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A distributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable.

—Leslie Lamport



CHAPTER 1

An Overview of Ray

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

One of the reasons we need efficient distributed computing is that we’re collecting
ever more data with a large variety at increasing speeds. The storage systems, data
processing and analytics engines that have emerged in the last decade are crucially
important to the success of many companies. Interestingly, most “big data” technolo‐
gies are built for and operated by (data) engineers, that are in charge of data collec‐
tion and processing tasks. The rationale is to free up data scientists to do what they’re
best at. As a data science practitioner you might want to focus on training complex
machine learning models, running efficient hyperparameter selection, building
entirely new and custom models or simulations, or serving your models to showcase
them. At the same time you simply might have to scale them to a compute cluster. To
do that, the distributed system of your choice needs to support all of these fine-
grained “big compute” tasks, potentially on specialized hardware. Ideally, it also fits
into the big data tool chain you’re using and is fast enough to meet your latency
requirements. In other words, distributed computing has to be powerful and flexible
enough for complex data science workloads — and Ray can help you with that.

Python is likely the most popular language for data science today, and it’s certainly
the one I find the most useful for my daily work. By now it’s over 30 years old, but has
a still growing and active community. The rich PyData ecosystem is an essential part
of a data scientist’s toolbox. How can you make sure to scale out your workloads
while still leveraging the tools you need? That’s a difficult problem, especially since
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communities can’t be forced to just toss their toolbox, or programming language.
That means distributed computing tools for data science have to be built for their
existing community.

What is Ray?
What I like about Ray is that it checks all the above boxes. It’s a flexible distributed
computing framework build for the Python data science community. Ray is easy to
get started and keeps simple things simple. Its core API is as lean as it gets and helps
you reason effectively about the distributed programs you want to write. You can effi‐
ciently parallelize Python programs on your laptop, and run the code you tested
locally on a cluster practically without any changes. Its high-level libraries are easy to
configure and can seamlessly be used together. Some of them, like Ray’s reinforce‐
ment learning library, would have a bright future as standalone projects, distributed
or not. While Ray’s core is built in C++, it’s been a Python-first framework since day
one, integrates with many important data science tools, and can count on a growing
ecosystem.

Distributed Python is not new, and Ray is not the first framework in this space (nor
will it be the last), but it is special in what it has to offer. Ray is particularly strong
when you combine several of its modules and have custom, machine learning heavy
workloads that would be difficult to implement otherwise. It makes distributed com‐
puting easy enough to run your complex workloads flexibly by leveraging the Python
tools you know and want to use. In other words, by learning Ray you get to know
flexible distributed Python for data science.

In this chapter you’ll get a first glimpse at what Ray can do for you. We will discuss
the three layers that make up Ray, namely its core engine, its high-level libraries and
its ecosystem. Throughout the chapter we’ll show you first code examples to give you
a feel for Ray, but we defer any in-depth treatment of Ray’s APIs and components to
later chapters. You can view this chapter as an overview of the whole book as well.

What led to Ray?
Programming distributed systems is hard. It requires specific knowledge and experi‐
ence you might not have. Ideally, such systems get out of your way and provide
abstractions to let you focus on your job. But in practice “all non-trivial abstractions,
to some degree, are leaky” (Spolsky), and getting clusters of computers to do what
you want is undoubtedly difficult. Many software systems require resources that far
exceed what single servers can do. Even if one server was enough, modern systems
need to be failsafe and provide features like high availability. That means your appli‐
cations might have to run on multiple machines, or even datacenters, just to make
sure they’re running reliably.
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1 Moore’s Law held for a long time, but there might be signs that it’s slowing down. We’re not here to argue it,
though. What’s important is not that our computers generally keep getting faster, but the relation to the
amount of compute we need.

Even if you’re not too familiar with machine learning (ML) or more generally artifi‐
cial intelligence (AI) as such, you must have heard of recent breakthroughs in the
field. To name just two, systems like Deepmind’s AlphaFold for solving the protein
folding problem, or OpenAI’s Codex that’s helping software developers with the tedi‐
ous parts of their job, have made the news lately. You might also have heard that ML
systems generally require large amounts of data to be trained. OpenAI has shown
exponential growth in compute needed to train AI models in their paper “AI and
Compute”. The operations needed for AI systems in their study is measured in peta‐
flops (thousands of trillion operations per second), and has been doubling every 3.4
months since 2012.

Compare this to Moore’s Law1, which states that the number of transistors in comput‐
ers would double every two years. Even if you’re bullish on Moore’s law, you can see
how there’s a clear need for distributed computing in ML. You should also under‐
stand that many tasks in ML can be naturally decomposed to run in parallel. So, why
not speed things up if you can?

Distributed computing is generally perceived as hard. But why is that? Shouldn’t it be
realistic to find good abstractions to run your code on clusters, without having to
constantly think about individual machines and how they interoperate? What if we
specifically focused on AI workloads?

Researchers at RISELab at UC Berkeley created Ray to address these questions. None
of the tools existing at the time met their needs. They were looking for easy ways to
speed up their workloads by distributing them to compute clusters. The workloads
they had in mind were quite flexible in nature and didn’t fit into the analytics engines
available. At the same time, RISELab wanted to build a system that took care of how
the work was distributed. With reasonable default behaviors in place, researchers
should be able to focus on their work. And ideally they should have access to all their
favorite tools in Python. For this reason, Ray was built with an emphasis on high-
performance and heterogeneous workloads. Anyscale, the company behind Ray, is
building a managed Ray Platform and offers hosted solutions for your Ray applica‐
tions. Let’s have a look at an example of what kinds of applications Ray was designed
for.

Flexible Workloads in Python & Reinforcement Learning
One of my favorite apps on my phone can automatically classify or “label” individual
plants in our garden. It works by simply showing it a picture of the plant in question.
That’s immensely helpful, as I’m terrible at distinguishing them all. (I’m not bragging
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2 For the experts among you, I don’t claim that RL is the answer. RL is just a paradigm that naturally fits into
this discussion of AI goals.

about the size of my garden, I’m just bad at it.) In the last couple of years we’ve seen a
surge of impressive applications like that.

Ultimately, the promise of AI is to build intelligent agents that go far beyond classify‐
ing objects. Imagine an AI application that not only knows your plants, but can take
care of to them, too. Such an application would have to

• operate in dynamic environments (like the change of seasons),
• react to changes in the environment (like a heavy storm or pests attacking your

plants),
• take sequences of actions (like watering and fertilizing plants),
• and accomplish long-term goals (like prioritizing plant health).

By observing its environment such an AI would also learn to explore the possible
actions it could take and come up with better solutions over time. If you feel like this
example is artificial or too far out, it’s not difficult to come up with examples on your
own that share all the above requirements. Think of managing and optimizing a sup‐
ply chain, strategically restocking a warehouse considering fluctuating demands, or
orchestrating the processing steps in an assembly line. Another famous example of
what you could expect from an AI would be Stephen Wozniak’s famous “Coffee Test”.
If you’re invited to a friend’s house, you can navigate to the kitchen, spot the coffee
machine and all necessary ingredients, figure out how to brew a cup of coffee, and sit
down to enjoy it. A machine should be able to do the same, except the last part might
be a bit of a stretch. What other examples can you think of?

You can frame all the above requirements naturally in a subfield of machine learning
called reinforcement learning (RL). We’ve dedicated all of Chapter 4 to RL. For now,
it’s enough to understand that it’s about agents interacting with their environment by
observing it and emitting actions. In RL, agents evaluate their environments by attrib‐
uting a reward (e.g., how healthy is my plant on a scale from 1 to 10). The term “rein‐
forcement” comes from the fact that agents will hopefully learn to seek out behaviour
that leads to good outcomes (high reward), and shy away from punishing situations
(low or negative reward). The interaction of agents with their environment is usually
modeled by creating a computer simulation of it. These simulations can become com‐
plicated quite quickly, as you might imagine from the examples we’ve given.

We don’t have gardening robots like the one I’ve sketched yet. And we don’t know
which AI paradigm will get us there.2 What I do know is that the world is full of com‐
plex, dynamic and interesting examples that we need to tackle. For that we need com‐
putational frameworks that help us do that, and Ray was built to do exactly that.
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3 This is a Python book, so we’ll exclusively focus on it. But you should at least know that Ray also has a Java
API, which at this point is less mature than its Python equivalent.

RISELab created Ray to build and run complex AI applications at scale, and rein‐
forcement learning has been an integral part of Ray from the start.

Three Layers: Core, Libraries & Ecosystem
Now that you know why Ray was built and what its creators had in mind, let’s look at
the three layers of Ray.

1. A low-level, distributed computing framework for Python with a concise core
API.3

2. A set of high-level libraries for data science built and maintained by the creators
of Ray.

3. A growing ecosystem of integrations and partnerships with other notable
projects.

There’s a lot to unpack here, and we’ll look into each of these layers individually in the
remainder of this chapter. You can imagine Ray’s core engine with its API at the cen‐
ter of things, on which everything else builds. Ray’s data science libraries build on top
of it. In practice, most data scientists will use these higher level libraries directly and
won’t often need to resort to the core API. The growing number of third-party inte‐
grations for Ray is another great entrypoint for experienced practitioners. Let’s look
into each one of the layers one by one.

A Distributed Computing Framework
At its core, Ray is a distributed computing framework. We’ll provide you with just the
basic terminology here, and talk about Ray’s architecture in depth in Chapter 2. In
short, Ray sets up and manages clusters of computers so that you can run distributed
tasks on them. A ray cluster consists of nodes that are connected to each other via a
network. You program against the so-called driver, the program root, which lives on
the head node. The driver can run jobs, that is a collection of tasks, that are run on the
nodes in the cluster. Specifically, the individual tasks of a job are run on worker pro‐
cesses on worker nodes. Figure Figure 1-1 illustrates the basic structure of a Ray clus‐
ter.
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4 We’re using Ray version 1.9.0 at this point, as it’s the latest version available as of this writing.

Figure 1-1. The basic components of a Ray cluster.

What’s interesting is that a Ray cluster can also be a local cluster, i.e. a cluster consist‐
ing just of your own computer. In this case, there’s just one node, namely the head
node, which has the driver process and some worker processes. The default number
of worker processes is the number of CPUs available on your machine.

With that knowledge at hand, it’s time to get your hands dirty and run your first local
Ray cluster. Installing Ray4 on any of the major operating systems should work seam‐
lessly using pip:

pip install "ray[rllib, serve, tune]"==1.9.0

With a simple pip install ray you would have installed just the very basics of Ray.
Since we want to explore some advanced features, we installed the “extras” rllib,
serve and tune, which we’ll discuss in a bit. Depending on your system configuration
you may not need the quotation marks in the above installation command.

Next, go ahead and start a Python session. You could use the ipython interpreter,
which I find to be the most suitable environment for following along simple exam‐
ples. If you don’t feel like typing in the commands yourself, you can also jump into
the jupyter notebook for this chapter and run the code there. The choice is up to you,
but in any case please remember to use Python version 3.7 or later. In your Python
session you can now easily import and initialize Ray as follows:

12 | Chapter 1: An Overview of Ray
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Example 1-1.

import ray
ray.init()

With those two lines of code you’ve started a Ray cluster on your local machine. This
cluster can utilize all the cores available on your computer as workers. In this case
you didn’t provide any arguments to the init function. If you wanted to run Ray on a
“real” cluster, you’d have to pass more arguments to init. The rest of your code
would stay the same.

After running this code you should see output of the following form (we use ellipses
to remove the clutter):

... INFO services.py:1263 -- View the Ray dashboard at http://127.0.0.1:8265
{'node_ip_address': '192.168.1.41',
 'raylet_ip_address': '192.168.1.41',
 'redis_address': '192.168.1.41:6379',
 'object_store_address': '.../sockets/plasma_store',
 'raylet_socket_name': '.../sockets/raylet',
 'webui_url': '127.0.0.1:8265',
 'session_dir': '...',
 'metrics_export_port': 61794,
 'node_id': '...'}

This indicates that your Ray cluster is up and running. As you can see from the first
line of the output, Ray comes with its own, pre-packaged dashboard. In all likelihood
you can check it out at http://127.0.0.1:8265, unless your output shows a different
port. If you want you can take your time to explore the dashboard for a little. For
instance, you should see all your CPU cores listed and the total utilization of your
(trivial) Ray application. We’ll come back to the dashboard in later chapters.

We’re not quite ready to dive into all the details of a Ray cluster here. To jump ahead
just a little, you might see the raylet_ip_address, which is a reference to a so-called
Raylet, which is responsible for scheduling tasks on your worker nodes. Each Raylet
has a store for distributed objects, which is hinted at by the object_store_address
above. Once tasks are scheduled, they get executed by worker processes. In Chapter 2
you’ll get a much better understanding of all these components and how they make
up a Ray cluster.

Before moving on, we should also briefly mention that the Ray core API is very acces‐
sible and easy to use. But since it is also a rather low-level interface, it takes time to
build interesting examples with it. Chapter 2 has an extensive first example to get you
started with the Ray core API, and in Chapter 3 you’ll see how to build a more inter‐
esting Ray application for reinforcement learning.
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5 I never liked the categorization of data science as an intersection of disciplines, like maths, coding and busi‐
ness. Ultimately, that doesn’t tell you what practitioners do. It doesn’t do a cook justice to tell them they sit at
the intersection of agriculture, thermodynamics and human relations. It’s not wrong, but also not very help‐
ful.

6 As a fun exercise, I recommend reading Paul Graham’s famous “Hackers and Painters” essay on this topic and
replace “computer science” with “data science”. What would hacking 2.0 be?

Right now your Ray cluster doesn’t do much, but that’s about to change. After giving
you a quick introduction to the data science workflow in the following section, you’ll
run your first concrete Ray examples.

A Suite of Data Science Libraries
Moving on to the second layer of Ray, in this section we’ll introduce all the data sci‐
ence libraries that Ray comes with. To do so, let’s first take a bird’s eye view on what it
means to do data science. Once you understand this context, it’s much easier to place
Ray’s higher-level libraries and see how they can be useful to you. If you have a good
idea of the data science process, you can safely skip ahead to section “Data Processing
with Ray Data” on page 16.

Machine Learning and the Data Science Workflow
The somewhat elusive term “data science” (DS) evolved quite a bit in recent years,
and you can find many definitions of varying usefulness online.5 To me, it’s the prac‐
tice of gaining insights and building real-world applications by leveraging data. That’s
quite a broad definition, and you don’t have to agree with me. My point is that data
science is an inherently practical and applied field that centers around building and
understanding things, which makes fairly little sense in a purely academic context. In
that sense, describing practitioners of this field as “data scientists” is about as bad of a
misnomer as describing hackers as “computer scientists”.6

Since you are familiar with Python and hopefully bring a certain craftsmanship atti‐
tude with you, we can approach the Ray’s data science libraries from a very pragmatic
angle. Doing data science in practice is an iterative process that goes something like
this:

• Requirements engineering: You talk to stakeholders to identify the problems you
need to solve and clarify the requirements for this project.

• Data collection: Then you source, collect and inspect the data.
• Data processing: Afterwards you process the data such that you can tackle the

problem.
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• Model building: You then move on to build a model (in the broadest sense) using
the data. That could be a dashboard with important metrics, a visualisation, or a
machine learning model, among many other things.

• Model evaluation: The next step is to evaluate your model against the require‐
ments in the first step.

• Deployment: If all goes well (it likely doesn’t), you deploy your solution in a pro‐
duction environment. You should understand this as an ongoing process that
needs to be monitored, not as a one-off step.

• Otherwise you need to circle back and start from the top. The most likely out‐
come is that you need to improve your solution in various ways, even after initial
deployment.

Machine learning is not necessarily part of this process, but you can see how building
smart applications or gaining insights might benefit from ML. Building a face detec‐
tion app into your social media platform, for better or worse, might be one example
of that. When the data science process just described explicitly involves building
machine learning models, you can further specify some steps:

• Data processing: To train machine learning models, you need data in a format
that is understood by your ML model. The process of transforming and selecting
what data should be fed into your model is often called feature engineering. This
step can be messy. You’ll benefit a lot if you can rely on common tools to do the
job.

• Model training: In ML you need to train your algorithms on data that got pro‐
cessed in the last step. This includes selecting the right algorithm for the job, and
it helps if you can choose from a wide variety.

• Hyperparameter tuning: Machine learning models have parameters that are tuned
in the model training step. Most ML models also have another set of parameters,
called hyperparameters that can be modified prior to training. These parameters
can heavily influence the performance of your resulting ML model and need to
be tuned properly. There are good tools to help automate that process.

• Model serving: Trained models need to be deployed. To serve a model means to
make it available to whoever needs access by whatever means necessary. In pro‐
totypes, you often use simple HTTP servers, but there are many specialised soft‐
ware packages for ML model serving.

This list is by no means exhaustive. Don’t worry if you’ve never gone through these
steps or struggle with the terminology, we’ll come back to this in much more detail in
later chapters. If you want to understand more about the holistic view of the data sci‐
ence process when building machine learning applications, the book Building
Machine Learning Powered Applications is dedicated to it entirely.
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Figure Figure 1-2 gives an overview of the steps we just discussed:

Figure 1-2. An overview of the data science experimentation workflow using machine
learning.

At this point you might be wondering how any of this relates to Ray. The good news
is that Ray has a dedicated library for each of the four ML-specific tasks above, cover‐
ing data processing, model training, hyperparameter tuning and model serving. And
the way Ray is designed, all these libraries are distributed by construction. Let’s walk
through each of them one-by-one.

Data Processing with Ray Data
The first high-level library of Ray we talk about is called “Ray Data”. This library con‐
tains a data structure aptly called Dataset, a multitude of connectors for loading data
from various formats and systems, an API for transforming such datasets, a way to
build data processing pipelines with them, and many integrations with other data
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processing frameworks. The Dataset abstraction builds on the powerful Arrow
framework.

To use Ray Data, you need to install Arrow for Python, for instance by running pip
install pyarrow. We’ll now discuss a simple example that creates a distributed Data
set on your local Ray cluster from a Python data structure. Specifically, you’ll create a
dataset from a Python dictionary containing a string name and an integer-valued data
for 10000 entries:

Example 1-2.

import ray

items = [{"name": str(i), "data": i} for i in range(10000)]
ds = ray.data.from_items(items)   
ds.show(5)  

Creating a Dataset by using from_items from the ray.data module.

Printing the first 10 items of the Dataset.

To show a Dataset means to print some of its values. You should see precisely 5 so-
called ArrowRow elements on your command line, like this:

ArrowRow({'name': '0', 'data': 0})
ArrowRow({'name': '1', 'data': 1})
ArrowRow({'name': '2', 'data': 2})
ArrowRow({'name': '3', 'data': 3})
ArrowRow({'name': '4', 'data': 4})

Great, now you have some distributed rows, but what can you do with that data? The
Dataset API bets heavily on functional programming, as it is very well suited for data
transformations. Even though Python 3 made a point of hiding some of its functional
programming capabilities, you’re probably familiar with functionality such as map,
filter and others. If not, it’s easy enough to pick up. map takes each element of your
dataset and transforms is into something else, in parallel. filter removes data points
according to a boolean filter function. And the slightly more elaborate flat_map first
maps values similarly to map, but then also “flattens” the result. For instance, if map
would produce a list of lists, flat_map would flatten out the nested lists and give you
just a list. Equipped with these three functional API calls, let’s see how easily you can
transform your dataset ds:

Example 1-3. Transforming a Dataset with common functional programming routines.

squares = ds.map(lambda x: x["data"] ** 2)  
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evens = squares.filter(lambda x: x % 2 == 0)  
evens.count()

cubes = evens.flat_map(lambda x: [x, x**3])  
sample = cubes.take(10)  
print(sample)

We map each row of ds to only keep the square value of its data entry.

Then we filter the squares to only keep even numbers (a total of 5000 ele‐
ments).

We then use flat_map to augment the remaining values with their respective
cubes.

To take a total of 10 values means to leave Ray and return a Python list with
these values that we can print.

The drawback of Dataset transformations is that each step gets executed synchro‐
nously. In example Example 1-3 this is a non-issue, but for complex tasks that e.g.
mix reading files and processing data, you want an execution that can overlap indi‐
vidual tasks. DatasetPipeline does exactly that. Let’s rewrite the last example into a
pipeline.

Example 1-4.

pipe = ds.window()  
result = pipe\
    .map(lambda x: x["data"] ** 2)\
    .filter(lambda x: x % 2 == 0)\
    .flat_map(lambda x: [x, x**3])  
result.show(10)

You can turn a Dataset into a pipeline by calling .window() on it.

Pipeline steps can be chained to yield the same result as before.

There’s a lot more to be said about Ray Data, especially its integration with notable
data processing systems, but we’ll have to defer an in-depth discussion until ???.

Model Training
Moving on to the next set of libraries, let’s look at the distributed training capabilities
of Ray. For that, you have access to two libraries. One is dedicated to reinforcement
learning specifically, the other one has a different scope and is aimed primarily at
supervised learning tasks.
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Reinforcement Learning with Ray RLlib
Let’s start with Ray RLlib for reinforcement learning. This library is powered by the
modern ML frameworks TensorFlow and PyTorch, and you can choose which one to
use. Both frameworks seem to converge more and more conceptually, so you can pick
the one you like most without losing much in the process. Throughout the book we
use TensorFlow for consistency. Go ahead and install it with pip install tensor
flow right now.

One of the easiest ways to run examples with RLlib is to use the command line tool
rllib, which we’ve already implicitly installed earlier with pip. Once you run more
complex examples in Chapter 4, you will mostly rely on its Python API, but for now
we just want to get a first taste of running RL experiments.

We’ll look at a fairly classical control problem of balancing a pendulum. Imagine you
have a pendulum like the one in figure Figure 1-3, fixed at as single point and subject
to gravity. You can manipulate that pendulum by giving it a push from the left or the
right. If you assert just the right amount of force, the pendulum might remain in an
upright position. That’s our goal - and the question is whether we can teach a rein‐
forcement learning algorithm to do so for us.

Figure 1-3. Controlling a simple pendulum by asserting force to the left or the right.

Specifically, we want to train a reinforcement learning agent that can push to the left
or right, thereby acting on its environment (manipulating the pendulum) to reach the
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“upright position” goal for which it will be rewarded. To tackle this problem with Ray
RLlib, store the following content in a file called pendulum.yml.

Example 1-5.

# pendulum.yml
pendulumppo:
    env: Pendulum-v1  
    run: PPO  
    checkpoint_freq: 5  
    stop:
        episode_reward_mean: 800  
    config:
        lambda: 0.1  
        gamma: 0.95
        lr: 0.0003
        num_sgd_iter: 6

The Pendulum-v1 environment simulates the pendulum problem we just
described.

We use a powerful RL algorithm called Proximal Policy Optimization, or PPO.

After every five “training iterations” we checkpoint a model.

Once we reach a reward of -800 , we stop the experiment.

The PPO needs some RL-specific configuration to make it work for this problem.

The details of this configuration file don’t matter much at this point, don’t get distrac‐
ted by them. The important part is that you specify the built-in Pendulum-v1 environ‐
ment and sufficient RL-specific configuration to ensure the training procedure works.
The configuration is a simplified version of one of Ray’s tuned examples. We chose
this one because it doesn’t require any special hardware and finishes in a matter of
minutes. If your computer is powerful enough, you can try to run the tuned example
as well, which should yield much better results. To train this pendulum example you
can now simply run:

rllib train -f pendulum.yml

If you want, you can check the output of this Ray program and see how the different
metrics evolve during the training procedure. In case you don’t want to create this file
on your own, and want to run an experiment which gives you much better results,
you can also run this:

curl https://raw.githubusercontent.com/maxpumperla/learning_ray/main/notebooks/pendulum.yml -o pendulum.yml
rllib train -f pendulum.yml
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In any case, assuming the training program finished, we can now check how well it
worked. To visualize the trained pendulum you need to install one more Python
library with pip install pyglet. The only other thing you need to figure out is
where Ray stored your training progress. When you run rllib train for an experi‐
ment, Ray will create a unique experiment ID for you and stores results in a sub-
folder of ~/ray-results by default. For the training configuration we used, you
should see a folder with results that looks like ~/ray_results/pendulum-ppo/
PPO_Pendulum-v1_<experiment_id>. During the training procedure intermediate
model checkpoints get generated in the same folder. For instance, I have a folder on
my machine called:

 ~/ray_results/pendulum-ppo/PPO_Pendulum-v1_20cbf_00000_0_2021-09-24_15-20-03/checkpoint_000029/checkpoint-29

Once you figured out the experiment ID and chose a checkpoint ID (as a rule of
thumb the larger the ID, the better the results), you can evaluate the training perfor‐
mance of your pendulum training run like this:

rllib evaluate \
  ~/ray_results/pendulum-ppo/PPO_Pendulum-v1_<experiment_id>/checkpoint_0000<cp-id>/checkpoint-<cp-id> \
  --run PPO --env Pendulum-v1 --steps 2000

You should see an animation of a pendulum controlled by an agent that looks like
figure Figure 1-3. Since we opted for a quick training procedure instead of maximiz‐
ing performance, you should see the agent struggle with the pendulum exercise. We
could have done much better, and if you’re interested to scan Ray’s tuned examples
for the Pendulum-v1 environment, you’ll find an abundance of solutions to this exer‐
cise. The point of this example was to show you how simple it can be to train and
evaluate reinforcement learning tasks with RLlib, using just two command line calls
to rllib.

Distributed Training with Ray Train
Ray RLlib is dedicated to reinforcement learning, but what do you do if you need to
train models for other types of machine learning, like supervised learning? You can
use another Ray library for distributed training in this case, called Ray Train. At this
point, we don’t have built up enough knowledge of frameworks such as TensorFlow
to give you a concrete and informative example for Ray Train. We’ll discuss all of that
in Chapter 5, when it’s time to. But we can at least roughly sketch what a distributed
training “wrapper” for an ML model would look like, which is simple enough con‐
ceptually:

Example 1-6.

from ray.train import Trainer
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def training_function():  
    pass

trainer = Trainer(backend="tensorflow", num_workers=4)  
trainer.start()

results = trainer.run(training_function)  
trainer.shutdown()

First, define your ML model training function. We simply pass here.

Then initialize a Trainer instance with TensorFlow as the backend.

Lastly, scale out your training function on a Ray cluster.

If you’re interested in distributed training, you could jump ahead to Chapter 5.

Hyperparameter Tuning
Naming things is hard, but the Ray team hit the spot with Ray Tune, which you can
use to tune all sorts of parameters. Specifically, it was built to find good hyperparame‐
ters for machine learning models. The typical setup is as follows:

• You want to run an extremely computationally expensive training function. In
ML it’s not uncommon to run training procedures that take days, if not weeks,
but let’s say you’re dealing with just a couple of minutes.

• As result of training, you compute a so-called objective function. Usually you
either want to maximize your gains or minimize your losses in terms of perfor‐
mance of your experiment.

• The tricky bit is that your training function might depend on certain parameters,
hyperparameters, that influence the value of your objective function.

• You may have a hunch what individual hyperparameters should be, but tuning
them all can be difficult. Even if you can restrict these parameters to a sensible
range, it’s usually prohibitive to test a wide range of combinations. Your training
function is simply too expensive.

What can you do to efficiently sample hyperparameters and get “good enough” results
on your objective? The field concerned with solving this problem is called hyperpara‐
meter optimization (HPO), and Ray Tune has an enormous suite of algorithms for
tackling it. Let’s look at a first example of Ray Tune used for the situation we just
explained. The focus is yet again on Ray and its API, and not on a specific ML task
(which we simply simulate for now).
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Example 1-7. Minimizing an objective for an expensive training function with Ray Tune.

from ray import tune
import math
import time

def training_function(config):  
    x, y = config["x"], config["y"]
    time.sleep(10)
    score = objective(x, y)
    tune.report(score=score)  

def objective(x, y):
    return math.sqrt((x**2 + y**2)/2)  

result = tune.run(  
    training_function,
    config={
        "x": tune.grid_search([-1, -.5, 0, .5, 1]),  
        "y": tune.grid_search([-1, -.5, 0, .5, 1])
    })

print(result.get_best_config(metric="score", mode="min"))

We simulate an expensive training function that depends on two hyperparame‐
ters x and y, read from a config.

After sleeping for 5 seconds to simulate training and computing the objective we
report back the score to tune.

The objective computes the mean of the squares of x and y and returns the
square root of this term. This type of objective is fairly common in ML.

We then use tune.run to initialize hyperparameter optimization on our train
ing_function.

A key part is to provide a parameter space for x and y for tune to search over.

The Tune example in Example 1-7 finds the best possible choices of parameters x and
y for a training_function with a given objective we want to minimize. Even
though the objective function might look a little intimidating at first, since we com‐
pute the sum of squares of x and y, all values will be non-negative. That means the
smallest value is obtained at x=0 and y=0 which evaluates the objective function to 0.
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We do a so-called grid search over all possible parameter combinations. As we explic‐
itly pass in five possible values for both x and y that’s a total of 25 combinations that
get fed into the training function. Since we instruct training_function to sleep for
10 seconds, testing all combinations of hyperparameters sequentially would take
more than four minutes total. Since Ray is smart about parallelizing this workload, on
my laptop this whole experiment only takes about 35 seconds. Now, imagine each
training run would have taken several hours, and we’d have 20 instead of two hyper‐
parameters. That makes grid search infeasible, especially if you don’t have educated
guesses on the parameter range. In such situations you’ll have to use more elaborate
HPO methods from Ray Tune, as discussed in ???.

Model Serving
The last of Ray’s high-level libraries we’ll discuss specializes on model serving and is
simply called Ray Serve. To see an example of it in action, you need a trained ML
model to serve. Luckily, nowadays you can find many interesting models on the inter‐
net that have already been trained for you. For instance, Hugging Face has a variety of
models available for you to download directly in Python. The model we’ll use is a lan‐
guage model called GPT-2 that takes text as input and produces text to continue or
complete the input. For example, you can prompt a question and GPT-2 will try to
complete it.

Serving such a model is a good way to make it accessible. You may not now how to
load and run a TensorFlow model on your computer, but you do now how to ask a
question in plain English. Model serving hides the implementation details of a solu‐
tion and lets users focus on providing inputs and understanding outputs of a model.

To proceed, make sure to run pip install transformers to install the Hugging Face
library that has the model we want to use. With that we can now import and start an
instance of Ray’s serve library, load and deploy a GPT-2 model and ask it for the
meaning of life, like so:

Example 1-8.

from ray import serve
from transformers import pipeline
import requests

serve.start()  

@serve.deployment  
def model(request):
    language_model = pipeline("text-generation", model="gpt2")  
    query = request.query_params["query"]
    return language_model(query, max_length=100)  
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model.deploy()  

query = "What's the meaning of life?"
response = requests.get(f"http://localhost:8000/model?query={query}")  
print(response.text)

We start serve locally.

The @serve.deployment decorator turns a function with a request parameter
into a serve deployment.

Loading language_model inside the model function for every request is ineffi‐
cient, but it’s the quickest way to show you a deployment.

We ask the model to give us at most 100 characters to continue our query.

Then we formally deploy the model so that it can start receiving requests over
HTTP.

We use the indispensable requests library to get a response for any question you
might have.

In ??? you will learn how to properly deploy models in various scenarios, but for now
I encourage you to play around with this example and test different queries. Running
the last two lines of code repeatedly will give you different answers practically every
time. Here’s a darkly poetic gem, raising more questions, that I queried on my
machine and slightly censored for underaged readers:

[{
    "generated_text": "What's the meaning of life?\n\n
     Is there one way or another of living?\n\n
     How does it feel to be trapped in a relationship?\n\n
     How can it be changed before it's too late?
     What did we call it in our time?\n\n
     Where do we fit within this world and what are we going to live for?\n\n
     My life as a person has been shaped by the love I've received from others."
}]

This concludes our whirlwind tour of Ray’s data science libraries, the second of Ray’s
layers. Before we wrap up this chapter, let’s have a very brief look at the third layer,
the growing ecosystem around Ray.
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7 Spark has been created by another lab in Berkeley, AMPLab. The internet is full of blog posts claiming that
Ray should therefore be seen as a replacement of Spark. It’s better to think of them as tools with different
strengths that are both likely here to stay.

8 Before the deep learning framework Keras became an official part of a corporate flagship, it started out as a
convenient API specification for various lower-level frameworks such as Theano, CNTK, or TensorFlow. In
that sense Ray RLlib has the chance to become Keras for RL. Ray Tune might just be Keras for HPO. The
missing piece for more adoption is probably a more elegant API for both.

A Growing Ecosystem
Ray’s high-level libraries are powerful and deserve a much deeper treatment through‐
out the book. While their usefulness for the data science experimentation lifecycle is
undeniable, I also don’t want to give off the impression that Ray is all you need from
now on. In fact, I believe the best and most successful frameworks are the ones that
integrate well with existing solutions and ideas. It’s better to focus on your core
strengths and leverage other tools for what’s missing in your solution. There’s usually
no reason to re-invent the wheel.

How Ray Integrates and Extends
To give you an example for how Ray integrates with other tools, consider that Ray
Data is a relatively new addition to its libraries. If you want to boil it down, and
maybe oversimplify a little, Ray is a compute-first framework. In contrast, distributed
frameworks like Apache Spark7 or Dask can be considered data-first. Pretty much
anything you do with Spark starts with the definition of a distributed dataset and
transformations thereof. Dask bets on bringing common data structures like Pandas
dataframes or Numpy arrays to a distributed setup. Both are immensely powerful in
their own regard, and we’ll give you a more detailed and fair comparison to Ray
in ???. The gist of it is that Ray Data does not attempt to replace these tools. Instead, it
integrates well with both. As you’ll come to see, that’s a common theme with Ray.

Ray as Distributed Interface
One aspect of Ray that’s vastly understated in my eyes is that its libraries seamlessly
integrate common tools as backends. Ray often creates common interfaces, instead of
trying to create new standards8. These interfaces allow you to run tasks in a dis‐
tributed fashion, a property most of the respective backends don’t have, or not to the
same extent. For instance, Ray RLlib and Train are backed by the full power of
TensorFlow and PyTorch. Ray Tune supports algorithms from practically every nota‐
ble HPO tool available, including Hyperopt, Optuna, Nevergrad, Ax, SigOpt and
many others. None of these tools are distributed by default, but Tune unifies them in
a common interface. Ray Serve can be used with frameworks such as FastAPI, and
Ray Data is backed by Arrow and comes with many integrations to other frameworks,

26 | Chapter 1: An Overview of Ray

https://keras.io


9 Note that “Ray Train” has been called “raysgd” in older versions of Ray, and does not have a new logo yet.

such as Spark and Dask. Overall this seems to be a robust design pattern that can be
used to extend current Ray projects or integrate new backends in the future.

Summary
To sum up what we’ve discussed in this chapter, Figure 1-4 gives you an overview of
the three layers of Ray as we laid them out. Ray’s core distributed execution engine
sits at the center of the framework. For practical data science workflows you can use
Ray Data for data processing, Ray RLlib for reinforcement learning, Ray Train for dis‐
tributed model training, Ray Tune for hyperparameter tuning and Ray Serve for
model serving. You’ve seen examples for each of these libraries and have an idea of
what their APIs entail. On top of that, Ray’s ecosystem has many extensions that we’ll
look more into later on. Maybe you can already spot a few tools you know and like in
Figure 1-49?
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Figure 1-4. Ray in three layers. Its core API sits at the center, surrounded by the libraries
RLlib, Tune, Ray Train, Ray Serve, Ray Data and the many third-party integrations we
can’t all list here.
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CHAPTER 2

Getting Started With Ray Core

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

For a book on distributed Python, it’s not without a certain irony that Python on its
own is largely ineffective for distributed computing. Its interpreter is effectively single
threaded which makes it difficult to, for example, leverage multiple CPUs on the same
machine, let alone a whole cluster of machines, using plain Python. That means you
need extra tooling, and luckily the Python ecosystem has some options for you. For
instance, libraries like multiprocessing can help you distribute work on a single
machine, but not beyond.

In this chapter you’ll understand how Ray core handles distributed computing by
spinning up a local cluster, and you’ll learn how to use Ray’s lean and powerful API to
parallelize some interesting computations. For instance, you’ll build an example that
runs a data-parallel task efficiently and asynchronously on Ray, in a convenient way
that’s not easily replicable with other tooling. We discuss how tasks and actors work as
distributed versions of functions and classes in Python. You’ll also learn about all the
fundamental concepts underlying Ray and what its architecture looks like. In other
words, we’ll give you a look under the hood of Ray’s engine.

An Introduction To Ray Core
The bulk of this chapter is an extended Ray core example that we’ll build together.
Many of Ray’s concepts can be explained with a good example, so that’s exactly what
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we’ll do. As before, you can follow this example by typing the code yourself (which is
highly recommended), or by following the notebook for this chapter.

In ??? we’ve introduced you to the very basics of Ray clusters and showed you how
start a local cluster simply by typing

Example 2-1.

import ray
ray.init()

You’ll need a running Ray cluster to run the examples in this chapter, so make sure
you’ve started one before continuing. The goal of this section is to give you a quick
introduction to the Ray Core API, which we’ll simply refer to as the Ray API from
now on.

As a Python programmer, the great thing about the Ray API is that it hits so close to
home. It uses familiar concepts such as decorators, functions and classes to provide
you with a fast learning experience. The Ray API aims to provide a universal pro‐
gramming interface for distributed computing. That’s certainly no easy feat, but I
think Ray succeeds in this respect, as it provides you with good abstractions that are
intuitive to learn and use. Ray’s engine does all the heavy lifting for you in the back‐
ground. This design philosophy is what enables Ray to be used with existing Python
libraries and systems.

A First Example Using the Ray API
To give you an example, take the following function which retrieves and processes
data from a database. Our dummy database is a plain Python list containing the
words of the title of this book. We act as if retrieving an individual item from this
database and further processing it is expensive by letting Python sleep.

Example 2-2.

import time

database = [  
    "Learning", "Ray",
    "Flexible", "Distributed", "Python", "for", "Data", "Science"
]

def retrieve(item):
    time.sleep(item / 10.)  
    return item, database[item]
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A dummy database containing string data with the title of this book.

We emulate a data-crunching operation that takes a long time.

Our database has eight items, from database[0] for “Learning” to database[7] for
“Science”. If we were to retrieve all items sequentially, how long should that take? For
the item with index 5 we wait for half a second (5 / 10.) and so on. In total, we can
expect a runtime of around (0+1+2+3+4+5+6+7)/10. = 2.8 seconds. Let’s see if that’s
what we actually get:

Example 2-3.

def print_runtime(input_data, start_time, decimals=1):
    print(f'Runtime: {time.time() - start_time:.{decimals}f} seconds, data:')
    print(*input_data, sep="\n")

start = time.time()
data = [retrieve(item) for item in range(8)]  
print_runtime(data, start)  

We use a list comprehension to retrieve all eight items.

Then we unpack the data to print each item on its own line.

If you run this code, you should see the following output:

Runtime: 2.8 seconds, data:
(0, 'Learning')
(1, 'Ray')
(2, 'Flexible')
(3, 'Distributed')
(4, 'Python')
(5, 'for')
(6, 'Data')
(7, 'Science')

We cut off the output of the program after one decimal number. There’s a little over‐
head that brings the total closer to 2.82 seconds. On your end this might be slightly
less, or much more, depending on your computer. The important take-away is that
our naive Python implementation is not able to run this function in parallel. This
may not come as a surprise to you, but you could have at least suspected that Python
list comprehensions are more efficient in that regard. The runtime we got is pretty
much the worst case scenario, namely the 2.8 seconds we calculated prior to running
the code. If you think about it, it might even be a bit frustrating to see that a program
that essentially sleeps most of its runtime is that slow overall. Ultimately you can
blame the Global Interpreter Lock (GIL) for that, but it gets enough of it already.
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1 I still don’t know how to pronounce this acronym, but I get the feeling that the same people who pronounce
GIF like “giraffe” also say GIL like “guitar”. Just pick one, or spell it out, if you feel insecure.

Python’s Global Interpreter Lock
The Global Interpreter Lock or GIL1 is undoubtedly one of the most infamous fea‐
tures of the Python language. In a nutshell it’s a lock that makes sure only one thread
on your computer can ever execute your Python code at a time. If you use multi-
threading, the threads need to take turns controlling the Python interpreter.

The GIL has been implemented for good reasons. For one, it makes memory manage‐
ment that much easier in Python. Another key advantage is that it makes single-
threaded programs quite fast. Programs that primarily use lots of system input and
output (we say they are I/O-bound), like reading files or databases, benefit as well.
One of the major downsides is that CPU-bound programs are essentially single-
threaded. In fact, CPU-bound tasks might even run faster when not using multi-
threading, as the latter incurs write-lock overheads on top of the GIL.

Given all that, the GIL might somewhat paradoxically be one of the reasons for
Python’s popularity, if you believe Larry Hastings. Interestingly, Hastings also led
(unsuccessful) efforts to remove it in a project called GILectomy, which is exactly the
kind of complicated surgery that it sounds like. The jury is still out, but Sam Gross
might just have found a way to remove the GIL in his nogil branch of Python 3.9. For
now, if you absolutely have to work around the GIL, consider using an implementa‐
tion different from CPython. CPython is Python’s standard implementation, and if
you don’t know that you’re using it, you’re definitely using it. Implementations like
Jython, IronPython or PyPy don’t have a GIL, but come with their own drawbacks.

Functions and Remote Ray Tasks
It’s reasonable to assume that such a task can benefit from parallelization. Perfectly
distributed, the runtime should not take much longer than the longest subtask,
namely 7/10. = 0.7 seconds. So, let’s see how you can extend this example to run on
Ray. To do so, you start by using the @ray.remote decorator as follows:

Example 2-4.

@ray.remote  
def retrieve_task(item):
    return retrieve(item)  

With just this decorator we make any Python function a Ray task.

All else remains unchanged. retrieve_task just passes through to retrieve.
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2 This example has been adapted from Dean Wampler’s fantastic report “What is Ray?”.

In this way, the function retrieve_task becomes a so-called Ray task. That’s an
extremely convenient design choice, as you can focus on your Python code first, and
don’t have to completely change your mindset or programming paradigm to use Ray.
Note that in practice you would have simply added the @ray.remote decorator to
your original retrieve function (after all, that’s the intended use of decorators), but
we didn’t want to touch previous code to keep things as clear as possible.

Easy enough, so what do you have to change in the code that retrieves the data and
measures performance? It turns out, not much. Let’s have a look at how you’d do that:

Example 2-5. Measuring performance of your Ray task.

start = time.time()
data_references = [retrieve_task.remote(item) for item in range(8)]  
data = ray.get(data_references)  
print_runtime(data, start, 2)

To run retrieve_task on your local Ray cluster, you use .remote() and pass in
your data as before. You’ll get a list of object references.

To get back data, and not just Ray object references, you use ray.get.

Did you spot the differences? You have to execute your Ray task remotely using the
remote function. When tasks get executed remotely, even on your local cluster, Ray
does so asynchronously. The list items in data_references in the last code snippet do
not contain the results directly. In fact, if you check the Python type of the first item
with type(data_references[0]) you’ll see that it’s in fact an ObjectRef. These
object references correspond to futures which you need to ask the result of. This is
what the call to ray.get(...) is for.

We still want to work more on this example2, but let’s take a step back here and recap
what we did so far. You started with a Python function and decorated it with
@ray.remote. This made your function a Ray task. Then, instead of calling the origi‐
nal function in your code straight-up, you called .remote(...) on the Ray task. The
last step was to .get(...) the results back from your Ray cluster. I think this proce‐
dure is so intuitive that I’d bet you could already create your own Ray task from
another function without having to look back at this example. Why don’t you give it a
try right now?

Coming back to our example, by using Ray tasks, what did we gain in terms of per‐
formance? On my machine the runtime clocks in at 0.71 seconds, which is just
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slightly more than the longest subtask, which comes in at 0.7 seconds. That’s great
and much better than before, but we can further improve our program by leveraging
more of Ray’s API.

Using the object store with put and get

One thing you might have noticed is that in the definition of retrieve we directly
accessed items from our database. Working on a local Ray cluster this is fine, but
imagine you’re running on an actual cluster comprising several computers. How
would all those computers access the same data? Remember from ??? that in a Ray
cluster there is one head node with a driver process (running ray.init()) and many
worker nodes with worker processes executing your tasks. My laptop has a total of 8
CPU cores, so Ray will create 8 worker processes on my one-node local cluster. Our
database is currently defined on the driver only, but the workers running your tasks
need to have access to it to run the retrieve task. Luckily, Ray provides an easy way
to share data between the driver and workers (or between workers). You can simply
use put to place your data into Ray’s distributed object store and then use get on the
workers to retrieve it as follows.

Example 2-6.

database_object_ref = ray.put(database)  

@ray.remote
def retrieve_task(item):
    obj_store_data = ray.get(database_object_ref)  
    time.sleep(item / 10.)
    return item, obj_store_data[item]

put your database into the object store and receive a reference to it.

This allows your workers to get the data, no matter where they are located in the
cluster.

By using the object store this way, you can let Ray handle data access across the whole
cluster. We’ll talk about how exactly data is passed between nodes and within workers
when talking about Ray’s infrastructure. While the interaction with the object store
requires some overhead, Ray is really smart about storing the data, which gives you
performance gains when working with larger, more realistic datasets. For now, the
important part is that this step is essential in a truly distributed setting. If you like, try
to re-run Example 2-5 with this new retrieve_task function and confirm that it still
runs, as expected.
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Using Ray’s wait function for non-blocking calls

Note how in Example 2-5 we used ray.get(data_references) to access results. This
call is blocking, which means that our driver has to wait for all the results to be avail‐
able. That’s not a big deal in our case, the program now finishes in under a second.
But imagine processing of each data item would take several minutes. In that case you
would want to free up the driver process for other tasks, instead of sitting idly by.
Also, it would be great to process results as they come in (some finish much quicker
than others), rather than waiting for all data to be processed. One more question to
keep in mind is what happens if one of the data items can’t be retrieved as expected?
Let’s say there’s a deadlock somewhere in the database connection. In that case, the
driver will simply hang and never retrieve all items. For that reason it’s a good idea to
work with reasonable timeouts. In our scenario, we should not wait longer than 10
times the longest data retrieval task before stopping the task. Here’s how you can do
that with Ray by using wait:

Example 2-7.

start = time.time()
data_references = [retrieve_task.remote(item) for item in range(8)]
all_data = []

while len(data_references) > 0:  
    finished, data_references = ray.wait(data_references, num_returns=2, timeout=7.0)  
    data = ray.get(finished)
    print_runtime(data, start, 3)  
    all_data.extend(data)  

Instead of blocking, we loop through unfinished data_references.

We asynchronously wait for finished data with a reasonable timeout. data_ref
erences gets overridden here, to prevent an infinite loop.

We print results as they come in, namely in blocks of two.

Then we append new data to the all_data until finished.

As you can see ray.wait returns two arguments, namely finished data and futures
that still need to be processed. We use the num_returns argument, which defaults to
1, to let wait return whenever a new pair of data items is available. On my laptop this
results in the following output:

Runtime: 0.108 seconds, data:
(0, 'Learning')
(1, 'Ray')
Runtime: 0.308 seconds, data:
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(2, 'Flexible')
(3, 'Distributed')
Runtime: 0.508 seconds, data:
(4, 'Python')
(5, 'for')
Runtime: 0.709 seconds, data:
(6, 'Data')
(7, 'Science')

Note how in the while loop, instead of just printing results, we could have done many
other things, like starting entirely new tasks on other workers with the data already
retrieved up to this point.

Handling Task Dependencies
So far our example program has been fairly easy on a conceptual level. It consists of a
single step, namely retrieving a bunch of data. Now, imagine that once your data is
loaded you want to run a follow-up processing task on it. To be more concrete, let’s
say we want to use the result of our first retrieve task to query other, related data (pre‐
tend that you’re querying data from a different table in the same database). The fol‐
lowing code sets up such a task and runs both our retrieve_task and
follow_up_task consecutively.

Example 2-8. Running a follow-up task that depends on another Ray task.

@ray.remote
def follow_up_task(retrieve_result):  
    original_item, _ = retrieve_result
    follow_up_result = retrieve(original_item + 1)  
    return retrieve_result, follow_up_result  

retrieve_refs = [retrieve_task.remote(item) for item in [0, 2, 4, 6]]
follow_up_refs = [follow_up_task.remote(ref) for ref in retrieve_refs]  

result = [print(data) for data in ray.get(follow_up_refs)]

Using the result of retrieve_task we compute another Ray task on top of it.

Leveraging the original_item from the first task, we retrieve more data.

Then we return both the original and the follow-up data.

We pass the object references from the first task into the second task.

Running this code results in the following output.
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3 According to Clarke’s third law any sufficiently advanced technology is indistinguishable from magic. For me,
this example has a bit of magic to it.

((0, 'Learning'), (1, 'Ray'))
((2, 'Flexible'), (3, 'Distributed'))
((4, 'Python'), (5, 'for'))
((6, 'Data'), (7, 'Science'))

If you don’t have a lot of experience with asynchronous programming, you might not
be impressed by Example 2-8. But I hope to convince you that it’s at least a bit sur‐
prising3 that this code snippet runs at all. So, what’s the big deal? After all, the code
reads like regular Python - a function definition and a few list comprehensions. The
point is that the function body of follow_up_task expects a Python tuple for its
input argument retrieve_result, which we unpack in the first line of the function
definition.

But by invoking [follow_up_task.remote(ref) for ref in retrieve_refs] we
do not pass in tuples to the follow-up task at all. Instead, we pass in Ray object refer‐
ences with retrieve_refs. What happens under the hood is that Ray knows that fol
low_up_task requires actual values, so internally in this task it will call ray.get to
resolve the futures. Ray builds a dependency graph for all tasks and executes them in
an order that respects the dependencies. You do not have to tell Ray explicitly when
to wait for a previous task to finish, it will infer that information for you.

The follow-up tasks will only be scheduled, once the individual retrieve tasks have
finished. If you ask me, that’s an incredible feature. In fact, if I had called
retrieve_refs something like retrieve_result, you may not even have noticed this
important detail. That’s by design. Ray wants you to focus on your work, not on the
details of cluster computing. In figure Figure 2-1 you can see the dependency graph
for the two tasks visualized.
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4 The actor model is an established concept in computer science, which you can find implemented e.g. in Akka
or Erlang. However, the history and specifics of actors are not relevant to our discussion.

Figure 2-1. Running two dependent tasks asynchronously and in parallel with Ray.

If you feel like it, try to rewrite Example 2-8 so that it explicitly uses get on the first
task before passing values into the follow-up task. That does not only introduce more
boilerplate code, but it’s also a bit less intuitive to write and understand.

From Classes to Actors
Before wrapping up this example, let’s discuss one more important concept of Ray
Core. Notice how in our example everything is essentially a function. We just used
the ray.remote decorator to make some of them remote functions, and other than
that simply used plain Python. Let’s say we wanted to track how often our database
has been queried? Sure, we could simply count the results of our retrieve tasks, but is
there a better way to do this? We want to track this in a “distributed” way that will
scale. For that, Ray has the concept of actors. Actors allow you to run stateful compu‐
tations on your cluster. They can also communicate between each other4. Much like
Ray tasks were simply decorated functions, Ray actors are decorated Python classes.
Let’s write a simple counter to track our database calls.

Example 2-9.

@ray.remote  
class DataTracker:
    def __init__(self):
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        self._counts = 0

    def increment(self):
        self._counts += 1

    def counts(self):
        return self._counts

We can make any Python class a Ray actor by using the same ray.remote decora‐
tor as before.

This DataTracker class is already an actor, since we equipped it with the ray.remote
decorator. This actor can track state, here just a simple counter, and its methods are
Ray tasks that get invoked precisely like we did with functions before, namely
using .remote(). Let’s see how we can modify our existing retrieve_task to incor‐
porate this new actor.

Example 2-10.

@ray.remote
def retrieve_tracker_task(item, tracker):  
    obj_store_data = ray.get(database_object_ref)
    time.sleep(item / 10.)
    tracker.increment.remote()  
    return item, obj_store_data[item]

tracker = DataTracker.remote()  

data_references = [retrieve_tracker_task.remote(item, tracker) for item in range(8)]  
data = ray.get(data_references)
print(ray.get(tracker.counts.remote()))  

We pass in the tracker actor into this task.

The tracker receives an increment for each call.

We instantiate our DataTracker actor by calling .remote() on the class.

The actor gets passed into the retrieve task.

Afterwards we can get the counts state from our tracker from another remote
invocation.

Unsurprisingly, the result of this computation is in fact 8. We didn’t need actors to
compute this, but I hope you can see how useful it can be to have a mechanism to
track state across the cluster, potentially spanning multiple tasks. In fact, we could
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5 To paraphrase Alan Kay, to get simplicity, you need to find slightly more sophisticated building blocks. In my
eyes, the Ray API does just that for distributed Python.

6 You can check out the API reference to see that there are in fact quite a bit more methods available. At some
point you should invest in understanding the arguments of init, but all other methods likely won’t be of
interest to you, if you’re not an administrator of your Ray cluster.

pass our actor into any dependent task, or even pass it into the constructor of yet
another actor. There is no limitation to what you can do, and it’s this flexibility that
makes the Ray API so powerful. It’s also worth mentioning that it’s not very common
for distributed Python tools to allow for stateful computations like this. This feature
can come in very handy, especially when running complex distributed algorithms, for
instance when using reinforcement learning. This completes our extensive first Ray
API example. Let’s see if we can concisely summarize the Ray API next.

An Overview of the Ray Core API
If you recall what exactly we did in the previous example, you’ll notice that we used a
total of just six API methods5. You used ray.init() to start the cluster and
@ray.remote to turn functions and classes into tasks and actors. Then we used
ray.put() to pass data into Ray’s object store and ray.get() to retrieve data from
the cluster. Finally, we used .remote() on actor methods or tasks to run code on our
cluster, and ray.wait to avoid blocking calls.

While six API methods might not seem like much, those are the only ones you’ll
likely ever care about when using the Ray API6. Let’s briefly summarize them in a
table, so you can easily reference them in the future.

Table 2-1. The six major API methods of Ray Core.

API call Description

ray.init() Initializes your Ray cluster. Pass in an address to connect to an existing
cluster.

@ray.remote Turns functions into tasks and classes into actors.

ray.put() Puts data into Ray’s object store.

ray.get() Gets data from the object store. Returns data you’ve put there or that was
computed by a task or actor.

.remote() Runs actor methods or tasks on your Ray cluster and is used to instantiate actors.

ray.wait() Returns two lists of object references, one with finished tasks we’re waiting for
and one with unfinished tasks.

Now that you’ve seen the Ray API in action, let’s quickly discuss Ray’s design philoso‐
phy, before moving on to discussing its system architecture.
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Design Principles
Ray is built with several design principles in mind, most of which you’ve got a taste of
already. Its API is designed for simplicity and generality. Its compute model banks on
flexibility. And its system architecture is designed for performance and scalability.
Let’s look at each of these in more detail.

Simplicity & Abstraction
As you’ve seen, Ray’s API does not only bank on simplicity, it’s also intuitive to pick
up. It doesn’t matter whether you just want to use all the CPU cores on your laptop or
leverage all the machines in your cluster. You might have to change a line of code or
two, but the Ray code you use stays essentially the same. And as with any good dis‐
tributed system, Ray manages task distribution and coordination under the hood.
That’s great, because you’re not bogged down by reasoning about the mechanics of
distributed computing. A good abstraction layer allows you to focus on your work,
and I think Ray has done a great job of giving you one.

Since Ray’s API is so generally applicable and pythonic, it’s easy to integrate with
other tools. For instance, Ray actors can call into or be called by existing distributed
Python workloads. In that sense Ray makes for good “glue code” for distributed
workloads, too, as its performant and flexible enough to communicate between dif‐
ferent systems and frameworks.

Flexibility
For AI workloads, in particular when dealing with paradigms like reinforcement
learning, you need a flexible programming model. Ray’s API is designed to make it
easy to write flexible and composable code. Simply put, if you can express your work‐
load in Python, you can distribute it with Ray. Of course, you still need to make sure
you have enough resources available and be mindful of what you want to distribute.
But Ray doesn’t limit you in what you can do with it.

Ray is also flexible when it comes to heterogenity of computations. For instance, let’s
say you work on a complex simulation. Simulations can usually be decomposed into
several tasks or steps. Some of these steps might take hours to run, others just a few
milliseconds, but they always need to be scheduled and executed quickly. Sometimes
a single task in a simulation can take a long time, but other, smaller tasks should be
able to run in parallel without blocking it. Also, subsequent tasks may depend on the
outcome of an upstream task, so you need a framework to allow for dynamic execu‐
tion that deals well with task dependencies. In the example we discussed in this chap‐
ter you’ve seen that Ray’s API is built for that.
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7 This might sound drastic, but it’s not a joke. To name just one example, in March 2021 a French data center
powering millions of websites burnt down completely, which you can read about in this article. If your whole
cluster burns down, I’m afraid Ray can’t help you.

You also need to ensure you are flexible in your resource usage. For instance, some
tasks might have to run on a GPU, while others run best on a couple of CPU cores.
Ray provides you with that flexibility.

Speed & Scalability
Another of Ray’s design principles is the speed at which Ray executes its heterogene‐
ous tasks. It can handle millions of tasks per second. What’s more is that you only
incur very low latencies with Ray. It’s build to execute its tasks with just milliseconds
of latency.

For a distributed system to be fast, it also needs to scale well. Ray is efficient at dis‐
tributing and scheduling your tasks across your compute cluster. And it does so in a
fault tolerant way, too. In distributed systems it’s not a question of if, but when things
go wrong. A machine might have an outage, abort a task or simply go up in flames.7

In any case, Ray is built to recover quickly from failures, which contributes to its
overall speed.

Understanding Ray System Components
You’ve seen how the Ray API can be used and understand the design philosophy
behind Ray. Now it’s time to get a better understanding of the underlying system
components. In other words, how does Ray work and how does it achieve what it
does?

Scheduling and Executing Work on a Node
You know that Ray clusters consist of nodes. We’ll first look at what happens on indi‐
vidual nodes, before we zoom out and discuss how the whole cluster interoperates.

As we’ve already discussed, a worker node consists of several worker processes or
simply workers. Each worker has a unique ID, an IP address and a port by which they
can be referenced. Workers are called as they are for a reason, they’re components
that blindly execute the work you give them. But who tells them what to do and
when? A worker might be busy already, it may not have the proper resources to run a
task (e.g. access to a GPU), and it might not even have the data it needs to run a given
task. On top of that, workers have no knowledge of what happens before or after
they’ve executed their workload, there’s no coordination.
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To address these issues, each worker node has a component called Raylet. Think of
Raylets as the smart components of a node, which manage the worker processes. Ray‐
lets are shared between jobs and consist of two components, namely a task scheduler
and an object store.

Let’s talk about object stores first. In the running example in this chapter we’ve
already used the concept of an object store loosely, without really specifying it. Each
node of a Ray cluster is equipped with an object store, within that node’s Raylet, and
all object stored collectively form the distributed object store of a cluster. An object
store has shared memory across the node, so that each worker process has easy access
to it. The object store is implemented in Plasma, which now belongs to the Apache
Arrow project. Functionally, the object store takes care of memory management and
ultimately makes sure workers have access to the data they need.

The second component of a Raylet is its scheduler. The scheduler takes care of
resource management, among other things. For instance, if a task requires access to 4
CPUs, the scheduler needs to make sure it can find a free worker process that it can
grant access to said resources. By default, the scheduler knows about and acquires
information about the number of CPUs and GPUs and the amount of memory avail‐
able on its node, but you can register custom resources, if you want to. If it can’t pro‐
vide the required resources, it can’t schedule execution of a task.

Apart from resources, the other requirement the scheduler takes care of is dependency
resolution. That means it needs to ensure that each worker has all the input data it
needs to execute a task. For that to work, the scheduler will first resolve local depen‐
dencies by looking up data in its object store. If the required data is not available on
this node’s object store, the scheduler will have to communicate with other nodes
(we’ll tell you how in a bit) and pull in remote dependencies. Once the scheduler has
ensured enough resources for a task, resolved all needed dependencies, and found a
worker for a task, it can schedule said task for execution.

Task scheduling is a very difficult topic, even if we’re only talking about single nodes.
I think you can easily imagine scenarios in which an incorrectly or naively planned
task execution can “block” downstream tasks because there are not enough resources
left. Especially in a distributed context assigning work like this can be become very
tricky very quickly.

Now that you know about Raylets, let’s briefly come back to worker processes, so that
we can wrap up the discussion around worker nodes. An important concept that con‐
tributed to the performance or Ray overall is that of ownership.

Ownership means that a process that runs something is responsible for it. This makes
for a decentralized overall design, since individual tasks have a unique owner. In con‐
crete terms this means that each worker process owns the tasks it submits, which
includes proper execution and availability of results (i.e., correct resolution of object
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references). Also, anything that gets registered through ray.put() is owned by the
caller. You should understand ownership in contrast to dependency, which we’ve
already covered by example when discussing task dependencies.

To give you a concrete example, let’s say we have a program that starts a task which
takes an input value val and internally calls another task. That could look as follows:

Example 2-11.

@ray.remote
def task_owned():
    return

@ray.remote
def task(dependency):
    res_owned = task_owned.remote()
    return

val = ray.put("value")
res = task.remote(dependency=val)

From this point on we won’t mention it again, but this example assumes that you
have a running Ray cluster started with ray.init(). Let’s quickly analyse ownership
and dependency for this example. We defined two tasks in task and task_owned, and
we have three variables in total, namely val, res and rew_owned. Our main program
defines both val (which puts "value" into the object store) and res, the final result
of th whole program, and it also calls task. In other words, the driver owns task, val
and res according to Ray’s ownership definition. In contrast, res depends on task,
but there’s no ownership relationship between the two. When task gets called, it takes
val as a dependency. It then calls task_owned and assigns res_owned, and hence
owns them both. Lastly, task_owned itself does not own anything, but certainly
rew_owned depends on it.

Ownership is important to know about, but it’s not a concept you encounter all that
often when working with Ray. The reason we brought it up in this context is that
worker processes need to track what they own. In fact, they possess a so-called owner‐
ship table exactly for that reason. If a task fails and needs to be recomputed, the
worker already owns all the information it needs to do so. On top of that, workers
also have an in-process store for small objects, which has a default limit of 100KB.
Workers have that store so that small data can be directly accessed and stored without
incurring communication overhead with the Raylet object store, which is reserved for
large objects.
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8 In fact, it could have multiple drivers, but this is inessential for our discussion.

To sum up this discussion about worker nodes, figure Figure 2-2 gives you an over‐
view of all involved components.

Figure 2-2. The system components comprising a Ray worker node.

The Head Node
We’ve already indicated in ??? that each Ray cluster has one special node called head
node. So far you know that this is the node that has the driver process8. Drivers can
submit tasks themselves, but can’t execute them. You also know that the head node
can have some worker processes, which is important to be able to run local clusters
constisting of a single node. In other words, the head node has everything a worker
node has (including a Raylet), but it also has a driver process.

Additionally, the head node comes with a component called Global Control Store
(GCS). The GCS is a key-value store currently implemented in Redis. It’s an impor‐
tant component that carries global information about the cluster, such as system-level
metadata. For instance, it has a table with heart beat signals for each Raylet, to ensure
they are still reachable. Raylets, in turn, send heart beat signals to the GCS to indicate
that they are alive. The GCS also stores the locations of Ray actors and large objects in
respective tables, and knows about the dependencies between objects.

Understanding Ray System Components | 45



Distributed Scheduling and Execution
Let’s briefly talk about cluster orchestration and how nodes manage, plan and execute
tasks. When talking about worker nodes, we’ve indicated that there are several com‐
ponents to distributing workloads with Ray. Here’s an overview of the steps and intri‐
cacies involved in this process.

• Distributed memory: The object stores of individual Raylets share their memory
on a node. But sometimes data needs to be transferred between nodes, which is
called distributed object transfer. This is needed for remote dependency resolu‐
tion, so that workers have the data they need to run tasks.

• Communication: Most of the communication in a Ray cluster, such as object
transfer, takes place via the gRPC protocol.

• Resource management and fulfillment: On a node, Raylets are responsible to
grant resources and lease worker processes to task owners. All schedulers across
nodes form the distributed scheduler. Through communication with the GCS,
local schedulers know about other nodes’ resources.

• Task execution: Once a task has been submitted for execution, all its dependen‐
cies (local and remote data) need to be resolved, e.g. by retrieving large data from
the object store, before execution can begin.

If the last few sections seem a bit involved technically, that’s because they are. In my
view it’s important to understand the basic patterns and ideas of the software you’re
using, but I’ll admit that the details of Ray’s architecture can be a bit tough to wrap
your head around in the beginning. In fact, it’s one of Ray’s design principles to trade-
off usability for architectural complexity. If you want to delve deeper into Ray’s archi‐
tecture, a good place to start is their architecture white paper.

To wrap things up, let’s summarize all we know in a concise architecture overview
with figure Figure 2-3:
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Figure 2-3. An overview of Ray’s architectural components.
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Systems related to Ray.

With the architecture and functionality of it in mind, how does Ray
relate to other systems? We’re not going into the details here, but
just touch on the most important topics in broad strokes. Ray can
be used as a parallelization framework for Python, and shares
properties with tools like celery or multiprocessing. In fact,
there’s a drop-in replacement for the latter implemented in Ray.
Ray is also related to data processing frameworks such as Spark,
Dask, Flink or MARS. We’ll explore this relationship in ???, when
talking about Ray’s ecosystem. As a distributed computing tool,
Ray also has to deal with the problems of cluster management and
orchestration, and we’ll see how Ray does that in relation to tools
like Kubernetes in ???. Since Ray is implementing the actor model
of concurrency, it’s also interesting to explore its relationship with
frameworks like Akka. Lastly, since Ray banks on a performant,
low-level API for communication, there’s a certain relationship
with high-performance computing (HPC) frameworks and com‐
munication protocols like the message passing interface (MPI).

Summary
You’ve seen the basics of the Ray API in action in this chapter. You know how to put
data to the object store, and how to get it back. Also, you’re familiar with declaring
Python functions as Ray tasks with the @ray.remote decorator, and you know how to
run them on a Ray cluster with the .remote() call. In much the same way, you under‐
stand how to declare a Ray actor from a Python class, how to instantiate it and lever‐
age it for stateful, distributed computations.

On top of that, you also know the basics of Ray clusters. After starting them with
ray.init(...) you know that you can submit jobs consisting of tasks to your cluster.
The driver process, sitting on the head node, will then distribute the tasks to the
worker nodes. Raylets on each node will schedule the tasks and worker processes will
execute them. This quick tour through Ray core should get you started with writing
your own distributed programs, and in the next chapter we’ll test your knowledge by
implementing a basic machine learning application together.
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CHAPTER 3

Building Your First Distributed Application

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

Now that you’ve seen the basics of the Ray API in action, let’s build something more
realistic with it. By the end of this comparatively short chapter, you will have built a
reinforcement learning (RL) problem from scratch, implemented your first algorithm
to tackle it, and used Ray tasks and actors to parallelize this solution to a local cluster
— all in less than 250 lines of code.

This chapter is designed to work for readers who don’t have any experience with rein‐
forcement learning. We’ll work on a straightforward problem and develop the neces‐
sary skills to tackle it hands-on. Since chapter Chapter 4 is devoted entirely to this
topic, we’ll skip all advanced RL topics and language and just focus on the problem at
hand. But even if you’re a quite advanced RL user, you’ll likely benefit from imple‐
menting a classical algorithm in a distributed setting.

This is the last chapter working only with Ray Core. I hope you learn to appreciate
how powerful and flexible it is, and how quickly you can implement distributed
experiments, that would otherwise take considerable efforts to scale.
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Setting Up A Simple Maze Problem
As with the chapters before, I encourage you to code this chapter with me and build
this application together as we go. In case you don’t want to do that, you can also sim‐
ply follow the notebook for this chapter.

To give you an idea, the app we’re building is structured as follows:

• You implement a simple 2D-maze game in which a single player can move
around in the four major directions.

• You initialize the maze as a 5x5 grid to which the player is confined.
• One of the 25 grid cells is the “goal” that a player called the “seeker” must reach.
• Instead of hard-coding a solution, you will employ a reinforcement learning

algorithm, so that the seeker learns to find the goal.
• This is done by repeatedly running simulations of the maze, rewarding the seeker

for finding the goal and smartly keeping track of which decisions of the seeker
worked and which didn’t.

• As running simulations can be parallelized and our RL algorithm can also be
trained in parallel, we utilize the Ray API to parallelize the whole process.

We’re not quite ready to deploy this application on an actual Ray cluster comprised of
multiple nodes just yet, so for now we’ll continue to work with local clusters. If you’re
interested in infrastructure topics and want to learn how to set up Ray clusters, jump
ahead to ???, and to see a fully deployed Ray application you can go to ???.

Let’s start by implementing the 2D maze we just sketched. The idea is to implement a
simple grid in Python that spans a 5x5 grid starting at (0, 0) and ending at (4, 4)
and properly define how a player can move around the grid. To do this, we first need
an abstraction for moving in the four cardinal directions. These four actions, namely
moving up, down, left, and right, can be encoded in Python as a class we call Dis
crete. The abstraction of moving in several discrete actions is so useful that we’ll
generalize it to n directions, instead of just four. In case you’re worried, this is not
premature - we’ll actually need a general Discrete class in a moment.

Example 3-1.

import random

class Discrete:
    def __init__(self, num_actions: int):
        """ Discrete action space for num_actions.
        Discrete(4) can be used as encoding moving in one of the cardinal directions.
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        """
        self.n = num_actions

    def sample(self):
        return random.randint(0, self.n - 1)  

space = Discrete(4)
print(space.sample())  

A discrete action can be uniformly sampled between 0 and n-1.

For instance, a Discrete(4) sample will give you 0, 1, 2, or 3.

Sampling from a Discrete(4) like in this example will randomly return 0, 1, 2, or 3.
How we interpret these numbers is up to us, so let’s say we go for “down”, “left”,
“right”, and “up” in that order.

Now that we know how to encode moving around the maze, let’s code the maze itself,
including the goal cell and the position of the seeker player that tries to find the
goal. To this end we’re going to implement a Python class called Environment. It’s
called that, because the maze is the environment in which the player “lives”. To make
matters easy, we’ll always put the seeker at (0, 0) and the goal at (4, 4). To make
the seeker move and find its goal, we initialize the Environment with an
action_space of Discrete(4).

There is one last bit of information we need to set up for our maze environment,
namely an encoding of the seeker position. The reason for that is that we’re going to
implement an algorithm later that keeps track of which actions led to good results for
which seeker positions. By encoding the seeker position as a Discrete(5*5), it
becomes a single number that’s much easier to work with. In RL lingo it is common
to call the information of the game that is accessible to the player an observation. So,
in analogy to the actions we can carry out for our seeker, we can also define an
observation_space for it. Here’s the implementation of what we’ve just discussed:

Example 3-2.

import os

class Environment:

    seeker, goal = (0, 0), (4, 4)  
    info = {'seeker': seeker, 'goal': goal}

    def __init__(self,  *args, **kwargs):
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        self.action_space = Discrete(4)  
        self.observation_space = Discrete(5*5)  

The seeker gets initialized in the top left, the goal in the bottom right of the
maze.

Our seeker can move down, left, up and right.

And it can be in a total of 25 states, one for each position on the grid.

Note that we defined an info variable as well, which can be used to print information
about the current state of the maze, for instance for debugging purposes. To play an
actual game of find-the-goal from the perspective of the seeker, we have to define a
few helper methods. Clearly, the game should be considered “done” when the seeker
finds the goal. Also, we should reward the seeker for finding the goal. And when the
game is over, we should be able to reset it to its initial state, to play again. To round
things off, we also define a get_observation method that returns the encoded
seeker position. Continuing our implementation of the Environment class, this
translates into the following four methods.

Example 3-3.

    def reset(self):  
        """Reset seeker and goal positions, return observations."""
        self.seeker = (0, 0)
        self.goal = (4, 4)

        return self.get_observation()

    def get_observation(self):
        """Encode the seeker position as integer"""
        return 5 * self.seeker[0] + self.seeker[1]  

    def get_reward(self):
        """Reward finding the goal"""
        return 1 if self.seeker == self.goal else 0  

    def is_done(self):
        """We're done if we found the goal"""
        return self.seeker == self.goal  

To play a new game, we’ll have to reset the grid to its original state.

Converting the seeker tuple to a value from the environment’s observa
tion_space.

The seeker is only rewarded when reaching the goal.
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If the seeker is at the goal, the game is over.

The last essential method to implement is the step method. Imagine you’re playing
our maze game and decide to go right as your next move. The step method will take
this action (namely 3, the encoding of “right”) and apply it to the internal state of the
game. To reflect what changed, the step method will then return the seeker’s observa‐
tions, its reward, whether the game is over, and the info value of the game. Here’s
how the step method works:

Example 3-4.

    def step(self, action):
        """Take a step in a direction and return all available information."""
        if action == 0:  # move down
            self.seeker = (min(self.seeker[0] + 1, 4), self.seeker[1])
        elif action == 1:  # move left
            self.seeker = (self.seeker[0], max(self.seeker[1] - 1, 0))
        elif action == 2:  # move up
            self.seeker = (max(self.seeker[0] - 1, 0), self.seeker[1])
        elif action == 3:  # move right
            self.seeker = (self.seeker[0], min(self.seeker[1] + 1, 4))
        else:
            raise ValueError("Invalid action")

        return self.get_observation(), self.get_reward(), self.is_done(), self.info  

After taking a step in the specified direction, we return observation, reward,
whether we’re done, and any additional information we might find useful.

I said the step method was the last essential method, but we actually want to define
one more helper method that’s extremely helpful to visualize the game and help us
understand it. This render method will print the current state of the game to the
command line.

Example 3-5.

    def render(self, *args, **kwargs):
        """Render the environment, e.g. by printing its representation."""
        os.system('cls' if os.name == 'nt' else 'clear')  
        grid = [['| ' for _ in range(5)] + ["|\n"] for _ in range(5)]
        grid[self.goal[0]][self.goal[1]] = '|G'
        grid[self.seeker[0]][self.seeker[1]] = '|S'  
        print(''.join([''.join(grid_row) for grid_row in grid]))  

First we clear the screen.
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Then we draw the grid and mark the goal as G and the seeker as S on it.

The grid then gets rendered by printing it to your screen.

Great, now we have completed the implementation of our Environment class that’s
defining our 2D-maze game. We can step through this game, know when it’s done
and reset it again. The player of the game, the seeker, can also observe its environ‐
ment and gets rewarded for finding the goal.

Let’s use this implementation to play a game of find-the-goal for a seeker that simply
takes random actions. This can be done by creating a new Environment, sampling
and applying actions to it, and rendering the environment until the game is over:

Example 3-6.

import time

environment = Environment()

while not environment.is_done():
    random_action = environment.action_space.sample()  
    environment.step(random_action)
    time.sleep(0.1)
    environment.render()  

We can test our environment by applying sampled actions until we’re done.

To visualize the environment we render it after waiting for a tenth of a second
(otherwise the code runs too fast to follow).

If you run this on your computer, eventually you’ll see that the game is over and the
seeker has found the goal. It might take a while if you’re unlucky.

In case you’re objecting that this is an extremely simple problem, and to solve it all
you have to do is take at total of 8 steps, namely going right and down four times each
in arbitrary order, I’m not arguing with you. The point is that we want to tackle this
problem using machine learning, so that we can take on much harder problems later.
Specifically, we want to implement an algorithm that figures out on its own how to
play the game, merely by playing the game repeatedly: observing what’s happening,
deciding what to do next, and getting rewarded for your actions.

If you want to, now is a good time to make the game more complex yourself. As long
as you do not change the interface we defined for the Environment class, you could
modify this game in many ways. Here are a few suggestions:

• Make it a 10x10 grid or randomize the initial position of the seeker.
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• Make the outer walls of the grid dangerous. Whenever you try to touch them,
you’ll incur a reward of -100, i.e a steep penalty.

• Introduce obstacles in the grid that the seeker cannot pass through.

If you’re feeling really adventurous, you could also randomize the goal position. This
requires extra care, as currently the seeker has no information about the goal position
in terms of the get_observation method. Maybe come back to tackling this last exer‐
cise after you’ve finished reading this chapter.

Building a Simulation
With the Environment class implemented, what does it take to tackle the problem of
“teaching” the seeker to play the game well? How can it find the goal consistently in
the minimum number of 8 steps necessary? We’ve equipped the maze environment
with reward information, so that the seeker can use this signal to learn to play the
game. In reinforcement learning, you play games repeatedly and learn from the expe‐
rience you made in the process. The player of the game is often referred to as agent
that takes actions in the environment, observes its state and receives a reward.1 The
better an agent learns, the better it becomes at interpreting the current game state
(observations) and finding actions that lead to more rewarding outcomes.

Regardless of the RL algorithm you want to use (in case you know any), you need to
have a way of simulating the game repeatedly, to collect experience data. For this rea‐
son we’re going to implement a simple Simulation class in just a bit.

The other useful abstraction we need to proceed is that of a Policy, a way of specify‐
ing actions. Right now the only thing we can do to play the game is sampling random
actions for our seeker. What a Policy allows us to do is to get better actions for the
current state of the game. In fact, we define a Policy to be a class with a get_action
method that takes a game state and returns an action.

Remember that in our game the seeker has a total of 25 possible states on the grid,
and can carry out 4 actions. A simple idea would be to look at pairs of states and
actions and assign a high value to a pair if carrying out this action in this state will
lead to a high reward, and a low value otherwise. For instance, from your intuition of
the game it should be clear that going down or right is always a good idea, whereas
going left or up is not. Then, create a 25x4 lookup table of all possible state-action
pairs and store it in our Policy. Then we could simply ask our policy to return the
highest value of any action given a state. Of course, implementing an algorithm that
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finds good values for these state-action pairs is the challenging part. Let’s implement
this idea of a Policy in first and worry about a suitable algorithm later.

Example 3-7.

class Policy:

    def __init__(self, env):
        """A Policy suggests actions based on the current state.
        We do this by tracking the value of each state-action pair.
        """
        self.state_action_table = [
            [0 for _ in range(env.action_space.n)]for _ in range(env.observation_space.n)  
        ]
        self.action_space = env.action_space

    def get_action(self, state, explore=True, epsilon=0.1):  
        """Explore randomly or exploit the best value currently available."""
        if explore and random.uniform(0, 1) < epsilon:  
            return self.action_space.sample()
        return np.argmax(self.state_action_table[state])

We define a nested list of values for each state-action pair, initialized to zero.

On demand, we can explore random actions so that we don’t get stuck in subop‐
timal behavior.

Sometimes we might want to randomly explore actions in the game, which is
why we introduce an explore parameter to the get_action method. By default,
this happens 10% of the time.

We return the action with the highest value in the lookup table, given the current
state.

I’ve snuck in a little implementation detail into the Policy definition that might be a
bit confusing. The get_action method has an explore parameter. The reason for this
is that if you learn an extremely poor policy, e.g. one that always wants you to move
left, you have no chance of ever finding better solutions. In other words, sometimes
you need to explore new ways, and not “exploit” your current understanding of the
game. As indicated before, we haven’t discussed how to learn to improve the values in
the state_action_table of our policy. For now, just keep in mind that the policy
gives us the actions we want to follow when simulating the maze game.

Moving on to the Simulation class we spoke about earlier, a simulation should take
an Environment and compute actions of a given Policy until the goal is reached and
the game ends. The data we observe when “rolling out” a full game like this is what
we call the experience we gained. Accordingly, our Simulation class has a rollout
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method that computes experiences for a full game and returns them. Here’s what the
implementation of the Simulation class looks like:

Example 3-8.

class Simulation(object):
    def __init__(self, env):
        """Simulates rollouts of an environment, given a policy to follow."""
        self.env = env

    def rollout(self, policy, render=False, explore=True, epsilon=0.1):  
        """Returns experiences for a policy rollout."""
        experiences = []
        state = self.env.reset()  
        done = False
        while not done:
            action = policy.get_action(state, explore, epsilon)  
            next_state, reward, done, info = self.env.step(action)  
            experiences.append([state, action, reward, next_state])  
            state = next_state
            if render:  
                time.sleep(0.05)
                self.env.render()

        return experiences

We compute a game “roll-out” by following the actions of a policy, and we can
optionally render the simulation.

To be sure, we reset the environment before each rollout.

The passed in policy drives the actions we take. The explore and epsilon
parameters are passed through.

We step through the environment by applying the policy’s action.

We define an experience as a (state, action, reward, next_state) quadru‐
ple.

Optionally render the environment at each step.

Note that each entry of the experiences we collect in a rollout consists of four val‐
ues: the current state, the action taken, the reward received, and the next state. The
algorithm we’re going to implement in a moment will use these experiences to learn
from them. Other algorithms might use other experience values, but those are the
ones we need to proceed.
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Now we have a policy that hasn’t learned anything just yet, but we can already test its
interface to see if it works. Let’s try it out by initializing a Simulation object, calling
its rollout method on a not-so-smart Policy, and then printing the
state_action_table of it:

Example 3-9.

untrained_policy = Policy(environment)
sim = Simulation(environment)

exp = sim.rollout(untrained_policy, render=True, epsilon=1.0)  
for row in untrained_policy.state_action_table:
    print(row)  

We roll-out one full game with an “untrained” policy that we render.

The state-action values are currently all zero.

If you feel like we haven’t made much progress since the last section, I can promise
you that things will come together in the next one. The prep work of setting up a
Simulation and a Policy were necessary to frame the problem correctly. Now the
only thing that’s left is to devise a smart way to update the internal state of the Policy
based on the experiences we’ve collected, so that it actually learns to play the maze
game.

Training a Reinforcement Learning Model
Imagine we have a set of experiences that we’ve collected from a couple of games.
What would be a smart way to update the values in the state_action_table of our
Policy? Here’s one idea. Let’s say you’re sitting at position (3,5), and you’ve decided
to go right, which puts you at (4,5), just one step away from the goal. Clearly you
could then just go right and collect a reward of 1 in this scenario. That must mean the
current state you’re in combined with an action of going “right” should have a high
value. In other words, the value of this particular state-action pair should be high. In
contrast, moving left in the same situation does not lead to anything, and the corre‐
sponding state-action pair should have a low value.

More generally, let’s say you were in a given state, you’ve decided to take an action,
leading to a reward, and you’re then in next_state. Remember that this is how we
defined an experience. With our policy.state_action_table we can peek a little
ahead and see if we can expect to gain anything from actions taken from next_state.
That is, we can compute

next_max = np.max(policy.state_action_table[next_state])
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How should we compare the knowledge of this value to the current state-action value,
which is value = policy.state_action_table[state][action]? There are many
ways to go about this, but we clearly can’t completely discard the current value and
put too much trust in next_max. After all, this is just a single piece of experience we’re
using here. So as a first approximation, why don’t we simply compute a weighted sum
of the old and the expected value and go with new_value = 0.9 * value + 0.1 *
next_max? Here, the values 0.9 and 0.1 have been chosen somewhat arbitrarily, the
only important piece is that the first value is high enough to reflect our preference to
keep the old value, and that both weights sum to 1. That formula is a good starting
point, but the problem is that we’re not at all factoring in the crucial information that
we’re getting from the reward. In fact, we should put more trust in the current reward
value than in the projected next_max value, so it’s a good idea to discount the latter a
little, let’s say by 10%. Updating the state-action value would then look like this:

new_value = 0.9 * value + 0.1 * (reward + 0.9 * next_max)

Depending on your level of experience with this kind of reasoning, the last few para‐
graphs might be a lot to digest. The good thing is that, if you’ve understood the
explanations up to this point, the remainder of this chapter will likely come easy to
you. Mathematically, this was the last (and only) hard part of this example. If you’ve
worked with RL before, you will have noticed by now that this is an implementation
of the so-called Q-Learning algorithm. It’s called that, because the state-action table
can be described as a function Q(state, action) that returns values for these pairs.

We’re almost there, so let’s formalize this procedure by implementing an update_pol
icy function for a policy and collected experiences:

Example 3-10.

import numpy as np

def update_policy(policy, experiences):
    """Updates a given policy with a list of (state, action, reward, state) experiences."""
    weight = 0.1
    discount_factor = 0.9
    for state, action, reward, next_state in experiences:  
        next_max = np.max(policy.state_action_table[next_state])  
        value = policy.state_action_table[state][action]  
        new_value = (1 - weight) * value + weight * (reward + discount_factor * next_max)  
        policy.state_action_table[state][action] = new_value  

We loop through all experiences in order.

Then we choose the maximum value among all possible actions in the next state.
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We then extract the current state-action value.

The new value is the weighted sum of the old value and the expected value, which
is the sum of the current reward and the discounted next_max.

After updating, we set the new state_action_table value.

Having this function in place now makes it really simple to train a policy to make bet‐
ter decisions. We can use the following procedure:

• Initialize a policy and a simulation.
• Run the simulation many times, let’s say for a total of 10000 runs.
• For each game, first collect the experiences by running a rollout.
• Then update the policy by calling update_policy on the collected experiences.

That’s it! The following train_policy function implements the above procedure
straight up.

Example 3-11.

def train_policy(env, num_episodes=10000):
    """Training a policy by updating it with rollout experiences."""
    policy = Policy(env)
    sim = Simulation(env)
    for _ in range(num_episodes):
        experiences = sim.rollout(policy)  
        update_policy(policy, experiences)  

    return policy

trained_policy = train_policy(environment)  

Collect experiences for each game.

Update our policy with those experiences.

Finally, train and return a policy for our enviroment from before.

Note that the high-brow way of speaking of a full play-through of the maze game is
an episode in the RL literature. That’s why we call the argument num_episodes in the
train_policy function, rather than num_games.
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Q-Learning
The Q-Learning algorithm we just implemented is often the first algorithm taught in
RL classes, mostly because it is relatively easy to reason about. You collect and tabu‐
late experience data that shows you how well state-action pairs work, and update the
table according to the Q-learning update rule.

For RL problems that either have a huge number of states or actions, the Q-table can
become excessively large. The algorithm then becomes inefficient, because it would
take too much time to collect enough experience data for all (relevant) state-action
pairs.

One way to address this issue is to use a neural network to approximate the Q-table.
By this we mean that you can employ a deep neural network to learn a function that
maps states to actions. This approach is called Deep Q-Learning and the networks
used for learning are called Deep Q-Networks (DQN). From Chapter 4 on out we will
exclusively use deep learning to tackle RL problems in this book.

Now that we have a trained policy, let’s see how well it performs. We’ve run random
policies twice before in this chapter, just to get an idea of how well they work for the
maze problem. But let’s now properly evaluate our trained policy on several games
and see how it does on average. Specifically, we’ll run our simulation for a couple of
episodes and count how many steps it took per episode to reach the goal. So, let’s
implement an evaluate_policy function that does precisely that:

Example 3-12.

def evaluate_policy(env, policy, num_episodes=10):
    """Evaluate a trained policy through rollouts."""
    simulation = Simulation(env)
    steps = 0

    for _ in range(num_episodes):
        experiences = simulation.rollout(policy, render=True, explore=False)  
        steps += len(experiences)  

    print(f"{steps / num_episodes} steps on average "
          f"for a total of {num_episodes} episodes.")

evaluate_policy(environment, trained_policy)

This time we set explore to False to fully exploit the learnings of the trained
policy.

The length of the experiences is the number of steps we took to finish the game.
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Apart from seeing the trained policy crush the maze problem ten times in a row, as
we hoped it would, you should also see the following prompt:

8.0 steps on average for a total of 10 episodes.

In other words, the trained policy is able to find optimal solutions for the maze game.
That means you’ve successfully implemented your first RL algorithm from scratch!

With the understanding you’ve built up by now, do you think placing the seeker into
randomized starting positions and then running this evaluation function would still
work? Why don’t you go ahead and make the changes necessary for that?

Another interesting question to ask yourself is what assumptions went into the algo‐
rithm we used. For instance, it’s clearly a prerequisite for the algorithm that all state-
action pairs can be tabulated. Do you think this would still work well if we had
millions of states and thousands of actions?

Building a Distributed Ray App
Let’s take a step back here. If you’re an RL expert, you’ll know what we’ve been doing
the whole time. If you’re completely new to RL, you might just be a little over‐
whelmed. If you’re somewhere in between, you hopefully like the example but might
be wondering how what we’ve done so far relates to Ray. That’s a great question. As
you’ll see shortly, all we need to make the above RL experiment a distributed Ray app
is writing three short code snippets. This is what we’re going to do:

• We create a Ray task that can initialize a Policy remotely.
• Then we make the Simulation a Ray actor in just a few lines of code.
• After that we wrap the update_policy function in a Ray task.
• Finally, we define a parallel version of train_policy that’s structurally identical

to its original version.

Let’s tackle the first two steps of this plan by implementing a create_policy task and
a Ray actor called SimulationActor:

Example 3-13.

import ray

ray.init()
environment = Environment()
env_ref = ray.put(environment)  

@ray.remote
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def create_policy():
    env = ray.get(env_ref)
    return Policy(env)  

@ray.remote
class SimulationActor(Simulation):  
    """Ray actor for a Simulation."""
    def __init__(self):
        env = ray.get(env_ref)
        super().__init__(env)

After initializing it, we put our environment into the Ray object store.

This remote task returns a new Policy object.

This Ray actor wraps our Simulation class in a straightforward way.

With the foundations on Ray Core you’ve developed in chapter Chapter 2 you should
have no problems reading this code. It might take some getting used to writing it
yourself, but conceptually you should be on top of this example.

Moving on, let’s define a distributed update_policy_task Ray task and then wrap
everything (two tasks and one actor) in a train_policy_parallel function that dis‐
tributes this RL workload on your local Ray cluster:

Example 3-14.

@ray.remote
def update_policy_task(policy_ref, experiences_list):
    """Remote Ray task for updating a policy with experiences in parallel."""
    [update_policy(policy_ref, ray.get(xp)) for xp in experiences_list]  
    return policy_ref

def train_policy_parallel(num_episodes=1000, num_simulations=4):
    """Parallel policy training function."""
    policy = create_policy.remote()  
    simulations = [SimulationActor.remote() for _ in range(num_simulations)]  

    for _ in range(num_episodes):
        experiences = [sim.rollout.remote(policy) for sim in simulations]  
        policy = update_policy_task.remote(policy, experiences)  

    return ray.get(policy)  

This task defers to the original update_policy function by passing a reference to
a policy and experiences retrieved from the object store.
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To train in parallel, we first create a policy remotely, which returns a reference we
call policy.

Instead of one simulation, we create four simulation actors.

Experiences now get collected from remote roll-outs on simulation actors.

Then we can update our policy remotely. Note that experiences is a nested list of
experiences.

Finally, we return the trained policy by retrieving it from the object store again.

This allows us to take the last step and run the training procedure in parallel and then
evaluate the resulting as before.

Example 3-15.

parallel_policy = train_policy_parallel()
evaluate_policy(environment, parallel_policy)

The result of those two lines is the same as before, when we ran the serial version of
the RL training for the maze. I hope you appreciate how train_policy_parallel has
the exact same high-level structure as train_policy. It’s a good exercise to compare
the two line-by-line. Essentially, all it took to parallelize the training process was to
use the ray.remote decorator three times in a suitable way. Of course, you need some
experience to get this right. But notice how little time we spent on thinking about dis‐
tributed computing, and how much time we could spend on the actual application
code. We didn’t need to adopt an entirely new programming paradigm and could
simply approach the problem in the most natural way. Ultimately, that’s what you
want — and Ray is great at giving you this kind of flexibility.

To wrap things up, let’s have a quick look at the task execution graph of the Ray appli‐
cation that we’ve just built. To recap, what we did was:

• The train_policy_parallel function creates several SimulationActor actors
and a policy with create_policy

• The simulation actors create roll-outs with the policy and thereby collect experi‐
ences that update_policy_task uses to update the policy.

• This works, because of the way updating the policy is designed. It doesn’t matter
if the experiences were collected by one or multiple simulations.

• The rolling out and updating continues until we reached the number of episodes
we wante to train for, then the final trained_policy is returned.

64 | Chapter 3: Building Your First Distributed Application



Figure Figure 3-1 summarizes this task graph in a compact way:
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Figure 3-1. Parallel training of a reinforcement learning policy with Ray.
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An interesting side note about the running example of this chapter is that it’s an
implementation of the pseudo-code example used to illustrate the flexibility of Ray in
the initial paper by its creators. That paper has a figure similar to Figure 3-1 and is
worth reading for context.

Recapping RL terminology
Before we wrap up this chapter, let’s discuss the concepts we’ve encountered in the
maze example in a broader context. Doing so will prepare you for more complex RL
settings in the next chapter and show you where we simplified things a little for the
running example of this chapter.

Every RL problem starts with the formulation of an environment, which describes the
dynamics of the “game” you want to play. The environment hosts a player or agent
which interacts with its environment through a simple interface. The agent can
request information from the environment, namely its current state within the envi‐
ronment, the reward it has received in this state, and whether the game is done or not.
In observing states and rewards, the agent can learn to make decisions based on the
information it receives. Specifically, the agent will emit an action that can be executed
by the environment by taking the next step.

The mechanism used by an agent to produce actions for a given state is called a pol‐
icy, and we will sometimes say that the agent follows a given policy. Given a policy, we
can simulate or roll-out a few steps or an entire game using said policy. During a roll-
out we can collect experiences, which we collect information about the current state
and reward, the next action and the resulting state. An entire sequence of steps from
start to finish is referred to as an episode, and the environment can be reset to its
initial state to start a new episode.

The policy we used in this chapter was based on the simple idea of tabulating state-
action values (also called Q-values), and the algorithm used to update the policy from
the experiences collected during roll-outs is called Q-learning. More generally, you
can consider the state-action table we implemented as the model used by the policy.
In the next chapter you will see examples of more complex models, such as a neural
network to learn state-action values. The policy can decide to exploit what it has
learnt about the environment by choosing the best available value of its model, or
explore the environment by choosing a random action.

Many of the basic concepts introduced here hold for any RL problem, but we’ve made
a few simplifying assumptions. For instance, there could be multiple agents acting in
the environment (imagine having multiple seekers competing for reaching the goal
first), and we’ll look into so-called multi-agent environments and multi-agent RL and
in the next chapter. Also, we assumed that the action space of an agent was discrete,
meaning that the agent could only take a fixed set of actions. You can, of course, also
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have continuous action spaces, and the pendulum example from ??? is one example of
this. Especially when you have multiple agents, action spaces can be more compli‐
cated, and you might need tuples of actions or even nest them accordingly. The obser‐
vation space we’ve considered for the maze game was also quite simple, and was
modeled as a discrete set of states. You can easily imagine that complex agents like
robots interacting with their environments might work with image or video data as
observations, which would require a more complex observation space, too.

Another crucial assumption we made is that the environment is deterministic, mean‐
ing that when our agent chose to take an action, the resulting state would always
reflect that choice. In general environments this is not the case, and there can be ele‐
ments of randomness at play in the environment. For instance, we could have imple‐
mented a coin flip in the maze game and whenever tails came up, the agent would get
pushed in a random direction. In that scenario, we couldn’t have planned ahead like
we did in this chapter, as actions would not deterministically lead to the same next
state every time. To reflect this probabilistic behavior, in general we have to account
for state transition probabilities in our RL experiments.

And the last simplifying assumption I’d like to talk about here is that we’ve been treat‐
ing the environment and its dynamics as a game that can be perfectly simulated. But
the fact is that there are physical systems that can’t be faithfully simulated. In that case
you might still interact with this physical environment through an interface like the
one we defined in our Environment class, but there would be some communication
overhead involved. In practice, I find that reasoning about RL problems as if they
were games takes very little away from the experience.

Summary
To recap, we’ve implemented a simple maze problem in plain Python and then solved
the task of finding the goal in that maze using a straightforward reinforcement learn‐
ing algorithm. We then took this solution and ported it to a distributed Ray applica‐
tion in roughly 25 lines of code. We did so without having to plan how to work with
Ray — we simply used the Ray API to parallelize our Python code. This example
shows how Ray gets out of your way and lets you focus on your application code. It
also demonstrates how custom workloads that use advanced techniques like RL can
be efficiently implemented and distributed with Ray.

In the next chapter, you’ll build on what you’ve learned here and see how easy it is to
solve our maze problem directly with the higher-level Ray RLlib library.
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1 We simply used a simple game to illustrate the process of RL. There is a multitude of interesting industry
applications of RL that are not games.

CHAPTER 4

Reinforcement Learning with Ray RLlib

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

In the last chapter you’ve built a Reinforcement Learning (RL) environment, a simu‐
lation to play out some games, an RL algorithm, and the code to parallelize the train‐
ing of the algorithm - all completely from scratch. It’s good to know how to do all
that, but in practice the only thing you really want to do when training RL algorithms
is the first part, namely specifying your custom environment, the “game”1 you want to
play. Most of your efforts will then go into selecting the right algorithm, setting it up,
finding the best parameters for the problem, and generally focusing on training a
well-performing algorithm.

Ray RLlib is an industry-grade library for building RL algorithms at scale. You’ve seen
a first example of the RLlib in ??? already, but in this chapter we’ll go into much more
depth. The great thing about RLlib is that it’s a mature library for developers and
comes with good abstractions to work with. As you will see, many of these abstrac‐
tions you already know from the last chapter.

We start out this chapter by first giving you an overview of RLlib’s capabilities. Then
we quickly revisit the maze game from Chapter 3 and show you how to tackle it both
with the RLlib command line interface (CLI) and the RLlib Python API in a few lines
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of code. You’ll see how easy RLlib is to get started with before learning about its key
concepts, such as RLlib environments, algorithms, and trainers.

We’ll also take a closer look at some advanced RL topics that are extremely useful in
practice, but are not often properly supported in other RL libraries. For instance, you
will learn how to create a learning curriculum for your RL agents so that they can
learn simple scenarios first, before moving on to more complex ones. You will also
see how RLlib deals with having multiple agents in a single environment, and how to
leverage experience data that you’ve collected outside your current application to
improve your agent’s performance.

An Overview of RLlib
Before we dive into some examples, let’s take a quick overview of what RLlib is and
what it can do. As part of the Ray ecosystem, RLlib inherits all the performance and
scalability benefits of Ray. In particular, RLlib is distributed by default, so you can
scale out your RL training to as many nodes as you want. Other RL libraries can
potentially scale out experiments, but it’s usually not straightforward to do so.

Another benefit of being built on top of Ray is that RLlib integrates tightly with other
Ray libraries. For instance, all RLlib algorithms can be tuned with Ray Tune, as we
will see in ???, and you can seamlessly deploy your RLlib models with Ray Serve, as
we will discuss in ???.

What’s extremely useful is that RLlib works with both of the predominant deep learn‐
ing frameworks at the time of this writing, namely PyTorch and TensorFlow. You can
use either one of them as your backend and can easily switch between them, often by
just changing one line of code. That’s a huge benefit, as companies are often locked
into their underlying deep learning framework and can’t afford to switch to another
system and rewrite their code.

RLlib also has a track record of solving real-world problems and is a mature library
used by many companies to bring their RL workloads to production. I often recom‐
mend RLlib to engineers, because its API tends to appeal to them. One of the reasons
for that is that the RLlib API offers the right level of abstraction for many applica‐
tions, while still being flexible enough to be extended, if necessary.

Apart from these more general benefits, RLlib has a lot of RL specific features that we
will cover in this chapter. In fact, RLlib is so feature rich that it would deserve a book
on its own, so we can only touch on some aspects of it here. For instance, RLlib has a
rich library of advanced RL algorithms to choose from. In this chapter we will only
focus on a few select ones, but you can track the growing list of options on the RLlib
algorithms page. RLlib also has many options for specifying RL environments and is
very flexible in handling them during training, see for an overview of RLlib environ‐
ments.
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Getting Started With RLlib
To use RLlib, make sure you have installed it on your computer:

pip install "ray[rllib]"==1.9.0

As with every chapter in this book, if you don’t feel like following along by typing the
code yourself, you can check out the accompanying notebook for this chapter.

Every RL problem starts with having an interesting environment to investigate. In ???
we already looked at the classical pendulum balancing problem. Recall that we didn’t
implement this pendulum environment, it came out of the box with RLlib.

In contrast, in Chapter 3 we implemented a simple maze game on our own. The
problem with this implementation is that we can’t directly use it with RLlib, or any
other RL library for that matter. The reason is that in RL you have ubiquitous stand‐
ards for environments. Your environments need to implement certain interfaces. The
best known and most widely used library for RL environments is gym, an open-source
Python project from OpenAI.

Let’s have a look at what gym is and how to make our maze Environment from the last
chapter a gym environment compatible with RLlib.

Building A Gym Environment
If you look at the well-documented and easy to read gym.Env environment interface
on GitHub, you’ll notice that an implementation of this interface has two mandatory
class variables and three methods that subclasses need to implement. You don’t have
to check the source code, but I do encourage you to have a look. You might just be
surprised by how much you already know about gym environments.

In short, the interface of a gym environment looks like the following pseudo-code:

import gym

class Env:

    action_space: gym.spaces.Space
    observation_space: gym.spaces.Space  

    def step(self, action):  
        ...

    def reset(self):  
        ...

    def render(self, mode="human"):  
        ...
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The gym.Env interface has an action and an observation space.

The Env can run a step and returns a tuple of observations, reward, done condi‐
tion, and further info.

An Env can reset itself, which will return the current observations

We can render an Env for different purposes, like for human display or as string
representation.

If you’ve read Chapter 3 carefully, you’ll notice that this is very similar to the interface
of the maze Environment we built there. In fact, gym has a so-called Discrete space
implemented in gym.spaces, which means that we can make our maze Environment
a gym.Env as follows. We assume that you store this code in a file called
maze_gym_env.py and that the code for the Discrete space and the Environment
from Chapter 3 is either located at the top of that file (or is imported there).

# Original definition of `Environment` and `Discrete` go here.

import gym
from gym.spaces import Discrete  

class GymEnvironment(Environment, gym.Env):  
    def __init__(self, *args, **kwargs):
        """Make our original `Environment` a gym `Env`."""
        super().__init__(*args, **kwargs)

gym_env = GymEnvironment()

We override our own Discrete implementation with that of gym.

We then simply make our GymEnvironment implement a gym.Env. The interface is
essentially the same as before.

Of course, we could have made our original Environment implement gym.Env by sim‐
ply inheriting from it in the first place. But the point is that the gym.Env interface
comes up so naturally in the context of RL that it is a good exercise to implement it
without having to resort to external libraries.

Notably, the gym.Env interface also comes with helpful utility functionality and many
interesting example implementations. For instance, the Pendulum-v1 environment we
used in ??? is an example from gym, and there are many other environments available
to test your RL algorithms.
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Running the RLlib CLI
Now that we have our GymEnvironment implemented as a gym.Env, here’s how you
can use it with RLlib. You’ve seen the RLlib CLI in action in ??? before, but this time
the situation is a bit different. In the first chapter we simply referenced the Pendulum-
v1 environment from by name in a YAML file, along with other RL training configu‐
ration. This time around we want to bring our own gym environment class, namely
the class GymEnvironment that we defined in maze_gym_env.py. To specify this class
in Ray RLlib, you use the full qualifying name of the class from where you’re referenc‐
ing it, i.e. in our case maze_gym_env.GymEnvironment. If you had a more complicated
Python project and your environment is stored in another module, you’d simply add
the module name accordingly.

The following YAML file specifies the minimal configuration needed to train an RLlib
algorithm on the GymEnvironment class. To align as closely as possible with our
experiment from Chapter 3, in which we used Q-learning, we use DQN as the algo‐
rithm for our training run. Also, to make sure we can control the time of training, we
set an explicit stop condition, namely by setting timesteps_total to 10000.

# maze.yml
maze_env:
    env: maze_gym_env.GymEnvironment  
    run: DQN
    checkpoint_freq: 1 
    stop:
        timesteps_total: 10000  

We specify the relative Python path to our environment class here.

We store checkpoints of our model after each training iteration.

We can also specify a stopping condition for training, here a maximum of 10000
steps.

Assuming you store this configuration in a file called maze.yml you can now kick off
an RLlib training run by running the following train command:

 rllib train -f maze.yml

This single line of code basically takes care of everything we did in Chapter 3, but
better. It runs a more sophisticated version of Q-Learning for us (DQN), takes care of
scaling out to multiple workers under the hood, and even creates checkpoints of the
algorithm automatically for us.

From the output of that training script you should see that Ray will write training
results to a logdir directory located at ~/ray_results/maze_env. Within that folder
you’ll find another directory that starts with DQN_maze_gym_env.GymEnvironment_
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2 We should mention that the RLlib CLI uses Ray Tune under the hood, among many other things for check‐
pointing models. You will learn more about this integration in ???

and contains both an identifier for this experiment (0ae8d in my case) and the cur‐
rent date and time. Within that directory you should find several other subdirectories
starting with a checkpoint prefix. For the training run on my computer there are a
total of 10 checkpoints available and we’re using the last one (checkpoint_000010/
checkpoint-10) to evaluate our trained RLlib algorithm with it. With the folders and
checkpoints generated on my machine the rllib evaluate command you can use
reads as follows (adapt the checkpoint path to what you see on your machine):

rllib evaluate ~/ray_results/maze_env/DQN_maze_gym_env.Environment_0ae8d_00000_
0_2022-02-08_13-52-59/checkpoint_000010/checkpoint-10\
  --run DQN\
  --env maze_gym_env.Environment\
  --steps 100

The algorithm used in --run and the environment specified with --env have to
match the ones used in the training run, and we evaluate the trained algorithm for a
total of 100 steps. This should lead to output of the following form:

Episode #1: reward: 1.0
Episode #2: reward: 1.0
Episode #3: reward: 1.0
...
Episode #13: reward: 1.0

It should not come as a big surprise that the DQN algorithm from RLlib gets the maxi‐
mum reward of 1 for the simple maze environment we tasked it with every single
time.

Before moving on to the Python API of RLlib, it should be noted that the train and
evaluate CLI commands can come in handy even for more complex environments.
The YAML configuration can take any parameter the Python API would, so in that
sense there is no limit for training your experiments on the command line2.

Using the RLlib Python API
Having said that, you will likely spend most of your time coding your reinforcement
learning experiments in Python. In the end the RLlib CLI is merely a wrapper around
the underlying Python library that we’re going to look at now.

To run RL workloads with RLlib from Python, your main entrypoint is that of the
Trainer class. Specifically, for the algorithm of your choice you want to use the corre‐
sponding Trainer of it. In our case, since we decided to use Deep Q-Learning (DQN)
for demonstration purposes, we’ll use the DQNTrainer class.
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3 Of course, configuring your models is a crucial part of RL experiments. We will discuss configuration of RLlib
trainers in more detail in the next section.

Training RLlib models

RLlib has good defaults for all its Trainer implementations, meaning that you can
initialize them without having to tweak any configuration parameters for these train‐
ers3. For instance, to generate a DQN trainer you can simply use
DQNTrainer(env=GymEnvironment). That said, it’s worth noting that RLlib trainers
are highly configurable, as you will see in the following example. Specifically, we pass
a config dictionary to the Trainer constructor and tell it to use four workers in total.
What that means is that the DQNTrainer will spawn four Ray actors, each using a
CPU kernel, to train our DQN algorithm in parallel.

After you’ve initialized your trainer with the env you want to train on, and pass in the
config you want, you can simply call the train method. Let’s use this method to train
the algorithm for ten iterations in total:

from ray.tune.logger import pretty_print
from maze_gym_env import GymEnvironment
from ray.rllib.agents.dqn import DQNTrainer

trainer = DQNTrainer(env=GymEnvironment, config={"num_workers": 4})  

config = trainer.get_config()  
print(pretty_print(config))

for i in range(10):
    result = trainer.train()  

print(pretty_print(result))  

We use the DQNTrainer from RLlib to use Deep-Q-Networks (DQN) for training,
using 4 parallel workers (Ray actors).

Each Trainer has a complex default configuration.

We can then simply call the train method to train the agent for ten iterations.

With the pretty_print utility we can generate human-readable output of the
training results.

Note that the number 10 training iterations has no special meaning, but it should be
enough for the algorithm to learn to solve the maze problem adequately. The example
just goes to show you that you have full control over the training process.
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4 If you set num_workers to 0, only the local worker on the head node will be created, and all training is done
there. This is particularly useful for debugging, as no additional Ray actor processes are spawned.

From printing the config dictionary, you can verify that the num_workers parameter
is set to 44. Similarly, If you run this training script, the result contains detailed
information about the state of the Trainer and the training results that’s too verbose
to put here. The part that’s most relevant for us right now is information about the
reward of the algorithm, which hopefully indicates that the algorithm learned to solve
the maze problem. You should see output of the following form:

...
episode_reward_max: 1.0
episode_reward_mean: 1.0
episode_reward_min: 1.0
episodes_this_iter: 15
episodes_total: 19
...
timesteps_total: 10000
training_iteration: 10
...

In particular, this output shows that the minimum reward attained on average per
episode is 1.0, which in turn means that the agent always reached the goal and collec‐
ted the maximum reward (1.0).

Saving, loading and evaluating RLlib models
Reaching the goal for this simple example isn’t too hard, but let’s see if evaluating the
trained algorithm confirms that the agent can also do so in an optimal way, namely
by only taking the minimum number of eight steps to reach the goal.

To do so, we utilize another mechanism that you’ve already seen from the RLlib CLI,
namely checkpointing. Creating model checkpoints is very useful to ensure you can
recover your work in case of a crash, or simply to track training progress persistently.
You can simply create a checkpoint of your RLlib trainers at any point in the training
process by calling trainer.save(). Once you have a checkpoint, you can easily
restore your Trainer with it. And evaluating a model is as simple as calling
trainer.evaluate(checkpoint) with the checkpoint you created. Here’s how that
looks like if you put it all together:

checkpoint = trainer.save()  
print(checkpoint)

evaluation = trainer.evaluate(checkpoint)  
print(pretty_print(evaluation))
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restored_trainer = DQNTrainer(env=GymEnvironment)
restored_trainer.restore(checkpoint)  

You can save trainers to create checkpoints.

RLlib trainers can be evaluated at your checkpoints.

And you can also restore any Trainer from a given checkpoint.

I should mention that you can also just call trainer.evaluate() without creating a
checkpoint first, but it’s usually good practice to use checkpoints anyway. Looking at
the output, we can now confirm that the trained RLlib algorithm did indeed converge
to a good solution for the maze problem, as indicated by episodes of length 8 in eval‐
uation:

~/ray_results/DQN_GymEnvironment_2022-02-09_10-19-301o3m9r6d/checkpoint_000010/
checkpoint-10 evaluation:
  ...
  episodes_this_iter: 5
  hist_stats:
    episode_lengths:
    - 8
    - 8
    ...

Computing actions

RLlib trainers have much more functionality than just the train, evaluate, save and
restore methods we’ve seen so far. For example, you can directly compute actions
given the current state of an environment. In Chapter 3 we implemented episode roll‐
outs by stepping through an environment and collecting rewards. We can easily do
the same with RLlib for our GymEnvironment as follows:

env = GymEnvironment()
done = False
total_reward = 0
observations = env.reset()

while not done:
    action = trainer.compute_single_action(observations)  
    observations, reward, done, info = env.step(action)
    total_reward += reward

To compute actions for given observations use compute_single_action.

In case you should need to compute many actions at once, not just a single one, you
can use the compute_actions method instead, which takes dictionaries of observa‐
tions as input and produces dictionaries of actions with the same dictionary keys as
output.
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action = trainer.compute_actions({"obs_1": observations, "obs_2": observations})
print(action)
# {'obs_1': 0, 'obs_2': 1}

Accessing Policy and Model States
Remember that each reinforcement learning algorithm is based on a policy that choo‐
ses next actions given the current observations the agent has of the environment.
Each policy is in turn based on an underlying model.

In the case of vanilla Q-Learning that we discussed in Chapter 3 the model was a sim‐
ple look-up table of state-action values, also called Q-values. And that policy used this
model for predicting next actions in case it decided to exploit what the model had
learned so far, or to explore the environment with random actions otherwise.

When using Deep Q-Learning, the underlying model of the policy is a neural net‐
work that, loosely speaking, maps observations to actions. Note that for choosing
next actions in an environment, we’re ultimately we’re not interested in the concrete
values of the approximated Q-values, but rather in the probabilities of taking each
action. The probability distribution over all possible actions is called an action distri‐
bution. In the maze example we’re using here as a running examples we can move up,
right, down or left, so in that case an action distribution is a vector of four probabili‐
ties, one for each action.

To make things concrete, let’s have a look at how you access policies and models in
RLlib:

policy = trainer.get_policy()
print(policy.get_weights())

model = policy.model

Both policy and model have many useful methods to explore. In this example we use
get_weights to inspect the parameters of the model underlying the policy (which are
called “weights” by standard convention).

To convince you that there is in fact not just one model at play here, but in fact a col‐
lection of four models that we trained on separate Ray workers, we can access all the
workers we used in training - and then ask each worker’s policy for their weights like
this:

workers = trainer.workers
workers.foreach_worker(lambda remote_trainer: remote_trainer.get_policy().get_weights())

In this way, you can access every method available on a Trainer instance on each of
your workers. In principle, you can use this to set model parameters as well, or other‐
wise configure your workers. RLlib workers are ultimately Ray actors, so you can
alter and manipulate them in almost any way you like.
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5 If you want to learn more about customizing your RLlib models, check out the guide to custom models on the
Ray documentation.

We haven’t talked about the specific implementation of Deep Q-Learning used in
DQNTrainer, but the model used is in fact a bit more complex than what I’ve described
so far. Every RLlib model obtained from a policy has a base_model that has a neat
summary method to describe itself:

model.base_model.summary()

As you can see from the output below, this model takes in our observations. The
shape of these observations is a bit strangely annotated as [(None, 25)], but essen‐
tially this just means we have the expected 5*5 maze grid values correctly encoded.
The model follows up with two so-called Dense layers and predicts a single value at
the end.

Model: "model"
____________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to
====================================================================================
observations (InputLayer)       [(None, 25)]         0
____________________________________________________________________________________
fc_1 (Dense)                    (None, 256)          6656        observations[0][0]
____________________________________________________________________________________
fc_out (Dense)                  (None, 256)          65792       fc_1[0][0]
____________________________________________________________________________________
value_out (Dense)               (None, 1)            257         fc_1[0][0]
====================================================================================
Total params: 72,705
Trainable params: 72,705
Non-trainable params: 0
____________________________________________________________________________________

Note that it’s perfectly possible to customize this model for your RLlib experiments. If
your environment is quite complex and has a big observation space, for instance, you
might need a bigger model to capture that complexity. However, doing so requires in-
depth knowledge of the underlying neural network framework (in this case Tensor‐
Flow), which we don’t assume you have5.

State-action values and state-value functions
So far we’ve been concerned with the concept of state-action values a lot, since this
concept takes center stage in the formulation of Q-Learning, which we’ve been using
extensively in this and the last chapter.
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The model we’ve just had a look at has a dedicated output, in deep learning terms
called a head, for predicting Q-values. You can access and summarize this part of the
model through model.q_value_head.summary().

In contrast to that, it’s also possible to ask of how valuable a particular state is, without
specifying an action that pairs with it. This leads to the concept of state-value func‐
tions, or simply value functions, that are very important in the RL literature. We can’t
go into more detail in this RLlib introduction, but note that you have access to a value
function head as well through model.state_value_head.summary().

Next, let’s see if we can take some observations from our environment and pass them
to the model we just extracted from our policy. This part is a bit technically involved,
because models are a bit more difficult to access directly in RLlib. The reason is that
normally you would only interface with a model through your policy, which takes
care of preprocessing the observations and passing them to the model (among other
things).

Luckily, we can simply access the preprocessor used by the policy, transform the
observations from our environment, and then pass them to the model:

from ray.rllib.models.preprocessors import get_preprocessor
env = GymEnvironment()
obs_space = env.observation_space
preprocessor = get_preprocessor(obs_space)(obs_space)  

observations = env.reset()
transformed = preprocessor.transform(observations).reshape(1, -1)  

model_output, _ = model.from_batch({"obs": transformed})  

You can use get_processor to access the preprocessor used by the policy.

For any observations obtained from your env you can use transform them to
the format expected by the model. Note that we need to reshape the observations,
too.

You get the model output by using the from_batch method of the model on a
preprocessed observation dictionary.

Having computed our model_output, we can now both access the Q-values, as well as
the action distribution of the model for this output like this:

q_values = model.get_q_value_distributions(model_output)  
print(q_values)

action_distribution = policy.dist_class(model_output, model)  
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6 For the experts, our DQNs are dueling double Q-learning models via the "dueling": True and "double_q":
True default arguments, for example.

sample = action_distribution.sample()  
print(sample)

The get_q_value_distributions method is specific to DQN models only.

By accessing dist_class we get the policy’s action distribution class.

Action distributions can be sampled from.

Configuring RLlib Experiments
Now that you’ve seen the basic Python training API of RLlib in an example, let’s take
a step back and discuss in more depth how to configure and run RLlib experiments.
By now you know that your Trainer takes a config argument, which so far we’ve
only used to set the number of Ray workers to 4.

If you want to alter the behaviour of your RLlib training run, the way to do this is to
change the config argument of your Trainer. This is at the same time relatively sim‐
ple, as you can add configuration properties quickly, and a bit tricky, as you have to
know which key-words the config dictionary expects. Finding and tweaking the
right configuration properties becomes easier once you have a good grasp of what’s
available and what to expect.

RLlib configuration splits in two parts, namely algorithm-specific and common con‐
figuration. We’ve used DQN as our algorithm in the examples so far, which has certain
properties that are only available to this choice6. Algorithm-specific configuration
only becomes more relevant once you’ve settled on an algorithm and want to squeeze
it for performance, but in practice RLlib provides you with good defaults to get
started. You can look up configuration arguments in the API reference for RLlib algo‐
rithms.

The common configuration of algorithms can be further split into the following
types.

Resource Configuration
Whether you use Ray RLlib locally or on a cluster, you can specify the resources used
for the training process. Here are the most important options to consider:

• num_gpus: Specify the number of GPUs to use for training. It’s important to check
whether your algorithm of choice supports GPUs first. This value can also be
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fractional. For example, if using four rollout workers in DQN (num_workers = 4),
you can set num_gpus=0.25 to pack all four workers on the same GPU, so that all
trainers benefit from the potential speedup.

• num_cpus_per_worker: Set the number of CPUs to use for each worker.

Debugging and Logging Configuration
Debugging your applications is crucial for any project, and machine learning is no
exception. RLlib allows you to configure the way it logs information and how you can
access it.

• log_level: Set the level of logging to use. This can be either DEBUG, INFO, WARN, or
ERROR and defaults to WARN. You should experiment with the different levels to see
what suits your needs best in practice.

• callbacks: You can specify custom callback functions to be called at various
points during training. We will take a closer look at this topic in ???.

• ignore_worker_failures: For testing it might be useful to ignore worker failures
by setting this property to True (defaults to False).

• logger_config: You can specify a custom logger configuration, passed in as a
nested dictionary.

Rollout Worker and Evaluation Configuration
Of course, you can also specify how many workers are used for rollouts during train‐
ing and evaluation.

• num_workers: You’ve seen this one already. It’s used to specify the number of Ray
workers to use.

• num_envs_per_worker: Specify the number of environments to evaluate per
worker. This setting allows you to “batch” evaluation of environments. In partic‐
ular, if your models take a long time to evaluate, grouping environments like this
can speed up training.

• create_env_on_driver: If you’ve set num_workers at least to 1, then the driver
process does not need to create an environment, since there are rollout workers
for that. If you set this property to True you create an additional environment on
the driver.

• explore: Set to True by default, this property allows you to turn off exploration,
for instance during evaluation of your algorithms.

• evaluation_num_workers: Specify the number of parallel evaluation workers to
use, which defaults to 0.
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Environment Configuration
• env: Specify the environment you want to use for training. This can either be a

string of an environment known to Ray RLlib, such as any gym environment, or
the class name of a custom environment you’ve implemented. There’s also a way
to register your environments so that you can refer to them by name, but this
requires using Ray Tune. We will learn about this feature in ???.

• observation_space and action_space: You can specify the observation and
action spaces of your environment. If you don’t specify them, they will be infer‐
red from the environment.

• env_config: You can optionally specify a dictionary of configuration options for
your environment that will be passed to the environment constructor.

• render_env: False by default, this property allows you to turn on rendering of
the environment, which requires you to implement the render method of your
environment.

Note that we left out many available configuration options for each of the types we
listed. On top of that, there’s a class of common configuration options to modify the
behavior of the RL training procedure, like modifying the underlying model to use.
These properties are the most important in a sense, while at the same time require the
most specific knowledge of reinforcement learning. For this introduction to RLlib, we
can’t go into any more details. But the good news is that if you’re a regular user of RL
software, you will have no trouble identifying the relevant training configuration
options.

Working With RLlib Environments
So far we’ve only introduced you to gym environments, but RLlib supports a wide
variety of environments. After giving you a quick overview of all available options,
we’ll show you two concrete examples of advanced RLlib environments in action.

An Overview of RLlib Environments
All available RLlib Environments extend a common BaseEnv class. If you want to
work with several copies of the same gym.Env environment, you can use RLlib’s Vec
torEnv wrapper. Vectorized environments are useful, but also straightforward gener‐
alizations of what you’ve seen already. The two other types of environments available
in RLlib are more interesting and deserve more attention.

The first is called MultiAgentEnv, which allows you to train a model with multiple
agents. Working with multiple agents can be tricky, because you have to take care of
defining your agents within your environment with a suitable interface and account
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for the fact that each agent might have a completely different way of interacting with
its environment. What’s more is that agents might interact with each other, and have
to respect each other’s actions. In more advanced setting there might even be a hierar‐
chy of agents, which explicitly depend on each other. In short, running multi-agent
RL experiments is difficult, and we’ll see how RLlib handles this in the next example.

The other type of environment we will look at is called ExternalEnv, which can be
used to connect external simulators to RLlib. For instance, imagine our simple maze
problem from earlier was a simulation of an actual robot navigating a maze. It might
not be suitable in such scenarios to co-locate the robot (or its simulation, imple‐
mented in a different software stack) with RLlib’s learning agents. To account for that,
RLlib provides you with a simple client-server architecture for communicating with
external simulators, which allows communication over a REST API.

In figure Figure 4-1 we summarize all available RLlib environments for you:

Figure 4-1. An overview of all available RLlib environments.

Working with Multiple Agents
The basic idea of defining multi-agent environments in RLlib is simple. Whatever you
define as a single value in a gym environment, you now define as a dictionary with
values for each agent, and each agent has its unique key. Of course, the details are a
little more complicated than that in practice. But once you have defined an environ‐
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ment hosting several agents, what’s necessary is to define how these agents should
learn.

In a single-agent environment there’s one agent and one policy to learn. In a multi-
agent environment there are multiple agents that might map to one or several poli‐
cies. For instance, if you have a group of homogenous agents in your environment,
then you could define a single policy for all of them. If they all act the same way, then
their behavior can be learnt the same way. In contrast, you might have situations with
heterogeneous agents in which each of them has to learn a separate policy. Between
these two extremes, there’s a spectrum of possibilities displayed in figure Figure 4-2:

Figure 4-2. Mapping agents to policies in multi-agent reinforcement learning problems.

We continue to use our maze game as a running example for this chapter. This way
you can check for yourself how the interfaces differ in practice. So, to put the ideas we
just outlined into code, let’s define a multi-agent version of the GymEnvironment class.
Our MultiAgentEnv class will have precisely two agents, which we encode in a Python
dictionary called agents, but in principle this works with any number of agents. We
start be initializing and resetting our new environment:

from ray.rllib.env.multi_agent_env import MultiAgentEnv
from gym.spaces import Discrete
import os

class MultiAgentMaze(MultiAgentEnv):
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    agents = {1: (4, 0), 2: (0, 4)}  
    goal = (4, 4)
    info = {1: {'obs': agents[1]}, 2: {'obs': agents[2]}}  

    def __init__(self,  *args, **kwargs):  
        self.action_space = Discrete(4)
        self.observation_space = Discrete(5*5)

    def reset(self):
        self.agents = {1: (4, 0), 2: (0, 4)}

        return {1: self.get_observation(1), 2: self.get_observation(2)}  

We now have two seekers with (0, 4) and (4, 0) starting positions in an
agents dictionary.

For the info object we’re using agent IDs as keys.

Action and observation spaces stay exactly the same as before.

Observations are now per-agent dictionaries.

Notice that compared to the single-agent situation we had to modify neither action
nor observation spaces, since we’re using two essentially identical agents here that can
use the same spaces. In more complex situations you’d have to account for the fact
that the actions and observations might look different for some agents.

To continue, let’s generalize our helper methods get_observation, get_reward, and
is_done to work with multiple agents. We do this by passing in an action_id to their
signatures and handling each agent the same way as before.

    def get_observation(self, agent_id):  
        seeker = self.agents[agent_id]
        return 5 * seeker[0] + seeker[1]

    def get_reward(self, agent_id):
        return 1 if self.agents[agent_id] == self.goal else 0

    def is_done(self, agent_id):
        return self.agents[agent_id] == self.goal

Getting a specific agent from its ID.

Redefining each helper method to work per-agent.

Next, to port the step method to our multi-agent setup, you have to know that Multi
AgentEnv now expects the action passed to a step to be a dictionary with keys corre‐
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7 Note how this can lead to issues like deciding which agent gets to act first. In our simple maze problem the
order of actions is irrelevant, but in more complex scenarios this becomes a crucial part of modeling the RL
problem correctly.

sponding to the agent IDs, too. We define a step by looping through all available
agents and acting on their behalf7.

    def step(self, action):  
        agent_ids = action.keys()

        for agent_id in agent_ids:
            seeker = self.agents[agent_id]
            if action[agent_id] == 0:  # move down
                seeker = (min(seeker[0] + 1, 4), seeker[1])
            elif action[agent_id] == 1:  # move left
                seeker = (seeker[0], max(seeker[1] - 1, 0))
            elif action[agent_id] == 2:  # move up
                seeker = (max(seeker[0] - 1, 0), seeker[1])
            elif action[agent_id] == 3:  # move right
                seeker = (seeker[0], min(seeker[1] + 1, 4))
            else:
                raise ValueError("Invalid action")
            self.agents[agent_id] = seeker  

        observations = {i: self.get_observation(i) for i in agent_ids}  
        rewards = {i: self.get_reward(i) for i in agent_ids}
        done = {i: self.is_done(i) for i in agent_ids}

        done["__all__"] = all(done.values())  

        return observations, rewards, done, self.info

Actions in a step are now per-agent dictionaries.

After applying the correct action for each seeker, we set the correct states of all
agents.

observations, rewards, and dones are also dictionaries with agent IDs as keys.

Additionally, RLlib needs to know when all agents are done.

The last step is to modify rendering the environment, which we do by denoting each
agent by its ID when printing the maze to the screen.

    def render(self, *args, **kwargs):
        os.system('cls' if os.name == 'nt' else 'clear')
        grid = [['| ' for _ in range(5)] + ["|\n"] for _ in range(5)]
        grid[self.goal[0]][self.goal[1]] = '|G'
        grid[self.agents[1][0]][self.agents[1][1]] = '|1'
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        grid[self.agents[2][0]][self.agents[2][1]] = '|2'
        print(''.join([''.join(grid_row) for grid_row in grid]))

Randomly rolling out an episode until one of the agents reaches the goal can for
instance be done by the following code:

import time

env = MultiAgentMaze()

while True:
    obs, rew, done, info = env.step(
        {1: env.action_space.sample(), 2: env.action_space.sample()}
    )
    time.sleep(0.1)
    env.render()
    if any(done.values()):
        break

Note how we have to make sure to pass two random samples by means of a Python
dictionary into the step method, and how we check if any of the agents are done yet.
We use this break condition for simplicity, as it’s highly unlikely that both seekers
find their way to the goal at the same time by chance. But of course we’d like both
agents to complete the maze eventually.

In any case, equipped with our MultiAgentMaze, training an RLlib Trainer works
exactly the same way as before.

from ray.rllib.agents.dqn import DQNTrainer

simple_trainer = DQNTrainer(env=MultiAgentMaze)
simple_trainer.train()

This covers the most simple case of training a multi-agent reinforcement learning
(MARL) problem. But if you remember what we said earlier, when using multiple
agents there’s always a mapping between agents and policies. By not specifying such a
mapping, both of our seekers were implicitly assigned to the same policy. This can be
changed by modifying the multiagent dictionary in our trainer config as follows:

Example 4-1.

trainer = DQNTrainer(env=MultiAgentMaze, config={
    "multiagent": {
        "policies": {  
            "policy_1": (None, env.observation_space, env.action_space, {"gamma": 0.80}),
            "policy_2": (None, env.observation_space, env.action_space, {"gamma": 0.95}),
        },
        "policy_mapping_fn": lambda agent_id: f"policy_{agent_id}",  
    },
})
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print(trainer.train())

We first define multiple policies for our agents.

Each agent can then be mapped to a policy with a custom policy_mapping_fn.

As you can see, running multi-agent RL experiments is a first-class citizen of RLlib,
and there’s a lot more that could be said about it. The support of MARL problems is
one of RLlib’s strongest features.

Working with Policy Servers and Clients
For the last example in this section on environments, let’s assume our original GymEn
vironment can only be simulated on a machine that can’t run RLlib, for instance
because it doesn’t have enough resources available. We can run the environment on a
PolicyClient that can ask a respective server for suitable next actions to apply to the
environment. The server, in turn, does not know about the environment. It only
knows how to ingest input data from a PolicyClient, and it is responsible for run‐
ning all RL related code, in particular it defines an RLlib config object and trains a
Trainer.

Defining a Server
Let’s start by defining the server-side of such an application first. We define a so-
called PolicyServerInput that runs on localhost on port 9900. This policy input is
what the client will provide later on. With this policy_input defined as input to our
trainer configuration, we can define yet another DQNTrainer to run on the server:

# policy_server.py
import ray
from ray.rllib.agents.dqn import DQNTrainer
from ray.rllib.env.policy_server_input import PolicyServerInput
import gym

ray.init()

def policy_input(context):
    return PolicyServerInput(context, "localhost", 9900)  

config = {
    "env": None,  
    "observation_space": gym.spaces.Discrete(5*5),
    "action_space": gym.spaces.Discrete(4),
    "input": policy_input,  
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8 For technical reasons we do have to specify observation and action spaces here, which might not be necessary
in future iterations of this project, as it leaks environment information. Also note that we need to set
input_evaluation to an empty list to make this server work.

    "num_workers": 0,
    "input_evaluation": [],
    "log_level": "INFO",
}

trainer = DQNTrainer(config=config)

The policy_input function returns a PolicyServerInput object running on
localhost on port 9900.

We explicitly set the env to None because this server does not need one.

To make this work, we need to feed our policy_input into the experiment’s
input.

With this trainer defined 8, we can now start a training session on the server like so:

# policy_server.py
if __name__ == "__main__":

    time_steps = 0
    for _ in range(100):
        results = trainer.train()
        checkpoint = trainer.save()  
        if time_steps >= 10.000:  
            break
        time_steps += results["timesteps_total"]

We train for a maximum of 100 iterations and store checkpoints after each itera‐
tion.

If training surpasses 10.000 time steps, we stop the training.

In what follows we assume that you store the last two code snippets in a file called
policy_server.py. If you want to, you can now start this policy server on your local
machine by running python policy_server.py in a terminal.

Defining a Client

Next, to define the corresponding client-side of the application, we define a Policy
Client that connects to the server we just started. Since we can’t assume that you
have several computers at home (or available in the cloud), contrary to what we said
prior, we will start this client on the same machine. In other words, the client will
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connect to http://localhost:9900, but if you can run the server on different
machine, you could replace localhost with the IP address of that machine, provided
it’s available in the network.

Policy clients have a fairly lean interface. They can trigger the server to start or end an
episode, get next actions from it, and log reward information to it (that it would
otherwise not have). With that said, here’s how you define such a client.

# policy_client.py
import gym
from ray.rllib.env.policy_client import PolicyClient
from maze_gym_env import GymEnvironment

if __name__ == "__main__":
    env = GymEnvironment()
    client = PolicyClient("http://localhost:9900", inference_mode="remote")  

    obs = env.reset()
    episode_id = client.start_episode(training_enabled=True)  

    while True:
        action = client.get_action(episode_id, obs)  

        obs, reward, done, info = env.step(action)

        client.log_returns(episode_id, reward, info=info)  

        if done:
            client.end_episode(episode_id, obs)  
            obs = env.reset()

            exit(0)  

We start a policy client on the server address with remote inference mode.

Then we tell the server to start an episode.

For given environment observations, we can get the next action from the server.

It’s mandatory for the client to log reward information to the server.

If a certain condition is reached, we can stop the client process.

If the environment is done, we have to inform the server about episode comple‐
tion.

Assuming you store this code under policy_client.py and start it by running
python policy_client.py, then the server that we started earlier will start learning
with environment information solely obtained from the client.
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Advanced Concepts
So far we’ve been working with simple environments that were easy enough to tackle
with the most basic RL algorithm settings in RLlib. Of course, in practice you’re not
always that lucky and might have to come up with other ideas to tackle harder envi‐
ronments. In this section we’re going to introduce a slightly harder version of the
maze environment and discuss some advanced concepts that help you solve this envi‐
ronment.

Building an Advanced Environment
Let’s make our maze GymEnvironment a bit more challenging. First, we increase its
size from a 5x5 to a 11x11 grid. Then we introduce obstacles in the maze that the
agent can pass through, but only by incurring a penalty, a negative reward of -1. This
way our seeker agent will have to learn to avoid obstacles, while still finding the goal.
Also, we randomize the starting position of the agent. All of this makes the RL prob‐
lem harder to solve. Let’s have a look at the initialization of this new AdvancedEnv
first:

from gym.spaces import Discrete
import random
import os

class AdvancedEnv(GymEnvironment):

    def __init__(self, seeker=None, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.maze_len = 11
        self.action_space = Discrete(4)
        self.observation_space = Discrete(self.maze_len * self.maze_len)

        if seeker:  
            assert 0 <= seeker[0] < self.maze_len and 0 <= seeker[1] < self.maze_len
            self.seeker = seeker
        else:
            self.reset()

        self.goal = (self.maze_len-1, self.maze_len-1)
        self.info = {'seeker': self.seeker, 'goal': self.goal}

        self.punish_states = [  
            (i, j) for i in range(self.maze_len) for j in range(self.maze_len)
            if i % 2 == 1 and j % 2 == 0
        ]

We can now set the seeker position upon initialization.
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We introduce punish_states as obstacles for the agent.

Next, when resetting the environment, we want to make sure to reset the agent’s posi‐
tion to a random state. We also increase the positive reward for reaching the goal to 5,
to offset the negative reward for passing through an obstacle (which will happen a lot
before the RL trainer picks up on the obstacle locations). Balancing rewards like this
is a crucial task in calibrating your RL experiments.

    def reset(self):
        """Reset seeker position randomly, return observations."""
        self.seeker = (random.randint(0, self.maze_len - 1), random.randint(0, self.maze_len - 1))
        return self.get_observation()

    def get_observation(self):
        """Encode the seeker position as integer"""
        return self.maze_len * self.seeker[0] + self.seeker[1]

    def get_reward(self):
        """Reward finding the goal and punish forbidden states"""
        reward = -1 if self.seeker in self.punish_states else 0
        reward += 5 if self.seeker == self.goal else 0
        return reward

    def render(self, *args, **kwargs):
        """Render the environment, e.g. by printing its representation."""
        os.system('cls' if os.name == 'nt' else 'clear')
        grid = [['| ' for _ in range(self.maze_len)] + ["|\n"] for _ in range(self.maze_len)]
        for punish in self.punish_states:
            grid[punish[0]][punish[1]] = '|X'
        grid[self.goal[0]][self.goal[1]] = '|G'
        grid[self.seeker[0]][self.seeker[1]] = '|S'
        print(''.join([''.join(grid_row) for grid_row in grid]))

There are many other ways you could make this environment harder, like making it
much bigger, introducing a negative reward for every step the agent takes in a certain
direction, or punishing the agent for trying to walk off the grid. By now you should
understand the problem setting well enough to customize the maze yourself further.

While you might have success training this environment, this is a good opportunity
to introduce some advanced concepts that you can apply to other RL problems.

Applying Curriculum Learning
One of the most interesting features of RLlib is to provide a Trainer with a curricu‐
lum to learn from. What that means is that, instead of letting the trainer learn from
arbitrary environment setups, we cherry pick states that are much easier to learn
from and then slowly but surely introduce more difficult states. Building a learning
curriculum this way is a great way to make your experiments converge on solutions
quicker. The only thing you need to apply curriculum learning is a view on which

Advanced Concepts | 93



starting states are easier than others. For many environments that can actually be a
challenge, but it’s easy to come up with a simple curriculum for our advanced maze.
Namely, the distance of the seeker from the goal can be used as a measure of diffi‐
culty. The distance measure we’ll use for simplicity is the sum of the absolute distance
of both seeker coordinates from the goal to define a difficulty.

To run curriculum learning with RLlib, we define a CurriculumEnv that extends both
our AdvancedEnv and a so-called TaskSettableEnv from RLLib. The interface of Task
SettableEnv is very simple, in that you only have to define how get the current diffi‐
culty (get_task) and how to set a required difficulty (set_task). Here’s the full
definition of this CurriculumEnv:

from ray.rllib.env.apis.task_settable_env import TaskSettableEnv

class CurriculumEnv(AdvancedEnv, TaskSettableEnv):

    def __init__(self, *args, **kwargs):
        AdvancedEnv.__init__(self)

    def difficulty(self):
        return abs(self.seeker[0] - self.goal[0]) + abs(self.seeker[1] - self.goal[1])

    def get_task(self):
        return self.difficulty()

    def set_task(self, task_difficulty):
        while not self.difficulty() <= task_difficulty:
            self.reset()

To use this environment for curriculum learning, we need to define a curriculum
function that tells the trainer when and how to set the task difficulty. We have many
options here, but we use a schedule that simply increases the difficulty by one every
1000 time steps trained:

def curriculum_fn(train_results, task_settable_env, env_ctx):
    time_steps = train_results.get("timesteps_total")
    difficulty = time_steps // 1000
    print(f"Current difficulty: {difficulty}")
    return difficulty

To test this curriculum function, we need to add it to our RLlib trainer config,
namely by setting the env_task_fn property to our curriculum_fn. Note that before
training a DQNTrainer for 15 iterations, we also set an output folder in our config.
This will store experience data of our training run to the specified temp folder.

config = {
    "env": CurriculumEnv,
    "env_task_fn": curriculum_fn,
    "output": "/tmp/env-out",
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9 Note that RLlib has a wide range of on-policy algorithms like PPO as well.

}

from ray.rllib.agents.dqn import DQNTrainer

trainer = DQNTrainer(env=CurriculumEnv, config=config)

for i in range(15):
    trainer.train()

Running this trainer, you should see how the task difficulty increases over time,
thereby giving the trainer easy examples to start with so that in can learn from them
and progress to more difficult tasks as it progresses.

Curriculum learning is a great technique to be aware of and RLlib allows you to easily
incorporate it into your experiments through the curriculum API we just discussed.

Working with Offline Data
In our previous curriculum learning example we stored training data to a temporary
folder. What’s interesting is that you already know from Chapter 3 that in Q-learning
you can collect experience data first, and decide when to use it in a training step later.
This separation of data collection and training opens up many possibilities. For
instance, maybe you have a good heuristic that can solve your problem in an imper‐
fect, yet reasonable manner. Or you have records of human interaction with your
environment, demonstrating how to solve the problem by example.

The topic of collecting experience data for later training is often discussed as working
with offline data. It’s called offline, as it’s not directly generated by a policy interacting
online with the environment. Algorithms that don’t rely on training on their own pol‐
icy output are called off-policy algorithms, and Q-Learning, respectively DQN, is just
one such example. Algorithms that don’t share this property are accordingly called
on-policy algorithms. In other words, off-policy algorithms can be used to train on
offline data9.

To use the data we stored in the /tmp/env-out folder before, we can create a new
training configuration that takes this folder as input. Note how we set exploration
to False in the following configuration, since we simply want to exploit the data pre‐
viously collected for training - the algorithm will not explore according to its own
policy.

input_config = {
    "input": "/tmp/env-out",
    "input_evaluation": [],
    "explore": False
}
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Using this input_config for training works exactly as before, which we demonstrate
by training an agent for 10 iterations and evaluating it:

imitation_trainer = DQNTrainer(env=AdvancedEnv, config=input_config)
for i in range(10):
    imitation_trainer.train()

imitation_trainer.evaluate()

Note that we called the trainer imitation_trainer. That’s because this training pro‐
cedure intends to imitate the behavior reflected in the data we collected before. This
type of learning by demonstration in RL is therefore often called imitation learning or
behavior cloning.

Other Advanced Topics
Before concluding this chapter, let’s have a look at a few other advanced topics that
RLlib has to offer. You’ve already seen how flexible RLlib is, from working with a
range of different environments, to configuring your experiments, training on a cur‐
riculum, or running imitation learning. To give you a taste of what else is possible,
you can also do the following things with RLlib:

• You can completely customize the models and policies used under the hood. If
you’ve worked with deep learning before, you know how important it can be to
have a good model architecture in place. In RL this is often not as crucial as in
supervised learning, but still a vital part of running advanced experiments suc‐
cessfully.

• You can change the way your observations are preprocessed by providing custom
preprocessors. For our simple maze examples there was nothing to preprocess,
but when working with image or video data, preprocessing is often a crucial step.

• In our AdvancedEnv we introduced states to avoid. Our agents had to learn to do
this, but RLlib has a feature to automatically avoid them through so-called para‐
metric action spaces. Loosely speaking, what you can do is to “mask out” all unde‐
sired actions from the action space for each point in time.

• In some cases it can also be necessary to have variable observation spaces, which
is also fully supported by RLlib.

• We only briefly touched on the topic of offline data. Rllib has a full-fledged
Python API for reading and writing experience data that can be used in various
situation.

• Lastly, I want to stress again that we have solely worked with DQNTrainer here for
simplicity, but RLlib has an impressive range of training algorithms. To name just
one, the MARWIL algorithm is a complex hybrid algorithm with which you can
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run imitation learning from offline data, while also mixing in regular training on
data generated “online”.

Summary
To summarize, you’ve seen a selection of interesting features of RLlib in this chapter.
We covered training multi-agent environments, working with offline data generated
by another agent, setting up a client-server architecture to split simulations from RL
training, and using curriculum learning to specify increasingly difficult tasks.

We’ve also given you a quick overview of the main concepts underlying RLlib, and
how to use its CLI and Python API. In particular, we’ve shown how to configure your
RLlib trainers and environments to your needs. As we’ve only covered a small part of
the possibilities of RLlib, we encourage you to read its documentation and explore its
API.

In the next chapter you’re going to learn how to tune the hyperparameters of your
RLlib models and policies with Ray Tune.
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CHAPTER 5

Distributed Training with Ray Train

Richard Liaw

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

In previous chapters, you’ve learned how to build and scale reinforcement learning
applications with Ray, and how to optimize hyperparameters for such applications.
As we indicated in ???, Ray also comes with the Ray Train library, which provides an
extensive suite of machine learning training integrations and allows them to scale
seamlessly.

We will start this chapter by providing context about why you might need to scale out
your machine learning training. Then we’ll cover some key concepts you need to
know in order to use Ray Train. Finally, we’ll cover some of the more advanced func‐
tionality that Ray Train provides.

As always, you can follow along using the notebook for this chapter.

The Basics of Distributed Model Training
Machine learning often requires a lot of heavy computation. Depending on the type
of model that you’re training, whether it be a gradient boosted tree or a neural net‐
work, you may face a couple common problems with training machine learning
models causing you to investigate distributed training solutions:

1. The time it takes to finish training is too long.
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1 This applies specifically to the gradient computation in neural networks.

2. The size of data is too large to fit into one machine.
3. The model itself is too large to fit into a single machine.

For the first case, training can be accelerated by processing data with increased
throughput. Some machine learning algorithms, such as neural networks, can paral‐
lelize parts of the computation to speed up training1.

In the second case, your choice of algorithm may require you to fit all the available
data from a dataset into memory, but the given single node memory may not be suffi‐
cient. In this case, you will need to split the data across multiple nodes and train in a
distributed manner. On the other hand, sometimes your algorithm may not require
data to be distributed, but if you’re using a distributed database system to begin with,
you still want a training framework that can leverage your distributed data.

In the third case, when your model doesn’t fit into a single machine, you may need to
split up the model into multiple parts, spread across multiple machines. The
approach of splitting models across multiple machines is called model parallelism. To
run into this issue, you first need a model that is large enough to not fit into a single
machine anymore. Usually, large companies like Google or Facebook tend to have the
need for model-parallelism, and also rely on in-house solutions to handle the dis‐
tributed training.

In contrast, the first two problems often arise much earlier in the journey to machine
learning practitioners. The solutions we just sketched for these problems fall under
the umbrella of data-parallel training. Instead of splitting up the model across multi‐
ple machines, you instead rely on distributed data to speed up training.

Specifically for the first problem, if you can speed up your training process, hopefully
with minimal or no loss in accuracy, and you can do so cost-efficiently, why not go
for it? And if you have distributed data, whether by necessity of your algorithm or the
way you store your data, you need a training solution to deal with it. As you will see,
Ray Train is built for efficient, data-parallel training.

Introduction to Ray Train
Ray Train is a library for distributed training on Ray. It offers key tools for different
parts of the training workflow, from feature processing, to scalable training, to inte‐
grations with ML tracking tools, to export mechanisms for models.

In a typical ML training pipeline you will use the following key components of Ray
Train:
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2 Ray can handle much larger datasets than that. In ??? we’ll take a closer look at the Ray Data library to see how
to handle huge datasets.

• Preprocessors: Ray Train provides several common preprocessor objects and
utilities to process dataset objects into consumable features for Trainers.

• Trainers: Ray Train has several Trainer classes that make it possible to do dis‐
tributed training. Trainers are wrapper classes around third-party training frame‐
works like XGBoost, providing integration with core Ray actors (for
distribution), Tune, and Datasets.

• Models: Each trainer can produce a model. The model can be used in serving.

Let’s see how to put these concepts in practice by computing a first example with Ray
Train.

Creating an end-to-end example for Ray Train
In the below example, we demonstrate the ability to load, process, and train a
machine learning model using Ray Train.

We’ll be using a simple dataset for this example, using the load_breast_cancer func‐
tion from the scikit-learn datasets package2. We load the data into a Pandas Data‐
Frame first and then convert it into a so-called Ray Dataset. ??? is entirely devoted to
the Ray Data library, we just use it here to illustrate the Ray Train API.

Example 5-1.

from ray.data import from_pandas
import sklearn.datasets

data_raw = sklearn.datasets.load_breast_cancer(as_frame=True)  

dataset_df = data_raw["data"]
predict_ds = from_pandas(dataset_df)  

dataset_df["target"] = data_raw["target"]
dataset = from_pandas(dataset_df)

Load breast cancer data into a Pandas DataFrame.

Create a Ray Dataset from the DataFrame.

Next, let’s specify a preprocessing function. In this case, we’ll be using three key pre‐
processors: a Scaler, a Repartitioner, and a Chain object to chain the first two.
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Example 5-2.

preprocessor = Chain(  
    Scaler(["worst radius", "worst area"]),  
    Repartitioner(num_partitions=2)  
)

Create a pre-processing Chain.

Scale two specific data columns.

Repartition the data into two partitions.

Our entrypoint for doing distributed training is the Trainer object. There are specific
Trainers for different frameworks, and each are configured with some framework-
specific parameters.

To give you an example, let’s have a look at the XGBoostTrainer class, which imple‐
ments distributed training for XGBoost.

Example 5-3.

trainer = XGBoostTrainer(
    scaling_config={  
        "num_actors": 2,
        "gpus_per_actor": 0,
        "cpus_per_actor": 2,
    },
    label="target",  
    params={  
        "tree_method": "approx",
        "objective": "binary:logistic",
        "eval_metric": ["logloss", "error"],
    },
)

result = trainer.fit(dataset=dataset, preprocessor=preprocessor)  

print(result)

Specify the scaling configuration.

Set the label column.

Specify XGBoost-specific parameters.

Train the model by calling fit.
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Preprocessors in Ray Train
The Preprocessor is the core class for handling data preprocessing. Each preprocessor
has the following APIs:

transform Used to process and apply a processing transformation to a Dataset.

fit Used to calculate and store aggregate state about the Dataset on Preprocessor. Returns self for chaining.

fit_transform Syntactic sugar for performing transformations that require aggregate state. May be optimized at the
implementation level for specific Preprocessors.

transform_batch Used to apply the same transformation on batches for prediction.

Currently, Ray Train offers the following encoders

FunctionTransformer Custom Transformers

Pipeline Sequential Preprocessing

StandardScaler Standardization

MinMaxScaler Standardization

OrdinalEncoder Encoding Categorical Features

OneHotEncoder Encoding Categorical Features

SimpleImputer Missing Value Imputation

LabelEncoder Label Encoding

You will often want to make sure you can use the same data preprocessing operations
at training time and at serving time.

Usage of preprocessors
You can use these preprocessors by passing them to a trainer. Ray Train will take care
of applying the preprocessor to the dataset in a distributed fashion.

Example 5-4.

result = trainer.fit(dataset=dataset, preprocessor=preprocessor)

Serialization of preprocessors
Now, some preprocessing operators such as one-hot encoders are easy to run in train‐
ing and transfer to serving. However, other operators such as those that do standardi‐
zation are a bit trickier, since you don’t want to do large data crunching (to find the
mean of a particular column) during serving time.
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The nice thing about the Ray Train preprocessors is that they’re serializable. This
makes it so that you can easily get consistency from training to serving just by serial‐
izing these operators.

Example 5-5.

pickle.dumps(prep)  

We can serialize and save preprocessors.

Trainers in Ray Train
Trainers are framework-specific classes that run model training in a distributed fash‐
ion. Trainers all share a common interface:

fit(self) Fit this trainer with the given dataset.

get_checkpoints(self) Return list of recent model checkpoints.

as_trainable(self) Get a wrapper of this as a Tune trainable class.

Ray Train supports a variety of different trainers on a variety of frameworks, namely
XGBoost, LightGBM, Pytorch, HuggingFace, Tensorflow, Horovod, Scikit-learn,
RLlib, and more.

Next, we’ll dive into two specific classes of Trainers: Gradient Boosted Tree Frame‐
work Trainers, and Deep Learning Framework Trainers.

Distributed Training for Gradient Boosted Trees
Ray Train offers Trainers for LightGBM and XGBoost.

XGBoost is an optimized distributed gradient boosting library designed to be highly
efficient, flexible and portable. It implements machine learning algorithms under the
Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known
as GBDT, GBM) that solve many data science problems in a fast and accurate way.

LightGBM is a gradient boosting framework based on tree-based learning algorithms.
Compared to XGBoost, it is a relatively new framework, but one that is quickly
becoming popular in both academic and production use cases.

By leveraging Ray Train’s XGBoost or LightGBM trainer, you can take a large dataset
and train a XGBoost Booster across multiple machines.
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Distributed Training for Deep Learning
Ray Train offers Deep Learning Trainers, for instance supporting frameworks such as
Tensorflow, Horovod, and Pytorch.

Unlike Gradient Boosted Trees Trainers, these Deep Learning frameworks often give
more control to the user. For example, Pytorch provides a set of primitives that the
user can use to construct their training loop.

As such, the Deep Learning Trainer API allows the user to pass in a training function
and provides callback functions for the user to report metrics and checkpoint. Let’s
take a look at an example Pytorch training script.

Below, we construct a standard training function:

Example 5-6.

import torch
import torch.nn as nn

num_samples = 20
input_size = 10
layer_size = 15
output_size = 5

class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.layer1 = nn.Linear(input_size, layer_size)
        self.relu = nn.ReLU()
        self.layer2 = nn.Linear(layer_size, output_size)

    def forward(self, input_data):
        return self.layer2(self.relu(self.layer1(input_data)))

input = torch.randn(num_samples, input_size)  
labels = torch.randn(num_samples, output_size)

def train_func():  
    num_epochs = 3
    model = NeuralNetwork()
    loss_fn = nn.MSELoss()
    optimizer = optim.SGD(model.parameters(), lr=0.1)
    for epoch in range(num_epochs):
        output = model(input)
        loss = loss_fn(output, labels)
        optimizer.zero_grad()
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        loss.backward()
        optimizer.step()

In this example we use a randomly generated dataset.

Define a training function.

We construct a training script for Pytorch, where we create a small neural network
and use a Mean Squared Error (MSELoss) objective to optimize the model. The input
to the model here is random noise, but you can imagine that to be generated from a
Torch Dataset.

Now, there are two key things that Ray Train will take care of for you.

1. The establishment of a backend that coordinates interprocess communication.
2. Instantiation of multiple parallel processes.

So, in short, you just need to make a one-line change to your code:

Example 5-7.

import ray.train.torch

def train_func_distributed():
    num_epochs = 3
    model = NeuralNetwork()
    model = train.torch.prepare_model(model)  
    loss_fn = nn.MSELoss()
    optimizer = optim.SGD(model.parameters(), lr=0.1)
    for epoch in range(num_epochs):
        output = model(input)
        loss = loss_fn(output, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

Prepare the model for distributed training.

Then, you can plug this into Ray Train:

Example 5-8.

from ray.train import Trainer

trainer = Trainer(backend="torch", num_workers=4, use_gpu=False)  
trainer.start()
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results = trainer.run(train_func_distributed)
trainer.shutdown()

Create a trainer. For GPU Training, set use_gpu to True.

This code will work on both a single machine or a distributed cluster.

Scaling out training with Ray Train Trainers
The general philosphy of Ray Train is that the user should not need to think about
how to parallelize their code.

With Ray Train Trainers, you can specify a scaling_config which allows you to scale
out your training without writing distributed logic. The scaling_config allows you
to declaratively specify the compute resources used by a Trainer.

In particular, you can specify the amount of parallelism that the Trainer should use by
providing the number of workers, along with the type of device that each worker
should use:

Example 5-9.

scaling_config = {"num_workers": 10, "use_gpu": True}

trainer = ray.train.integrations.XGBoostTrainer(
    scaling_config=scaling_config,
    # ...
)

Note that scaling configuration arguments depend on the Trainer type.

The nice thing about this specification is that you don’t need to think about the
underlying hardware. In particular, you can specify to use hundreds of workers and
Ray Train will automatically leverage all the nodes within your Ray cluster:

Example 5-10.

# Connect to a large Ray cluster
ray.init(address="auto")

scaling_config = {"num_workers": 200, "use_gpu": True}

trainer = ray.train.integrations.XGBoostTrainer(
    scaling_config=scaling_config,
    # ...
)
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Connecting Data to Distributed Training
Ray Train provides utilities to train on large datasets.

Along the same philosophy that the user should not need to think about how to par‐
allelize their code, you can simply “connect” your large dataset to Ray Train without
thinking about how to ingest and feed your data into different parallel workers.

Here, we create a dataset from random data. However, you can use other data APIs to
read a large amount of data (with read_parquet, which reads data from the Parquet
format).

Example 5-11.

from typing import Dict
import torch
import torch.nn as nn

import ray
import ray.train as train
from ray.train import Trainer

def get_datasets(a=5, b=10, size=1000, split=0.8):

    def get_dataset(a, b, size):
        items = [i / size for i in range(size)]
        dataset = ray.data.from_items([{"x": x, "y": a * x + b} for x in items])
        return dataset

    dataset = get_dataset(a, b, size)
    split_index = int(dataset.count() * split)
    train_dataset, validation_dataset = dataset.random_shuffle().split_at_indices(
        [split_index]
    )
    train_dataset_pipeline = train_dataset.repeat().random_shuffle_each_window()
    validation_dataset_pipeline = validation_dataset.repeat()
    datasets = {
        "train": train_dataset_pipeline,
        "validation": validation_dataset_pipeline,
    }
    return datasets

You can then specify a training function that accesses these datapoints. Note that we
use a specific get_dataset_shard function here. Under the hood, Ray Train will
automatically shard the provided dataset so that individual workers can train on a
different subset of the data at once. This avoids training on duplicate data within the
same epoch. The get_dataset_shard function passes a subset of the data from the
data source to each individual parallel training worker.
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Next, we make a iter_epochs and to_torch call on each shard. iter_epochs will
produce an iterator. This iterator will produce Dataset objects that will possess 1
shard of the entire epoch (named train_dataset_iterator and validation_data
set_iterator).

to_torch will convert the Dataset object into a Pytorch iterator. There is an equiva‐
lent to_tf function that converts it to a Tensorflow Data iterator.

When the epoch is finished, the Pytorch iterator will raise a StopIteration, and the
train_dataset_iterator will be queried again for a new shard on a new epoch.

Example 5-12.

def train_func(config):
    batch_size = config["batch_size"]
    # hidden_size = config["hidden_size"]
    # lr = config.get("lr", 1e-2)
    epochs = config.get("epochs", 3)

    train_dataset_pipeline_shard = train.get_dataset_shard("train")
    validation_dataset_pipeline_shard = train.get_dataset_shard("validation")
    train_dataset_iterator = train_dataset_pipeline_shard.iter_epochs()
    validation_dataset_iterator = validation_dataset_pipeline_shard.iter_epochs()

    for _ in range(epochs):
        train_dataset = next(train_dataset_iterator)
        validation_dataset = next(validation_dataset_iterator)
        train_torch_dataset = train_dataset.to_torch(
            label_column="y",
            feature_columns=["x"],
            label_column_dtype=torch.float,
            feature_column_dtypes=torch.float,
            batch_size=batch_size,
        )
        validation_torch_dataset = validation_dataset.to_torch(
            label_column="y",
            feature_columns=["x"],
            label_column_dtype=torch.float,
            feature_column_dtypes=torch.float,
            batch_size=batch_size,
        )
        # ... training

    return results

You can put things together by using the Trainer in the following way:
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Example 5-13.

num_workers = 4
use_gpu = False

datasets = get_datasets()
trainer = Trainer("torch", num_workers=num_workers, use_gpu=use_gpu)
config = {"lr": 1e-2, "hidden_size": 1, "batch_size": 4, "epochs": 3}
trainer.start()
results = trainer.run(
   train_func,
   config,
   dataset=datasets,
   callbacks=[JsonLoggerCallback(), TBXLoggerCallback()],
)
trainer.shutdown()
print(results)

Ray Train Features
Checkpoints
Ray Train will generate model checkpoints to checkpoint intermediate state for train‐
ing. These model checkpoints provide the trained model and fitted preprocessor for
usage in downstream applications like serving and inference.

Example 5-14.

result = trainer.fit()
model: ray.train.Model = result.checkpoint.load_model()

The goal of the model checkpoints is to abstract away the actual physical representa‐
tion of the model and preprocessor. As a result, you should be able to generate a
checkpoint from a cloud storage location, and convert it into an in-memory repre‐
sentation or on-disk representation, and vice versa.

Example 5-15.

chkpt = Checkpoint.from_directory(dir)
chkpt.to_bytes() -> bytes

Callbacks
You may want to plug in your training code with your favorite experiment manage‐
ment framework. Ray Train provides an interface to fetch intermediate results and
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callbacks to process, or log, your intermediate results (the values passed into
train.report(...)).

Ray Train contains built-in callbacks for popular tracking frameworks, or you can
implement your own callback via the TrainingCallback interface. Available callbacks
include:

• Json Logging
• Tensorboard Logging
• MLflow Logging
• Torch Profiler

Example 5-16.

# Run the training function, logging all the intermediate results
# to MLflow and Tensorboard.

result = trainer.run(
    train_func,
    callbacks=[
        MLflowLoggerCallback(experiment_name="train_experiment"),
        TBXLoggerCallback(),
    ],
)

Integration with Ray Tune
Ray Train provides an integration with Ray Tune that allows you to perform hyper‐
parameter optimization in just a few lines of code. Tune will create one Trial per
hyperparameter configuration. In each Trial, a new Trainer will be initialized and run
the training function with its generated configuration.

Example 5-17.

from ray import tune

fail_after_finished = True
prep_v1 = preprocessor
prep_v2 = preprocessor

param_space = {
    "scaling_config": {
        "num_actors": tune.grid_search([2, 4]),
        "cpus_per_actor": 2,
        "gpus_per_actor": 0,
    },
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    "preprocessor": tune.grid_search([prep_v1, prep_v2]),
    # "datasets": {
    #     "train_dataset": tune.grid_search([dataset_v1, dataset_v2]),
    # },
    "params": {
        "objective": "binary:logistic",
        "tree_method": "approx",
        "eval_metric": ["logloss", "error"],
        "eta": tune.loguniform(1e-4, 1e-1),
        "subsample": tune.uniform(0.5, 1.0),
        "max_depth": tune.randint(1, 9),
    },
}
if fail_after_finished > 0:
    callbacks = [StopperCallback(fail_after_finished=fail_after_finished)]
else:
    callbacks = None
tuner = tune.Tuner(
    XGBoostTrainer(
        run_config={"max_actor_restarts": 1},
        scaling_config=None,
        resume_from_checkpoint=None,
        label="target",
    ),
    run_config={},
    param_space=param_space,
    name="tuner_resume",
    callbacks=callbacks,
)
results = tuner.fit(datasets={"train_dataset": dataset})
print(results.results)

Compared to other distributed hyperparameter tuning solutions, Ray Tune and Ray
Train has a couple unique features:

• Ability to specify the dataset and preprocessor as a parameter
• Fault tolerance
• Ability to adjust the number of workers during training time.

Exporting Models
You may want to export the model trained to Ray Serve or a model registry after
you’ve trained it with Ray Train.

To do so, you can fetch the model using a load_model API:
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Example 5-18.

result = trainer.fit(dataset=dataset, preprocessor=preprocessor)
print(result)

this_checkpoint = result.checkpoint
this_model = this_checkpoint.load_model()
predicted = this_model.predict(predict_ds)
print(predicted.to_pandas())

Some Caveats
In particular, recall that standard neural network training works by iterating through
a dataset in separate batches of data (usually called minibatch gradient descent).

To speed this up, you can parallelize the gradient computation of every minibatch
update. This means that the batch should be split across multiple machines.

One complication is that if you hold the size of the batch constant, the system utiliza‐
tion and efficiency reduces as you increase the number of workers.

To compensate, practitioners typically increase the amount of data per batch.

As a result, the time it takes to go through a single pass of the data (one epoch)
should ideally reduce, since the number of total batches decreases.
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