re using here is just what you would expect: we simply load the
model and the data on each worker and then train on batches of data for a specified
number of epochs (while reporting the training progress). That’s a fairly standard
training loop, but there are a couple of crucial spots at which you have to be careful:

• To load the model on a worker, use the prepare_model utility from•
ray.train.torch on our Net().

• To access the data shard available to the worker, access get_dataset_shard on•
your current ray.air.session. For training, we use the "train" key of that
shard and transform it to batches of the right size using iter_torch_batches.

A Growing Ecosystem | 219

https://oreil.ly/k2QKV


• To pass information about the training metrics you’re interested in, use•
session.report from AIR.

Here’s the full definition of our PyTorch training loop for each worker:

from ray import train
from ray.air import session, Checkpoint

def train_loop(config):

    model = train.torch.prepare_model(Net())  
    loss_fct = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

    train_batches = session.get_dataset_shard("train").iter_torch_batches(  
        batch_size=config["batch_size"],
    )

    for epoch in range(config["epochs"]):
        running_loss = 0.0
        for i, data in enumerate(train_batches):

            inputs, labels = data["image"], data["label"]  

            optimizer.zero_grad()  
            forward_outputs = model(inputs)
            loss = loss_fct(forward_outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()  
            if i % 1000 == 0:
                print(f"[{epoch + 1}, {i + 1:4d}] loss: "
                      f"{running_loss / 1000:.3f}")
                running_loss = 0.0

        session.report(  
            dict(running_loss=running_loss),
            checkpoint=Checkpoint.from_dict(
                dict(model=model.module.state_dict())
            ),
        )

The training loop defines the model, loss, and optimizer used first. Note the use
of prepare_model here.

Load the train dataset shard on this worker and create an iterator containing
batches of data from it.

220 | Chapter 11: Ray’s Ecosystem and Beyond



4 For instance, using the WandbLoggerCallback you not only can log training results to Weights & Biases but
also automatically upload your checkpoints, as demonstrated in this Ray tutorial.

As per our earlier definition, our data is a Pandas DataFrame that has an
"image" and a "label" column.

Compute the forward and backward pass in the training loop as we would with
any PyTorch model.

Keep track of a running loss term for each 1,000 training batches.

Lastly, report this loss using our AIR session by passing a Checkpoint with the
current model state.

The definition of this function might feel a bit long, given that we’re doing a
fairly standard training procedure. While it certainly would be possible to create
a simple wrapper for PyTorch models in such cases, defining your own training
loop gives you full customizability to tackle more complex scenarios. We pass the
training_loop to the train_loop_per_worker argument of our AIR trainer and
specify the configuration for this loop by passing a dictionary with the necessary keys
to the train_loop_config.

To make things more interesting and to showcase another Ray integration, we will log
the results of our TorchTrainer training run to MLflow by passing a callback to our
RunConfig, namely, an MLflowLoggerCallback:

from ray.train.torch import TorchTrainer
from ray.air.config import ScalingConfig, RunConfig
from ray.air.callbacks.mlflow import MLflowLoggerCallback

trainer = TorchTrainer(
    train_loop_per_worker=train_loop,
    train_loop_config={"batch_size": 10, "epochs": 5},
    datasets={"train": train_dataset},
    scaling_config=ScalingConfig(num_workers=2),
    run_config=RunConfig(callbacks=[
        MLflowLoggerCallback(experiment_name="torch_trainer")
    ])

)
result = trainer.fit()

You could also use other third-party logging libraries, such as Weights & Biases or
CometML, by passing similar callbacks to your AIR Trainer or Tuner.4

A Growing Ecosystem | 221

https://oreil.ly/2jWOj


Table 11-2 summarizes all ML training-related integrations of Ray, which span both
Ray Train and RLlib.

Table 11-2. The Ray Train and RLlib ecosystem

Integration Type
TensorFlow, PyTorch, XGBoost, LightGBM, Horovod Train integrations maintained by the Ray Team

scikit-learn, Hugging Face, Lightning Train integrations maintained by the community

TensorFlow, PyTorch, OpenAI gym RLlib integrations maintained by the Ray Team

JAX, Unity RLlib integrations maintained by the Ray Team

We distinguish between community-sponsored integrations and ones that are main‐
tained by the Ray team itself. Most integrations we’ve talked about in this book were
native integrations, but due to the collaborative nature of open source software, you
often feel no difference in maturity between native and third-party integrations.

To wrap up the training-related integrations of AIR, Table 11-3 offers a bird’s-eye
view at Tune’s ecosystem.

Table 11-3. The Ray Tune ecosystem

Integration Type
Optuna, Hyperopt, Ax, BayesOpt, BOHB, Dragonfly, FLAML, HEBO, Nevergrad,
SigOpt, skopt, ZOOpt

Hyperparameter optimization library

TensorBoard, MLflow, Weights & Biases, CometML Logging and experimentation
management

Model Serving
Gradio is a popular way for practitioners to demo their ML models, and it provides
many simple primitives to create graphical user interface elements simply by describ‐
ing them through the gradio library in Python. As you will see, defining and deploy‐
ing Gradio interfaces is straightforward, but it’s even easier to then wrap them in a
so-called GradioServer from Ray Serve, which allows you to scale any Gradio app on
a Ray Cluster.

To showcase how to run a Gradio app with Ray Serve on the model we just trained,
let’s first store the result of our training procedure to disk. We do this by writing the
respective AIR Checkpoint to a local folder of our choice so that we can restore this
model from checkpoint in another script:

CHECKPOINT_PATH = "torch_checkpoint"
result.checkpoint.to_directory(CHECKPOINT_PATH)

Next, let’s create a file called gradio_demo.py next to the "torch_checkpoint" path
for simplicity. In this script, let’s load our PyTorch model again by first restoring the

222 | Chapter 11: Ray’s Ecosystem and Beyond



5 For simplicity, we duplicated the definition of Net in gradio_demo.py on GitHub.

TorchCheckpoint and then using this checkpoint and our Net() definition to create a
TorchPredictor that we can use for inference:

# gradio_demo.py
from ray.train.torch import TorchCheckpoint, TorchPredictor

CHECKPOINT_PATH = "torch_checkpoint"
checkpoint = TorchCheckpoint.from_directory(CHECKPOINT_PATH)
predictor = TorchPredictor.from_checkpoint(
    checkpoint=checkpoint,
    model=Net()
)

Note that this requires you to import, or otherwise make available, the definition of
Net in the gradio_demo.py script.5

Next, we have to define the Gradio Interface, which we define to take images as
input and produce labels as output. Additionally, we have to specify how an input
Image has to be transformed to produce a Label. By default, Gradio represents
images as NumPy arrays, so we can ensure that this array has the right shape
and data type and then pass it to our predictor. As this predictor, namely, our
TorchPredictor, produces a probability distribution, we take the argmax of its pre‐
diction to get an integer result that we can use as a label. Put the following code into
your gradio_demo.py Python script:

from ray.serve.gradio_integrations import GradioServer
import gradio as gr
import numpy as np

def predict(payload):  
    payload = np.array(payload, dtype=np.float32)
    array = payload.reshape((1, 3, 32, 32))
    return np.argmax(predictor.predict(array))

demo = gr.Interface(  
    fn=predict,
    inputs=gr.Image(),
    outputs=gr.Label(num_top_classes=10)
)

app = GradioServer.options(  
    num_replicas=2,
    ray_actor_options={"num_cpus": 2}
).bind(demo)

A Growing Ecosystem | 223



6 When using the Gradio integration, Ray Serve will automatically run a Gradio app under the hood. The
Gradio app is instrumented to access the type hints on each Serve deployment. When the user submits a
request, the Gradio app displays the output of each deployment using a Gradio Block that matches the output
type.

7 The application expects images of the right size, as we didn’t want to make preprocessing in predict more
involved than necessary. You can use the image data provided in the repository of this book or simply search
for CIFAR-10 images online to test the app yourself.

The predict function maps Gradio inputs to outputs by leveraging our
predictor.

The Gradio interface has one input (an image), one output (a label for 1 of 10
categories of the CIFAR-10 dataset), and a function fn to connect the two.

We bind the Gradio demo to a Ray Serve GradioServer object that gets deployed
on two replicas with two CPUs each as resources.

To run this application, you can now simply type the following command into a
shell:6

serve run gradio_demo:app

This command spins up our Serve-backed Gradio demo that you can access on
localhost:8000. You can upload or drag and drop images into the respective input
field and request predictions that you see in the output field of the app.7

It’s important to note that this example is really just a thin wrapper around Gradio
and would work with any other Gradio app of your choice. In fact, if you called
demo.launch() instead of defining the Serve app in your script, you could simply
launch this as a regular Gradio app with python gradio_demo.py.

The other noteworthy detail that’s easy to overlook is that we fed our predictor a
NumPy array. If you check the definition of the data format we used for training,
you’ll recall that predictor is expected to work on Ray Dataset instances. The
predictor instance is also smart enough to infer that a single NumPy input must be
the "image" portion of the full input (we don’t need a "label" to run inference).

To wrap up this section, review Table 11-4, which lists Serve’s current integrations.

Table 11-4. The Ray Serve ecosystem

Library Description
Serving frameworks and applications FastAPI, Flask, Streamlit, Gradio

Explainability and observability Arize, Seldon Alibi, WhyLabs

224 | Chapter 11: Ray’s Ecosystem and Beyond

https://oreil.ly/7fS-l


8 In this chapter we’re going to assume that you know about these different tools from the ecosystem. If you
don’t, for this section it’s enough to understand that Snowflake is a database solution that you might want to
integrate with, JAX is an ML framework, and Neptune can be used for experiment tracking.

9 To be precise, you have to define a Backend for JAX, together with a BackendConfig. Your DataParallel
Trainer then has to be initialized with this backend and your training loop.

Building Custom Integrations
Before explaining the relationship of Ray with other complex software frameworks
in a bit more detail, let’s talk about how to build your own integrations for Ray AIR.
Since AIR is designed for extensibility, you can find suitable interfaces for all the tasks
you want to build custom integrations for.

For example, let’s say you want to read data from Snowflake, train a JAX model on it,
and log your tuning results to Neptune.8 At the time of this writing, there are no such
integrations available, but it’s likely this will change in the future. We didn’t pick these
integrations (Snowflake, JAX, Neptune) to showcase any preference; they just happen
to be interesting tools from the ecosystem. In any case, it’s worth knowing how to
build such integrations.

To load data from Snowflake into a Ray Dataset, you have to create a new Data
source. You define a Datasource by specifying how to set it up (create_reader),
how to write to the source (do_write), and what happens on successful and failed
write attempts (on_write_complete and on_write_failed). Given a concrete Snow
flakeDatasource implementation, you could then read your data into a Ray Dataset:

from ray.data import read_datasource, datasource

class SnowflakeDatasource(datasource.Datasource):
    pass

dataset = read_datasource(SnowflakeDatasource(), ...)

Next, let’s say you have an interesting JAX model that you want to scale out using Ray
Train’s capabilities. Specifically, let’s assume you want to run data-parallel training of
the model, that is, to train this single model on several data shards in parallel. For this
purpose, Ray comes with a so-called DataParallelTrainer. To define one, you have
to create a train_loop_per_worker for your training framework and define how JAX
should be handled by Train internally.9 With a JaxTrainer implementation, you can
leverage the same Trainer interface that we’ve used in all AIR examples:

from ray.train.data_parallel_trainer import DataParallelTrainer

class JaxTrainer(DataParallelTrainer):

A Growing Ecosystem | 225



    pass

trainer = JaxTrainer(
    ...,
    scaling_config=ScalingConfig(...),
    datasets=dict(train=dataset),
)

Finally, to use Neptune for logging and visualizing your Tune Trials, you can define a
LoggerCallback that gets passed into the run configuration of your Tuner. To define
one, you need to specify how to create the logger (setup), what’s supposed to happen
at the beginning and end of a trials (log_trial_start and log_trial_end), and
how to log your results (log_trial_result). If you’ve implemented such a class, for
example, NeptuneCallback, you can use it the same way we used the MLflowLogger
Callback in “Model Training” on page 218:

from ray.tune import logger, tuner
from ray.air.config import RunConfig

class NeptuneCallback(logger.LoggerCallback):
    pass

tuner = tuner.Tuner(
    trainer,
    run_config=RunConfig(callbacks=[NeptuneCallback()])
)

While building integrations is not always as difficult as initially perceived, third-party
software is a moving target and maintaining integrations can be challenging. Still,
you are now aware of three of the most common integration scenarios for new
AIR components, and maybe you feel inclined to work on a community-sponsored
integration of your favorite tool.

An Overview of Ray’s Integrations
Let’s summarize all the integrations mentioned in this chapter (and throughout the
book) in one concise diagram. In Figure 11-1 we list all integrations available at the
time of writing.

226 | Chapter 11: Ray’s Ecosystem and Beyond



Figure 11-1. The Ray AIR ecosystem summarized

Ray and Other Systems
We’ve not made any direct comparisons with other systems up to this point, for the
simple reason that it makes little sense to compare Ray to something if you don’t
have a good grasp of what Ray is yet. As Ray is quite flexible and comes with a lot
of components, it can be compared to different types of tools in the broader ML
ecosystem.

Let’s start with a comparison of the more obvious candidates, namely, Python-based
frameworks for cluster computing.

Distributed Python Frameworks
If you consider frameworks for distributed computing that offer full Python support
and don’t lock you into any cloud offering, the current “big three” are Dask, Spark,
and Ray. While there are certain technical and context-dependent performance dif‐
ferences between these frameworks, it’s best to compare them in terms of the work‐
loads you want to run on them. Table 11-5 compares the most common workload
types.

Ray and Other Systems | 227



10 This represents a clear trade-off, as framework-specific tools are highly customized and offer many benefits.
11 Anyscale itself provides a managed service with enterprise features to support building ML applications on

top of Ray.

Table 11-5. Comparing workload type support of Ray, Dask, and Spark

Workload type Dask Spark Ray
Structured data
processing

First-class support First-class support Supported via Ray Datasets and integrations,
but not first class

Low-level parallelism First-class support via tasks None First-class support via tasks and actors

Deep learning
workloads

Supported, but not first
class

Supported, but not
first class

First-class support via several ML libraries

Ray AIR and the Broader ML Ecosystem
Ray AIR focuses primarily on AI compute, for instance by providing any kind of
distributed training via Ray Train, but it’s not built to cover every aspect of an AI
workload. For instance, AIR chooses to integrate with tracking and monitoring tools
for ML experiments, as well as with data storage solutions, rather than providing
native solutions. Table 11-6 identifies the ecosystem’s complementary components.

Table 11-6. Complementary ecosystem components

Category Examples
ML tracking and observability MLflow, Weights & Biases, Arize, etc.

Training frameworks PyTorch, TensorFlow, Lightning, JAX, etc.

ML feature stores Feast, Tecton, etc.

On the other side of the spectrum, you can find categories of tools for which Ray AIR
can be considered an alternative. For instance, there are many framework-specific
toolkits such as TorchX or TFX that tie in tightly with their respective frameworks. In
contrast, AIR is framework-agnostic, thereby preventing vendor lock-in, and offers
similar tooling.10

It’s also interesting to briefly touch on how Ray AIR compares to specific cloud offer‐
ings. Some major cloud services offer comprehensive toolkits to tackle ML workloads
in Python. To name just one, AWS Sagemaker is a great all-in-one package that
allows you to connect well with your AWS ecosystem. AIR does not aim to replace
tools like SageMaker. Instead, it aims to provide alternatives for compute-intensive
components like training, evaluation, and serving.11

AIR also represents a valid alternative to ML workflow frameworks such as KubeFlow
or Flyte. In contrast to many container-based solutions, AIR offers an intuitive,

228 | Chapter 11: Ray’s Ecosystem and Beyond



12 We’ll give you a rough sketch for how to do this in the next section.
13 Ray has a library called Ray Workflows, which is currently in alpha. Compared to tools such as AirFlow,

Workflows is more low-level but allows you to run durable application workflows natively on Ray. You can
find more information about Workflows in the Ray documentation.

high-level Python API and offers native support for distributed data. Table 11-7
summarizes these alternatives.

Table 11-7. Alternative ecosystem components

Category Examples
Framework-specific toolkits TorchX, TFX, etc.

ML workflow frameworks KubeFlow, Flyte, FBLearner FLow

Sometimes the situation is not as clear-cut, and Ray AIR can be seen or used as both
an alternative or a complementary component in the ML ecosystem.

For instance, as open source systems, Ray and AIR in particular can be used within
hosted ML platforms such as SageMaker, but you can also build your own ML
Platforms with it.12 Also, as mentioned, AIR can’t always compete with dedicated big
data processing systems like Spark or Dask, but often Ray Datasets can be enough to
suit your processing needs.

As we mentioned in Chapter 10, it is central to AIR’s design philosophy to have
the ability to express your ML workloads in a single script and execute it on Ray
as a single distributed system. Since Ray handles all the task placement and execu‐
tion on your cluster for you under the hood, there’s usually no need to explicitly
orchestrate your workloads (or stitch together many complex distributed systems).
Of course, this philosophy should not be taken too literally—sometimes you need
multiple systems or to split up tasks into several stages. On the other hand, dedicated
workflow orchestration tools like Argo or AirFlow can be very useful when used in
a complementary fashion.13 For instance, you might want to run Ray as a step in the
Lightning MLOps framework. Table 11-8 provides an overview of components that
can be used alongside AIR or for which AIR can be an alternative.

Table 11-8. Ecosystem components that AIR can complement or substitute

Category Examples
ML platforms SageMaker, Azure ML, Vertex AI, Databricks

Data processing systems Spark, Dask

Workflow orchestrators Argo, AirFlow, Metaflow

MLOps frameworks ZenML, Lightning

Ray and Other Systems | 229

https://oreil.ly/XUT7y


14 We use the term ML platform in the broadest sense possible, namely, to signify any system that is responsible
for running end-to-end ML workloads.

15 Orchestration of task graphs can be handled entirely within Ray AIR. External workflow orchestrators will
integrate nicely but are needed only if running non-Ray steps.

16 The Ray team has built a demo of a reference architecture that showcases the Feast integration.

In case you already have an ML platform, such as Vertex or SageMaker, you can
use any subset of Ray AIR to augment your system.14 In other words, AIR can
complement existing ML platforms by integrating with existing pipeline or workflow
orchestrators, storage, and tracking services, without requiring a replacement of your
entire ML platform.

How to Integrate AIR into Your ML Platform
Now that you have a deeper understanding of the relationship of Ray, and AIR in
particular, to other ecosystem components, let’s summarize what it takes to build your
own ML platform and integrate Ray with other ecosystem components.

The core of your ML system build with AIR consists of a set of Ray Clusters, each
responsible for different jobs. For instance, one cluster might run preprocessing, train
a PyTorch model, and run inference; another one might simply pick up previously
trained models for batch inference and model serving, and so on. You can leverage
the Ray Autoscaler to fulfill your scaling needs and could deploy the whole system
on Kubernetes with KubeRay. You can then augment this core system with other
components as you see fit, for example:

• You might want to add other compute steps to your setup, such as running•
data-intensive preprocessing tasks with Spark.

• You can use a workflow orchestrator such as AirFlow, Oozie, or SageMaker•
Pipelines to schedule and create your Ray Clusters and run Ray AIR apps and
services. Each AIR app can be part of a larger orchestrated workflow, for instance
by tying into a Spark ETL job from the first bullet point.15

• You can also create your Ray AIR clusters for interactive use with Jupyter note‐•
books, for instance hosted by Google Colab or Databricks Notebooks.

• If you need access to a feature store such as Feast or Tecton, Ray Train, Datasets,•
and Serve have an integration for such tools.16

• For experiment tracking or metric stores, Ray Train and Tune provide integration•
with tools such as MLflow and Weights & Biases.

• You can also retrieve and store your data and models from external storage•
solutions like S3, as shown.

Figure 11-2 puts all the pieces together in one concise diagram.

230 | Chapter 11: Ray’s Ecosystem and Beyond

https://oreil.ly/Pi3Xf


Figure 11-2. Building your own ML platform with Ray’s AI Runtime and other compo‐
nents from the ML ecosystem

Where to Go from Here?
We’ve come a long way from an overview of Ray in Chapter 1 to the discussion of
its ecosystem in this one. But as this is an introductory book, we’ve just touched the
proverbial tip of the iceberg of Ray’s capabilities. While you should now have a good
grasp of the basics of Ray Core and how Ray Clusters work and know when to use
AIR and its constituent libraries Datasets, Train, RLlib, Tune and Serve, there’s still so
much more to learn about each aspect.

To start with, the extensive user guides of Ray Core will give you a much deeper
understanding about Ray tasks, actors, and objects; their placement on cluster
nodes; and how to handle dependencies for your applications. In particular, you
will find interesting patterns and anti-patterns to design your Ray Core programs
well and avoid common pitfalls. To learn more about the inner workings of Ray, we
recommend reading some of the advanced papers on Ray, such as its architecture
whitepaper.

An interesting topic we skipped entirely is Ray’s tooling around observability. The
official Ray Observability documentation is a good starting point for this topic. You
can learn how to debug and profile your Ray applications there, log information
from your Ray Clusters, monitor their behavior, and export important metrics there.

Where to Go from Here? | 231

https://oreil.ly/cX6vj
https://oreil.ly/lfW_h
https://oreil.ly/lfW_h
https://oreil.ly/xDWtK


17 At the time of this writing, the dashboard is being overhauled. The look and functionality might change
drastically, so we didn’t include descriptions or screenshots here.

You will also find an introduction to the Ray dashboard there,17 which can help you
understand your Ray programs.

The focus of this book has been to introduce the core ideas of Ray to ML practi‐
tioners and give you practical starting points to tackle your workloads with Ray.
However, a topic that deserves more attention than the one chapter we could include
in this book is how to build, scale, and maintain Ray Clusters. Currently, the best
introduction to advanced Ray Cluster topics is the Ray documentation. There you
can learn how to deploy clusters on all major cloud providers, how to scale clusters
on Kubernetes, and how to submit Ray jobs to a cluster, in much more detail than we
could cover here.

In this chapter we could mention the majority of Ray integrations only in passing.
If you want to learn more about Ray’s third-party integrations, Ray’s Ecosystem page
is a good starting point. Also, it’s important to mention that more Ray libraries are
available that simply didn’t make the cut for this book, like Ray Workflows and a
distributed, drop-in replacement for Python’s multiprocessing library.

Lastly, if you’re interested in becoming part of the Ray community, there are many
good ways of doing so. You can join the Ray Slack to get in touch with Ray developers
and other community members, or join Ray’s discussion forum to get your questions
answered. If you want to help develop Ray, whether contributing to the documenta‐
tion, adding a new use case, or helping the open source community with new features
or bug fixes, you should check out the official contributor guide to Ray.

Summary
In this chapter you learned more about Ray’s ecosystem, as seen from its AI Runtime.
You’ve seen the full extent of available integrations of Ray AIR libraries and an exam‐
ple of training and serving an ML model using three different integrations: PyTorch
for data loading and training, MLflow for logging, and Gradio for serving your
model. You should now be able to go out there and run your own AIR experiments,
together with all the tools you’re already using or intend to use in the future. We’ve
also discussed Ray’s limits, how it compares to various related systems, and how you
can use Ray with other tools to augment or build out your own ML platforms.

232 | Chapter 11: Ray’s Ecosystem and Beyond

https://oreil.ly/SGa9w
https://oreil.ly/5wqYZ
https://oreil.ly/Yt5hX
https://oreil.ly/a83QM
https://discuss.ray.io
https://oreil.ly/6AgiE


This wraps up this chapter and the book. We hope it piqued your interest in Ray
and helped you start your journey with it. The introduction of AIR brought many
new features to the Ray ecosystem, and there’s certainly more on the road map to
be excited about. There’s no doubt that you can now dive into any advanced Ray
material—maybe you already have an idea about building your first own Ray app.

Summary | 233





Index

Symbols
@ray.remote decorator, 27, 36
@serve.batch decorator, 165
@serve.deployment decorator, 19, 161

tuning replicas and resource allocation for a
deployment, 164

A
abstractions

law of leaky abstractions, 2
provided by Ray, 4

action distribution, 78, 81
action space (RL), 66, 87

defining for policy server in RLlib environ‐
ment, 92

parametric action spaces in RLlib, 99
actions (RL), 66

computing in Python RLlib API, 78
passed to steps in multi-agent environment,

88
probabilities of taking each action, 78
simplifying assumptions about, 66

actors, 33
controller actor for Ray Serve deployments,

161
converting Simulation class to actor, 62
GCS storing location of, 39
mapping data with, support by Datasets, 127
Ray AIR usage combined with tasks for

advanced composite workloads, 208
Ray Datasets, using in distributed batch

inference, 147
in Ray Serve deployment, 160
Ray patterns and anti-patterns for, 47

stateful, accessing data from stateless tasks
in composite workloads, 212

use for transformations with state, 210
adapter function, 204
AdvancedEnv, 96
agents (RL), 66, 69

working with multiple agents, 85-90
mapping agents to policies, 86, 89

aggregations, support by Ray Datasets, 122, 125
AI (see artificial intelligence)
AI Runtime (see Ray AIR)
“AI and Compute”, 3
Airflow, 137
Algorithm class, 75, 82

accessing all Algorithm instances on work‐
ers, 79

providing with a curriculum in RLlib, 95
training in multi-agent environment, 89

AlgorithmConfig class, 75, 82
methods for categories of common algo‐

rithm properties, 82
AlphaFold, 3
Amazon Web Services (AWS), 192
analyses (Tune), 104, 106, 107

getting in training of Keras model, 118
Apache Airflow, 137
Apache Arrow, 10

distributed, use in Ray Datasets, 122
Plasma project, 37

Apache Hadoop, 121
Apache Spark, 121, 227
API Reference for RLlib algorithms, 83
architecture (Ray)

overview of components, 40

235



whitepaper, 38
Arrow for Python, installing, 10
artificial intelligence (AI)

Ray AIR, 195
Ray AIR focus on AI compute, 228
recent developments in, 3
types of AI workloads AIR enables Ray

Clusters to run, 209
asynchronous execution, 28

running dependent tasks asynchronously
and in parallel, 33

asyncio capabilities (Python), 165, 166
Atari environments (gym), 73
autoscaling

cluster, 194
of Ray AIR workloads, 213
of Ray Serve replicas, 165
support by Ray Clusters, 5

await syntax (Python), 166
AWS (Amazon Web Services), 192
Azure, 193

B
backends, 20
BaseEnv class, 85
base_model, 79
batch inference, 208

distributed, using Ray Train, 147
example in Ray documentation, 124
using Datasets, 127

batch normalization layers, 143
batch predictors, 203, 208
batch_timeout_wait, 165
Bayesian optimization, 108
bayesian-optimization library, 108
BayesOptSearch, 109
behavior cloning, 98
bias, 110, 114
big data processing tools, 207
big data training, 208
.bind API, instantiating copy of deployment,

162
binding multiple deployments, 167
binpacking algorithm, 194
blocking, 30

Datasets operations, 127
blocks

blocks_per_window parameter, ds.window
function, 129

in Datasets, 122
and repartitioning, 125

broadcasting, 168
in NLP-powered API example, 171

C
callbacks

configuring for Ray Tune, 111
LoggerCallback to pass to Tuner run config,

226
MLFlowLoggerCallback, 221
particularly useful methods on, 113
TuneReportCallback as custom Keras call‐

back, 117
using to monitor training in Ray Train, 156

cartpole-ppo tuned example, 14
CartPole-v1 environment, 14
categorical variables, 116
chat bots, 157
checkpoints

Checkpoint class provided by Ray Train,
141

checkpoint property of Ray Train Trainers,
148

creating from existing, framework-specific
model, 202

creating RL algorithm checkpoints, 77
creation by Ray Tune, 113
creation by Ray Tune for RLlib, 74
creation by rllib command, 74
evaluating trained algorithm from, 15
exporting trained model as Checkpoint in

Ray Train, 147
generated by Ray AIR Trainers or Tuners,

202
Ray AIR

creating batch predictor from, 203
deploying PredictorDeployment, 204
Tuners and checkpoints, 201

reporting model checkpoint, 146
stateful computations relying on

checkpoint-based fault tolerance, 212
CIFAR-10 dataset, 216
Clarke’s third law, 32
classes

converting Python classes to actors, 34
tasks and actors working as distributed ver‐

sions of, 24
classifier, training copies in parallel, 130-133

236 | Index



classify method, 166
classify_batched method, 165
CLI (command-line interface)

RLlib CLI, running, 73-74
using Ray Cluster Launcher CLI to deploy

cluster, 191
client-side batching, 165
clients

defining policy client in RLlib environment,
92

PolicyClient, 90
Ray Client, 185

cloud computing, 179
working with cloud clusters, 192-194

AWS, 192
other cloud providers, 193

clusters (Ray), 6, 179
(see also Ray Clusters)
basic components, 6
defining ScalingConfig for, 152
head node processes for cluster manage‐

ment, 39
starting a local cluster, 24

Codex, 3
columnar format (Arrow), 125
communication in Ray Clusters, 39
composite workloads, 207

execution of, 211
fault-tolerance strategies, 212
Ray AIR usage of actors and tasks for, 208
stateful actors accessing data from stateless

tasks, 212
compute_actions method, 78
compute_single_action method, 78
computing over Datasets, 126
concurrent trials (Ray Tune), 111
conditional logic, 169
config argument (tune.run), 115
container images, 189
containers, 186

environment variables, 189
KubeRay operations on, 182
specifying resources for, 189

continuous action space (RL), 66
continuous parameters, 102
controller actor, 161
core layer (Ray), 5

(see also Ray Core)
CPUs

allocating two per replica in Ray Serve, 164
specifying for machines in Ray Cluster, 180

cpu_intensive_preprocessing function, 128
CSV files

reading from S3 bucket into columnar data‐
set, 198

writing to/reading back from in Ray Data‐
sets, 123

curriculum learning, applying with RLlib, 95-97
CurriculumEnv, 96

D
Dask, 20, 227

built-in support for Python datetime utilit‐
ies, 143

Dask on Ray, 216
example, 135
using to train PyTorch neural network,

142
data formats

flexibility within Datasets, 125
serialization formats supported by Datasets,

124
data parallelism, 140
data processing, 9, 121

(see also Ray Data; Ray Datasets)
external library integrations with Ray Data‐

sets, 134
Spark and Dask engines for, 20
using Ray Datasets library, 10

data science, 8
Ray AIR and data science workflow, 8

data scientists, 1
uses of Ray AIR, 196

data shards, 130
get_data_shard utility, 146
iterating over with iter_torch_batches, 146

data-parallel training, 144
DataFrames, 126

converting predictor service payload to, 204
Dask, 135

df.compute calls, 136
Dask on Ray, 142
external processing systems for, 134

DataParallel (PyTorch), 144
DataParallelTrainer, 225
DatasetPipeline, 12

creation using ds.repeat function, 130, 132
Datasets conversion to, 129

Index | 237



Datasets (Ray), 10, 121
(see also Ray Datasets)
contents of a Dataset, 122
creating a Dataset, 123
transforming datasets, 11

datasets argument (XGBoostTrainer in AIR),
199

datasets dictionary (Ray Train Trainers), 147
deep learning

defining model for, 143
training in, 127

deep learning frameworks, RLlib working with,
70

Deep Q-Learning, 61, 78
Deep Q-Networks (DQN), 61

using DQNConfig to define DQN algo‐
rithm, 73

Deepmind's AlphaFold, 3
Dense layers, 80, 117
dependencies

handling for tasks, 31
installing for Ray, 7
ownership versus, 38
resolution by Raylet scheduler, 37
resolution for tasks, 40
task, dynamic execution dealing with, 4

deployment.options API, 164
deployments

Ray Clusters, 179
Ray Clusters on Kubernetes, 182-190
in Ray AIR, 204

with PredictorDeployment, 205
in Ray Serve, 160

binding multiple deployments, 167
converting Python class to deployment,

161
tuning replicas and resources allocated

to, 164
design philosophy (Ray AIR), 197
design principles (Ray), 4
deterministic environment (in RL), 67
dictionaries

config dictionary to pass to trainer as
train_loop_config, 151

datasets dictionary, Ray Train Trainers, 147
Python, creating Dataset with schema from,

126
difficulty, 96

setting task difficulty, 96

discount_factor, 102
discrete action space (RL), 66, 72
Discrete class, 51
distributed batch inference (Ray Train), 147
distributed computing

difficulties of, 3
Ray AI providing universal interface for, 25
Ray as glue code for distributed workloads,

4
Ray Core capabilities, 23
Ray framework for, 6

distributed model training, 207
basics, 139-141
training ML model using Ray Datasets,

130-133
distributed object transfer, 39
distributed Python frameworks, 227
distributed scheduler, 39
dones, 54

game considered done, 53
in RL, 66

gym.Env having done condition, 72
in multi-agent environment, 88
is_done helper to work with multiple

agents, 87
DQN (see Deep Q-Networks)
DQNConfig object, 75

multi_agent method, 89
driver, 6, 39
driver deployment, 167

defining control flow logic for, 174
Dropout rate, 117, 118
ds.repeat function, 130, 132
dynamic execution, 4

E
ecosystem (Ray), 5, 20, 215-233

building custom integrations, 225-226
data loading and preprocessing, 216
distributed Python frameworks, 227
growth of, 216
integrating Ray AIR into ML platforms, 230
model serving, 222-225
model training, 218-222
Ray AIR and broader ML ecosystem, 228
Ray and other systems, 227
where to go from here, 231

ensembling, 168
entity recognition model, 173

238 | Index



Environment class, 52
methods implemented for, 53
using to play 2D maze game, 54

environment method (AlgorithmConfig), 82
environments (in RL), 66

building a gym environment, 71
deterministic environment, 67
environment configuration for RLlib experi‐

ments, 84
specifying for DQNConfig using Python

RLlib API, 75
using gym environment with RLlib, 73-74
working with RLlib environments, 85-93

overview of RLlib environments, 85
policy servers and clients, 90-93
using multiple agents, 86-90

episodes (in RL), 61, 66
randomly rolled out in multi-agent environ‐

ment, 89
epochs

number of, 146
train_one_epoch function, 149
workers in, core logic needed to train on

batch of data, 145
estimating arrival times, 158
evaluate command (rllib), 15, 74
evaluating RLlib models in Python API, 77
evaluation results for trained RL algorithm, 15
example command (rllib), 15
experiences (in RL), 66
ExperimentAnalysis object, 107
exploiting or exploring environment in RL, 66,

78
exploration method (AlgorithmConfig), 82
ExternalEnv, 85

F
failures

in distributed computing, 5
handling by Ray Datasets, 123
Ray AIR failure model, 212

FastAPI framework, 163
parsing input_text query parameter, 163
Ray Serve's FastAPI for input parsing and

output schema, 171
fault tolerance and ownership, 37
feature engineering, 9
featurization

building features using load-dataset func‐
tion in Ray Train, 142

in distributed batch inference, 147
fetch_wikipedia_page driver logic, 175
filter function, 11
filtering data, 122

filter operations in Ray Datasets, 124
fit method (Trainer), 148, 151
fitting to training data, AIR preprocessor, 198
flat_map function, 11
flexibility (Ray), 4, 46
flexible distributed Python for machine learn‐

ing, 2
fractional resources, 111, 164
frameworks

framework specification for RLlib algo‐
rithms, 79

third-party training frameworks, 141
functional programming in Ray Datasets, 11
functions

converting Python function to Ray task, 27
tasks and actions as distributed versions of,

24
futures, 28, 31

resolved by ray.get in follow_up_task, 32

G
GCS (Global Control Service), 39
GCS server (Ray)

failures of, 212
printing out IP address of, 180
Unable to connect to GCS at …, 181

get function, 29, 35
get_best_config function, 106
GitHub repository for this book, xviii
Global Control Service (GCS), 39
Global Interpreter Lock (GIL), 27
Google Cloud, 193
GPT-2 model, 18
GPUs

allocating to Ray Serve deployments, 164
expense of running online inference serv‐

ices, 159
specifying for machines in Ray Cluster, 180
use_gpu flag, 151

gpu_intensive_inference, 128
gradient boosted decision tree frameworks, 148
Gradio, 222-225
greedily choosing an action, 79

Index | 239



grid search, 17, 108
groupby, 122, 125
gRPC, 39
gym library, 71

building a gym environment, 71
installing, 13

gym.Env, 73
VectorEnv wrapper for, 85

GymEnvironment class
defining multi-agent version of, 86
implementing a gym.Env, 72

using with RLlib, 73
gymnasium library, 73

H
Hadoop, 121
head (in deep learning), 80
head node, 6, 39, 180

address of, NAT and, 181
connecting every other node in Ray Cluster

to, 180
head pod, 183, 184
heterogeneity (Ray), 4
hidden units, 118
hierarchy of agents, 85
high availability mode (GCS), 212
HPO (see hyperparameter optimization)
HPO tools, Ray Tune supporting algorithms

from, 20
HTTP API and driver logic, defining for NLP-

powered API, 173
HTTP endpoint wrapping an ML model, defin‐

ing, 161-163
HTTP requests, defining logic to handle, 162
HTTP, inference service queryable over, 204
Hugging Face models in Python, 18
Hugging Face pipeline supporting vectorized

inference, 165
Hugging Face Transformers library, 161, 172
Hyperopt and Optuna integrations (Ray Tune),

108
HyperOptSearch algorithm, 118
hyperparameter optimization (HPO), 16,

101-119
introduction to Ray Tune, 105-115
machine learning with Ray Tune, 115-119
Ray AIR Trainers integration with Ray Tune

for, 200
Ray Train integration with Ray Tune, 154

tuning hyperparameters, 102-105
building random search example with

Ray, 102-104
difficulty of, 104

hyperparameter tuning, 9
using Ray Tune, 16

hyperparameters, 102
depending on other hyperparameters, 114
specifying ranges for XGBoostTrainer, 154
TrainingWorker, 132

I
image processing, 167
imitation learning, 98
inference, 127

multimodel inference graphs, 166-170
vectorized, 128

Hugging Face pipeline supporting, 165
init function, 7
installing Ray, 7
integrations, custom, 225-226
integrations, Ray, overview of, 226-231
intermediate scores, 109
ipython interpreter, 7
items, retrieving from database, 25
iter_torch_batches function, 146

J
JAX, 225
jobs, 6
JSON-serializable output (HTTP request), 162
JsonLoggerCallback, 156
Jupyter notebooks, 7

K
Keras, 20, 79

tuning Keras models in Ray Tune, 116
key-value pairs produced in map phase of Map‐

Reduce, 41
key-value store (GCS), 39
kubectl, running Ray programs with, 184
KubeRay project, 182
Kubernetes, 8, 41, 176

Ray Cluster deployment on, 182-190
configuring KubeRay, 187-188
configuring logging for KubeRay, 189
interacting with the KubeRay cluster,

184-186

240 | Index



KubeRay operator, 182
setting up first KubeRay cluster, 183

L
label_column argument (XGBoostTrainer in

AIR), 199
lambda functions, 126
latency

ML services online and applications, 158
online inference and, 157

law of leaky abstractions, 2
layers in Ray, 5
leasing worker processes to task owners, 39
libraries (Ray), 5

data science libraries, 8
dedicated libraries for machine learning

steps, 9
model training, 12

LightGBM, 148
LightGBMTrainer, 148
lineage reconstruction, 212
list comprehensions, 26
loading data, 216

in distributed batch inference, 147
loading model in Ray Train, 142
training and validation data for training

workers, 146
load_dataset function (Ray Train), 142, 146
local clusters, 6
LoggerCallback interface, 156
logging

configuring for KubeRay, 189
trial results to MLFlow, 216
using Neptune for, 226

loss, 146

M
machine learning (ML)

basic pipelines, Ray Train components used
in, 141

broadcasting to multiple models in parallel,
168

building ML pipeline using Ray Datasets,
136-138

conditional logic for control flow, 169
data science processes involved in, 9
distributed training of ML models, 130
flexible distributed Python for, 2
integrating Ray AIR into ML platforms, 230

models are compute intensive, 158
models not useful in isolation, 159
multiple models in NLP-powered API

example, 170
online inference interacting with ML mod‐

els, 157
performance for, Ray Datasets, 121
Ray AIR and broader ML ecosystem, 228
Ray AIR as umbrella for all other Ray ML

libraries, 195
Ray AIR uses by ML engineers, 196
recent developments in, 3
reinforcement learning, 50
tackling workloads with single script run by

single system, 197
training-serving skew in deployments, 153
using Ray Tune, 115-119

tuning Keras models, 116
using RLlib with Tune, 115

machine learning frameworks, Ray Train Train‐
ers integration with, 148

map function, 11
performing custom transformations on

Datasets, 126
mapping, 122

Datasets support for, using Ray actors, 127
mapping model across whole dataset, 147

mapping batches, 217
MapReduce

example using Ray, 41-47
mapping and shuffling document data,

43
reducing word count, 45
running MapReduce on distributed cor‐

pus of documents, 42
MARL (multi-agent reinforcement learning)

problem
RLlib support for, 90
training, 89

max_batch_size, 165
max_depth parameter (XGBoost model), 201
maze problem, setting up, 50-55
memory

AIR memory management, 211
distributed, 39
efficient usage by Ray Datasets, 123
Raylet object store managing shared mem‐

ory pool, 37
specifying for trials in Ray Tune, 111

Index | 241



metrics
configuring for report in Ray Tune, 111
getting best hyperparameters found, 106
optimizing in BayesOptSearch, 109
passing RLlib metrics to Ray Tune, 115
passing to Ray Tune scheduler, 110

migration fatigue, 196
min, 125
MinMaxScaler, 154
ML (see machine learning)
ML platforms, 230

hosted, use of Ray and AIR in, 229
integrating Ray AIR into, 230

MLFlow, 156, 221
MLFlowLogger, 216
MLFLowLoggerCallback, 156, 221
MNIST data, 116
mode

getting best hyperparameters found, 106
passing to Ray Tune scheduler, 110
specifying for trials in Ray Tune, 112

model parallelism, 140
model serving, 9, 222-225

using Ray Serve, 18
model training, 9, 218-222

distributed model training basics, 139-141
example, training copies of a classifier in

parallel using Datasets, 130-133
parallelizing with Ray, 64
Ray libraries for, 12

Ray RLlib, 12
training reinforcement model, 59-62

model.state_value_head.summary method, 80
models

accessing state in Python RLlib API, 78
checkpoints as Ray AIR native model

exchange, 202
customizing for RLlib experiments, 80
in Deep-Q learning used in DQN, 79
defining deep learning model, 143
distributed training of ML models, 130
NLP, 172
in Ray Train Checkpoints, 147
state_action_table of policy, 66
tuning Keras models in Ray Tune, 116

Moore’s law, 3
MultiAgentEnv, 85

defining with two agents, 86
multimodel inference graphs, 166-170

broadcasting pattern, 168
conditional logic pattern, 169
core Ray Serve feature, binding multiple

deployments, 167
in NLP-powered API example, 170
pipelining pattern, 167

multiple agents (RL), 66
multi_agent method (AlgorithmConfig), 82

N
NAT (Network Address Translation), 181
natural language processing (NLP), 170
nc tool, 181
Neptune, 225, 226
Network Address Translation (NAT), 181
neural networks, 78

in Deep Q-Networks (DQN), 61
defining and training in Ray Train, 141
FarePredictor PyTorch network, 143
parallelizing computations to speed up

training, 140
New York City taxi trips, predicting big tips in

(example), 141
NLP (natural language processing), 170
NLP-powered API, building (example),

170-176
architecture for NLP pipeline to summarize

Wikipedia articles, 171
fetching content and preprocessing, 172
HTTP handling and driver logic, 173
NLP models, 172
putting it all together, 175-176

nmap tool, 181
nodes

checking whether each port can be reached
from, 181

connecting to head node in Ray Cluster, 180
stopping Ray processes on, 182
unable to access port and IP address speci‐

fied, 181
nonblocking calls, using Ray wait function for,

30
numpy.square optimized implementation, 126
num_gpus, 164
num_replicas, 164, 173

O
object references, 32

remote Ray tasks returning, 28

242 | Index



object store, 24
component of Raylets, 36
putting database in, 30
putting policy into, 63
using with put and get, 29

objective, 103
converting to Ray task, 103
stopping Ray Tune objective analysis, 114

objective functions, 16, 103
defining, 105
defining to compute intermediate scores,

109
Keras objective function in Tune, 117

objects
distributed object transfer, 39
equality with tasks and actors in Ray Core,

35
Ray tasks as primary means of creating, 28
sharing between driver and workers or

between workers, 29
spilling and recovery in Ray Datasets, 123

observability, 231
observation space (RL), 66, 87

defining for policy server in RLlib environ‐
ment, 92

in gym environment, 72
observations (in RL), 52

computing actions for given observations,
78

in multi-agent environment, 88
taken in by DQN model, 80
transforming to form expected by model, 81

offline data
Python API for in RLlib, 99
working with, 97

offline_data method (AlgorithmConfig), 82
online inference, 157-159

building services with Ray Serve, 160
(see also Ray Serve)

differences in serving ML models, 158-159
compute intensive ML models, 158
ML models not useful in isolation, 159

pipeline in NLP-powered API example, 171
use cases, 157

online serving, 208
online serving execution, 211
OpenAI

Codex, 3
‘AI and Compute”, 3

ownership, 37
dependencies versus, 38

ownership table, 37

P
Pandas DataFrames, 126
Pandas on Ray, 20
parallel execution of dependent tasks, 33
parallelization

data-parallel training, 144
parallelizing code, Ray Train, 141

parametric action spaces, 99
Parquet data, 124, 126

Dataset transformations on, 127
partitioning, 122

blocks and repartitioning in Datasets, 125
payload (predictor service), 204
performance, measuring for Ray task, 28
pipelined execution, 212
pipelines

building ML pipeline using Ray Datasets,
136-138

Dataset, 127-130
DatasetPipeline, 12
online inference, 171

pipelining
multimodel pattern in ML applications, 167
using on Ray Datasets, 210

Plasma, 37
pods

head and worker pods on KubeRay cluster,
183

interacting with KubeRay cluster head pod,
184

Ray Cluster, configuring on KubeRay, 188
PodTemplate, 182
policies (RL), 66

accessing state of in Python RLlib API, 78
in multi-agent environment

mapping agents to policies, 89
in multi-agent RL environments, 86
working with policy servers and clients in

RLlib environment, 90-93
defining a client, 92
defining a server, 91

Policy class, 56
replacement in future RLlib release, 79
state_action_table, 57
updating values in state_action_table, 59

Index | 243



PolicyClient, 92
PolicyServerInput object, 91
PredictorDeployment class, 204
predictors, 141, 224

batch, 203
.predict_pipelined function, 147
prepare_model function, 146
preprocessing, 216

content in NLP-powered API example, 172
in distributed batch inference, 147
using load_dataset function in Ray Train,

142
using Ray Train, 153

preprocessors
built into Ray Train, 153
choosing between for Ray Train integration

with Ray Tune, 154
provided by Ray Train, 141
Ray AIR, 198

different types available, 199
specifying for XGBoostTrainer, 199

in Ray Train Checkpoints, 147
probabilities of taking actions, 78
Prometheus, 182
Proximal Policy Optimization (PPO) algo‐

rithm, 14
put function, 28, 35

placing data into distributed object store, 29
Pydantic, 173
PyGame, installing, 14
Python

datetime utilities, Dask support for, 143
distributed computing frameworks, 227
Global Interpreter Lock, 27
Ray for data science community, 2
RLlib API (see RLlib Python API)
use for data science, 1
versions and support for Ray, 7
Zen of, 43

Python-first frameworks, 2
PyTorch, 70, 79

backing Ray RLlib and Train libraries, 20
DataParallel, 144
loading and transforming dataset using, 216
loss_function and batch_loss, 146
migrating existing model to Ray Train, 148,

150
torchvision extension, 216

training PyTorch neural network using
Dask on Ray, 142

Q
Q-Learning algorithm, 59-61, 66
Q-values, 66, 78

(see also state-action values)
getting for DQN models, 81

R
random number generator (RNG), 169
random.uniform sampler (numpy), 114
randomly sampling hyperparameters, 102
Ray

about, 2
architecture whitepaper, 28
design principles, 4
ecosystem, 20, 215

(see also ecosystem)
installing, 7
origins of, 2
relating to other systems, 41

Ray AIR (AI Runtime), 5, 144, 195-213
as umbrella for current Ray data science

libraries, 10
and data science workflow, 8
Datasets and preprocessors, 198
extensibility, 196
key AIR concepts by example, 197-207

batch predictors, 203
from data loading to inference with AIR,

197
Trainers, 199
Tuners and checkpoints, 201

Ray ecosystem and beyond, 215-233
AIR and the broader ML ecosystem, 228
building custom integrations, 225-226
data loading and preprocessing, 216
distributed Python frameworks, 227
ecosystem components AIR can comple‐

ment or substitute, 229
growing ecosystem, 216
integrating AIR into ML platforms, 230
model serving, 222-225
model training, 218-222
Ray and other systems, 227
where to go from here, 231

third-party integrations, 195
uses of, 195

244 | Index



workloads suited for, 207-213
AIR failure model, 212
AIR memory management, 211
autoscaling AIR workloads, 213
workload execution, 209-211

Ray Client, 7
using to connect to KubeRay cluster, 185

Ray Clusters, 6, 8, 179-194, 230
deployment on Kubernetes, 182-190

configuring KubeRay, 187-188
configuring logging for KubeRay, 189
interacting with the KubeRay cluster,

184-186
setting up first KubeRay cluster, 183

manually creating, 180-182
types of AI workloads AIR enables running

on, 209
using Ray Cluster Launcher, 190-192

configuring your Ray Cluster, 190
interacting with a Ray Cluster, 191
using Cluster Launcher CLI, 191

working with cloud clusters, 192-194
AWS, 192
Azure, 193
Google Cloud, 193

Ray Core, 8, 23-47
building your first distributed application,

49-67
building a simulation, 55-58
building the app, 62-64
introduction to reinforcement learning,

49-50
setting up simple maze problem, 50-55

first example using Ray API, 25-35
from classes to actors, 33
functions and remote Ray tasks, 27-29
handling task dependencies, 31
using object store with put and get, 29
using wait function for nonblocking

calls, 30
introduction to, 24-25
major API methods of, 35
simple MapReduce example with, 41-47

mapping and shuffling document data,
43

reducing word count, 45
understanding Ray system components,

36-40
distributed scheduling and execution, 39

head node, 39
scheduling and executing work on a

node, 36-39
Ray Data, 121

allowing sharing of in-memory data across
parallel training runs, 130

ecosystem integrations allowing better data
processing, 134

Ray Datasets, 9, 121-138, 122-133
basics, 123-126

blocks and repartitioning, 125
built-in transformations, 124
creating a dataset, 123
reading and writing to storage, 123
schemas and data formats, 125

benefits of, 121, 123
building ML pipeline, 136-138
computing over Datasets, 126
data processing with, 10
Dataset pipelines, 127-130
ecosystem, 218
example of capabilities, 216
example, training copies of a classifier in

parallel, 130-133
external library integrations, 134-136
loading data into Ray AIR, 198
loading Snowflake data into, 225
scheduling strategy, 209
use by Ray AIR Trainers, 200
use for stateless computation, 208
use with Ray Train to implement complete

ML workflow as single application, 148
using in distributed batch inference, 147

Ray Job Submission server, 185, 191
Ray RLlib, 10, 69-99

advanced concepts, 93-99
applying curriculum learning, 95-97
other advanced topics, 98
working with offline data, 97

configuring experiments, 82-84
environment configuration, 84
resource configuration, 83
rollout worker configuration, 83

ecosystem, 222
getting started with, 71-81

building a gym environment, 71
running RLlib CLI, 73-74
using RLlib Python API, 75

overview, 70

Index | 245



reinforcement learning with, 12
using with Ray Tune, 115
working with environments, 85-93

overview of RLlib environments, 85
policy servers and clients, 90-93
using multiple agents, 86-90

Ray runtime started, 180
Ray Serve, 10, 158, 160-177

deploying inference service to query over
HTTP, 204

ecosystem, 224
end-to-end example, building NLP-powered

API, 170-176
defining HTTP API and driver logic, 173
fetching content and preprocessing, 172
NLP models, 172
putting it all together, 175-176

GradioServer, 222
introduction to, 160-170

architectural overview, 160
defining basic HTTP endpoint, 161-163
multimodel inference graphs, 166-170
purpose-built features for compute-

heavy ML models, 160
request batching, 165
scaling and resource allocation, 163

serving model using Gradio on, 216
Ray Serve library

model serving with, 18
ray start --head … command, 191
ray stop command, 182
Ray Train, 10, 122, 139-156

ecosystem, 222
introduction to, 141-147

distributed batch inference, 147
distributed training with Train, 144
example, predicting big tips in NYC taxi

rides, 141
Train components used in basic ML

pipelines, 141
loading, preprocessing, and featurization,

142
standard PyTorch model and training loop

to leverage in, 216
support for gradient boosted decision tree

frameworks, 148
Trainers in, 148-156

integrating Trainers with Ray Tune, 154

migrating to Ray Train with minimal
code changes, 150

preprocessing with Ray Train, 153
scaling out Trainers, 152
using callbacks to monitor training, 156

using to scale out JAX model, 225
Ray Tune, 10, 101, 122

configuring and running, 110-115
callbacks and metrics, 111
checkpoints, stopping, and resuming,

113
custom and conditional search spaces,

114
specifying resources, 111

ecosystem, 222
how it works, 106-110

integration with other HPO frameworks,
108

overview of components, 106
schedulers, 109
search algorithms, 108

hyperparameter tuning with, 16
integrating Ray Train Trainers with, 154
introduction to, 105-106
machine learning with, 115-119

tuning Keras models, 116
using RLlib with Tune, 115

MLFlowLogger shipped with, 216
Ray AIR Trainers integration with, 200
supporting algorithms from notable HPO

tools, 20
use by RLlib, 74

Ray Workflows, 229
ray.get function, 28, 36

using object store with, 29
ray.init method, 36, 180
ray.put method, 36
ray.remote function, 28, 34, 36
ray.wait function, 36
RayCluster, 182
Raylets, 36

scheduler, 37
reading from and writing to storage (Ray Data‐

sets), 123
read_csv utility, 198
recommendation systems, 157

challenges around the edges, 159
recovery, 5

246 | Index



rectified linear unit (ReLU) activation function,
118

Redis instances, remote, using, 180
reduce phase (MapReduce), 42

reducing word count, 45
reinforcement learning

Q-Learning algorithm, 61
terminology recap, 66-67
training a model, 59-62
using Ray RLlib, 12

relational data processing systems, integration
with Ray, 134

remote function, 35
remote Ray tasks, functions and, 27-29
rendering RL environments, 72, 84

modifying in multi-agent environment, 89
repartitioning, 125, 128
repeat function (Datasets), 132
replicas (Ray Serve), 160

FastAPI server running in each, 163
instantiating replica of deployment, 162
setting for text summarization model, 173
tuning for a deployment, 164

reporting, using Ray AIR session, 144
request batching, 159, 165
requests library, 19
requests package, 160

using to test sentiment classifier, 162
resets (RL environments), 72
resource management

by head node, 39
by Raylet scheduler, 37

resources
allocation in Ray Serve, 163

more expressive policies, 164
compute resources used by a Trainer, 152
configuring for KubeRay cluster, 189
configuring for RLlib experiments, 83
idle, naive Dataset computation leading to,

128
specifying for Ray Tune trials, 111
viewing use by Ray Cluster, 24

resources method (AlgorithmConfig), 82
responses (HTTP), defining schema for, 173
ResultGrid (Tuner API), 107
results

human-readable output of training results,
76

state and training results of RLlib DQN
algorithm, 76

training, writing to directory, 74
resuming Ray Tune runs, 113
rewards (RL), 66

in multi-agent environment, 88
RISELab (UC Berkeley), 3
RL (see Ray RLlib; reinforcement learning)
RLlib algorithms page (Ray documentation), 70
rllib command-line tool, 13
rllib evaluate command, 74
RLlib Python API, 75

accessing policy and model status, 78
saving, loading, and evaluating RLlib mod‐

els, 77
training RLlib algorithms, 75-76

rllib train command, 73
RLlib Training API documentation, 84
RNG (see random number generator)
robotics, 158
rollouts (in RL), 66

finished rollouts used to update policy, 64
rollout worker configuration for RLlib

experiments, 83
rollouts method of Python RLlib API, 75

rollouts method (AlgorithmConfig), 82
RunConfig, 155, 201
runs (Tune), 108
Rust compiler, installing, 18

S
sampling functions (Tune), 106
saving RLlib algorithms in Python API, 77
scalability

Ray, 5
Ray Datasets, 123

ScaleStrategy, 182
scaling

online inference services of ML models, 159
in Ray Serve, 163
scaling out Trainers in Ray Train, 152

ScalingConfig
adapting memory in, 212
defining for XGBoostTrainer in Ray AIR,

199
Ray AIR Trainers, 200
Ray Train Trainers, 147, 151
specifying parameters of cluster nodes, 152

schedulers

Index | 247



Dask scheduler packaged with Ray, 135
Ray Tune, 107, 109

combining with search algorithms, 110
scheduling and executing work on a node,

36-37
distributed scheduling and execution, 39

schemas, 125
defining for HTTP responses, 173

scikit-learn, 218
installing locally, 131
SGDClassifier algorithm, 131

scores (HPO), 103
formulating flexible stopping condition for,

114
intermediate scores, 109
retuning as dictionary, 105

search algorithms, 104, 108
custom, HyperOptSearch, 118
support by Tune, 107

search example (random), building with Ray,
102-104

search spaces, 104, 104, 106
custom and conditional, 114
defining with random library, 102
defining with tune.uniform, 105

searchers (see search algorithms)
self-driving cars, 158
sentiment classifier model, 161, 171

modifying to do server-side batching, 165
POSITIVE and NEGATIVE output, 162
scaling out to multiple replicas and adjust‐

ing resource allocation, 164
testing using requests package, 162
use in NLP-powered API example, 172

sequential TensorFlow Keras model, 202
serialization formats, 124
serve run app:scaled_deployment command,

164
serve run CLI command, 162, 171
serve.run, 162
server-side batching, 165
“Serving RLlib Models” tutorial, 70
sessions

Ray, 146
Ray AIR, 144

SGDClassifier algorithm, 131
TrainingWorker wrapper for, 132

sharding data, 130, 220
get_data_shard utility, 146

shared pool of memory, 37
shuffle phase (MapReduce), 42
shuffling data, 42, 43
simplicity, 4
Simulation class, 56

converting to Ray actor, 62
implementation of, 57

SimulationActor instances, 63
simulations

impossibility of faithfully simulating some
physical systems, 67

Snowflake, 225
soft state, 207
sort operations (Ray Datasets), 124
sorting data, 122
Spark, 20, 121, 227
speed (Ray), 5
StandardScaler, 154, 198
state

accessing for model and policy in Python
RLlib API, 78

in RL environment, 66
state transition probabilities, 67
state-action values (RL), 66, 78, 80, 102

and state-action functions, 80
stateful computations, 33, 207

relying on checkpoint-based fault tolerance,
212

stateful execution, 210
stateful workloads, autoscaling, 213
stateless computations, 207
stateless execution, 209
stateless tasks of Ray AIR, 208
stateless workloads, autoscaling, 213
state_action_table (Policy example), 57

updating values in, 59
step method, 53
steps (in RL), 66, 72

actions passed to in multi-agent environ‐
ment, 88

stochastic gradient descent, 131
stops

stopping Ray processes on a node, 182
stopping Ray Tune run, 113

sum, 125
synchronous execution

approach by distributed training algorithms,
130

Datasets operations, 127

248 | Index



systems related to Ray, 41

T
task graphs, 135
task scheduler, 36
tasks, 6

converting objective to, 103
execution of, 40
handling task dependencies, 31
modifying existing task to incorporate actor,

34
Ray AIR usage with actors for advanced

composite workloads, 208
Ray patterns and anti-patterns for, 47
setting difficulty for, 96
stateless data from, accessed by stateful

actors in composite workloads, 212
TaskSettableEnv, 96
TBXLoggerCallback, 156
TensorBoard, 156
TensorFlow, 70, 79

backing Ray RLlib and Train libraries, 20
installing, 12

TensorFlow Keras model (sequential), 202
text summarization model, 173
TorchTrainer, 146

instantiating and working with, 151
wrapping in a Tuner, 216

torchvision, 216
TPE (Tree-structured Parzen Estimator)

searcher, 108
train command (rllib), 73
trainables, 106

RLlib trainers passed as argument to
tune.run, 115

Trainers, 141
more on Trainers in Ray Train, 148-156

integrating Trainers with Ray Tune, 154
migrating to Ray Train, 150
preprocessing with Ray Train, 153
scaling out Trainers, 152
Trainer classes in Ray Train sharing

common interface, 148
using callbacks to monitor training, 156

Ray AIR
checkpoints generated by, 202
Tuners working with, 201, 202

Ray Train
datasets dictionary for, 147

ScalingConfig fo, 147
specifying for Ray AIR, 199
TorchTrainer, 146

training algorithms, impressive range in RLlib,
99

training frameworks
third-party, Trainers as wrappers for, 141

training method (AlgorithmConfig), 82
training RLlib algorithms, 75-76

in multi-agent environment, 89
training-serving skew, 153
TrainingWorker, 131
training_loop, 149
train_loop_config, 151
train_loop_per_worker function, 151
train_one_epoch helper function, 149
transformations

columns into format used as features in ML
model, 143

custom, performing on Datasets, 126
dataset, using Ray Datasets, 11
Ray Datasets, 122

built-in transformations, 124
on Parquet data, 127

transformers package, 160
trial schedulers, 109
trials (HPO), 104, 106

specifying resources for in Ray Tune, 111
Tune (see Ray Tune)
tune function, 17
Tune's scheduler compatibility matrix, 110
tune.report function, 110
tune.run function, 17, 106, 108

passing RLlib arguments to, 115
tune.samle_from function, 114
TuneConfig, 201
tuned examples, 13
Tuner API, 107, 154
TuneReportCallback, 117
Tuners, 201

AIR Tuners working with AIR Trainers, 202
tune_objective function, 105
tuples, 32

U
UC Berkeley, RISELab, 3
Unable to connect to GCS at …, 181
unions, 124

Index | 249



V
value function head, 80
vectorized computations, 126, 159, 165

using Serve's batching API, 172
vectorized inference, 128

vectorized inference, 165
video-processing pipelines, 158
volume mounts, 189

W
wait function, 36

using for nonblocking calls, 30
weights, 102, 110

getting for RLlib models in Python API, 79
using random.uniform sampler from

numpy, 114
Wikipedia articles, summarizing (see NLP-

powered API, building)
Wikipedia package on PyPI, 172
window function, 12
windows, 129
worker nodes, 6

scheduling and executing work on, 36
(see also Raylets)

system components comprising, 38
worker pods, 183
worker processes, 6

fault tolerance and ownership, 37
leasing to task owners, 39

workers

defining TrainingWorker to train classifier
copy, 131

RLlib, getting policy and model weights
from, 79

rollout, 76
rollout worker configuration for RLlib

experiments, 83
training, loading training and validation

data for, 146
training, specifying number of, 151

workload execution (Ray AIR), 209-211
composite workload execution, 211
online serving execution, 211
stateful execution, 210
stateless execution, 209

workload type support, Spark, Dask, and Ray,
227

X
XGBoost, 148
XGBoostPredictor, 203, 204
XGBoostTrainer, 148

creating and specifying hyperparameter
ranges, 154

defining for Ray AIR, 199
wrapping instance with Tuner, 201

Z
Zen of Python, 43

250 | Index



About the Authors
Max Pumperla is a data science professor and software engineer located in Hamburg,
Germany. He’s an active open source contributor, maintainer of several Python pack‐
ages, author of machine learning books, and speaker at international conferences. He
currently works as a software engineer at Anyscale. As head of product research at
Pathmind Inc. he developed reinforcement learning solutions for industrial applica‐
tions at scale using Ray RLlib, Serve, and Tune. Max has been a core developer of
DL4J at Skymind, helped grow and extend the Keras ecosystem, and is a Hyperopt
maintainer.

Edward Oakes is a software engineer and team lead at Anyscale, where he leads the
development of Ray Serve and is one of the top open source contributors to Ray.
Prior to Anyscale, he was a graduate student in the EECS department at UC Berkeley.

Richard Liaw is a software engineer at Anyscale, working on open source tools for
distributed machine learning. He is on leave from the PhD program at the Computer
Science Department at UC Berkeley, advised by Joseph Gonzalez, Ion Stoica, and Ken
Goldberg.

Colophon
The animal on the cover of Learning Ray is a marbled electric ray (Torpedo marmor‐
ata), also known as a torpedo ray. Marbled electric rays can be found in the eastern
Atlantic Ocean from Africa to Norway, as well as in the Mediterranean Sea. They are
bottom dwellers, preferring to live in shallow to moderately deep water in rocky reefs,
seagrass beds, and muddy flats.

Marbled electric rays are mottled brown and black, camouflaging them in the muddy
waters where they hide during the day. At night, the rays emerge to hunt and forage
for small fish such as gobies, mullet, mackerel, and damselfish. These rays can grow
up to 2 feet long, expand their jaws to swallow fish larger than their mouths, and kill
with an electric charge of up to 200 volts.

Because these rays are capable of electrocution, they have few natural predators.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.


	Anyscale
	Copyright
	Table of Contents
	Foreword
	Preface
	Who Should Read This Book
	Goals of This Book
	Navigating This Book
	How to Use the Code Examples
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. An Overview of Ray
	What Is Ray?
	What Led to Ray?
	Ray’s Design Principles
	Three Layers: Core, Libraries, and Ecosystem

	A Distributed Computing Framework
	A Suite of Data Science Libraries
	Ray AIR and the Data Science Workflow
	Data Processing with Ray Datasets
	Model Training
	Hyperparameter Tuning
	Model Serving

	A Growing Ecosystem
	Summary

	Chapter 2. Getting Started with Ray Core
	An Introduction to Ray Core
	A First Example Using the Ray API
	An Overview of the Ray Core API

	Understanding Ray System Components
	Scheduling and Executing Work on a Node
	The Head Node
	Distributed Scheduling and Execution

	A Simple MapReduce Example with Ray
	Mapping and Shuffling Document Data
	Reducing Word Counts

	Summary

	Chapter 3. Building Your First Distributed Application
	Introducing Reinforcement Learning
	Setting Up a Simple Maze Problem
	Building a Simulation
	Training a Reinforcement Learning Model
	Building a Distributed Ray App
	Recapping RL Terminology
	Summary

	Chapter 4. Reinforcement Learning with Ray RLlib
	An Overview of RLlib
	Getting Started with RLlib
	Building a Gym Environment
	Running the RLlib CLI
	Using the RLlib Python API

	Configuring RLlib Experiments
	Resource Configuration
	Rollout Worker Configuration
	Environment Configuration

	Working with RLlib Environments
	An Overview of RLlib Environments
	Working with Multiple Agents
	Working with Policy Servers and Clients

	Advanced Concepts
	Building an Advanced Environment
	Applying Curriculum Learning
	Working with Offline Data
	Other Advanced Topics

	Summary

	Chapter 5. Hyperparameter Optimization 
with Ray Tune
	Tuning Hyperparameters
	Building a Random Search Example with Ray
	Why Is HPO Hard?

	An Introduction to Tune
	How Does Tune Work?
	Configuring and Running Tune

	Machine Learning with Tune
	Using RLlib with Tune
	Tuning Keras Models

	Summary

	Chapter 6. Data Processing with Ray
	Ray Datasets
	Ray Datasets Basics
	Computing Over Ray Datasets
	Dataset Pipelines
	Example: Training Copies of a Classifier in Parallel

	External Library Integrations
	Building an ML Pipeline
	Summary

	Chapter 7. Distributed Training with Ray Train
	The Basics of Distributed Model Training
	Introduction to Ray Train by Example
	Predicting Big Tips in NYC Taxi Rides
	Loading, Preprocessing, and Featurization
	Defining a Deep Learning Model
	Distributed Training with Ray Train
	Distributed Batch Inference

	More on Trainers in Ray Train
	Migrating to Ray Train with Minimal Code Changes
	Scaling Out Trainers
	Preprocessing with Ray Train
	Integrating Trainers with Ray Tune
	Using Callbacks to Monitor Training

	Summary

	Chapter 8. Online Inference with Ray Serve
	Key Characteristics of Online Inference
	ML Models Are Compute Intensive
	ML Models Aren’t Useful in Isolation

	An Introduction to Ray Serve
	Architectural Overview
	Defining a Basic HTTP Endpoint
	Scaling and Resource Allocation
	Request Batching
	Multimodel Inference Graphs

	End-to-End Example: Building an NLP-Powered API
	Fetching Content and Preprocessing
	NLP Models
	HTTP Handling and Driver Logic
	Putting It All Together

	Summary

	Chapter 9. Ray Clusters
	Manually Creating a Ray Cluster
	Deployment on Kubernetes
	Setting Up Your First KubeRay Cluster
	Interacting with the KubeRay Cluster
	Exposing KubeRay
	Configuring KubeRay
	Configuring Logging for KubeRay

	Using the Ray Cluster Launcher
	Configuring Your Ray Cluster
	Using the Cluster Launcher CLI
	Interacting with a Ray Cluster

	Working with Cloud Clusters
	AWS
	Using Other Cloud Providers

	Autoscaling
	Summary

	Chapter 10. Getting Started with the Ray AI Runtime
	Why Use AIR?
	Key AIR Concepts by Example
	Ray Datasets and Preprocessors
	Trainers
	Tuners and Checkpoints
	Batch Predictors
	Deployments

	Workloads That Are Suited for AIR
	AIR Workload Execution
	AIR Memory Management
	AIR Failure Model
	Autoscaling AIR Workloads

	Summary

	Chapter 11. Ray’s Ecosystem and Beyond
	A Growing Ecosystem
	Data Loading and Processing
	Model Training
	Model Serving
	Building Custom Integrations
	An Overview of Ray’s Integrations

	Ray and Other Systems
	Distributed Python Frameworks
	Ray AIR and the Broader ML Ecosystem
	How to Integrate AIR into Your ML Platform

	Where to Go from Here?
	Summary

	Index
	About the Authors
	Colophon

