Given: training data

example $\vec{x_1} \rightarrow$	$ x_{11} $	x_{12}	• • •	x_{1d}	$y_1 \leftarrow label$
• • •					• • •
example $\vec{x_i} ightarrow$	x_{i1}	x_{i2}		x_{id}	$y_i \leftarrow label$
• • •					• • •
example $\vec{x_n} \rightarrow$	x_{n1}	x_{n2}		$\overline{x_{nd}}$	$y_n \leftarrow label$

Given: training data

example $\vec{x_1} \rightarrow$	$ x_{11} $	x_{12}	 x_{1d}	$y_1 \leftarrow label$
• • •			 	• • •
example $\vec{x_i} \rightarrow$	x_{i1}	x_{i2}	 x_{id}	$y_i \leftarrow label$
• • •			 	• • •
example $\vec{x_n} \rightarrow$	x_{n1}	x_{n2}	 $\overline{x_{nd}}$	$y_n \leftarrow label$

 $(\vec{x_1}, y_1), \ldots, (\vec{x_n}, y_n) \ / \ \vec{x_i} \in \mathbb{R}^d$ and y_i is the label.

fruit	length	width	weight	label
fruit 1	165	38	172	Banana
fruit 2	218	39	230	Banana
fruit 3	76	80	145	Orange
fruit 4	145	35	150	Banana
fruit 5	90	88	160	Orange
fruit n		:		

fruit	length	width	weight	label
fruit 1	165	38	172	Banana
fruit 2	218	39	230	Banana
fruit 3	76	80	145	Orange
fruit 4	145	35	150	Banana
fruit 5	90	88	160	Orange
fruit n				

Unsupervised learning

Learning a model from unlabeled data

Supervised learning

Learning a model from labeled data

Training data: "examples" \vec{x}

$$\vec{x_1}, \ldots, \vec{x_n}, \ \vec{x_i} \in X \subset \mathbb{R}^n$$

• Clustering/segmentation:

$$f: \mathbb{R}^d \longrightarrow \{C_1, \dots C_k\}$$
 (set of clusters)

Example: Find clusters in the population, fruits, and species.

Methods: K-means, Gaussian mixtures, hierarchical clustering, spectral clustering, etc.

Training data: "examples" \vec{x} with "labels" y

$$(\vec{x_1}, y_1), \dots, (\vec{x_n}, y_n) / \vec{x_i} \in \mathbb{R}^d$$

• Classification: y is discrete; to simplify, $y \in \{-1, +1\}$

$$f: \mathbb{R}^d \longrightarrow \{-1, +1\}$$
 f is called a binary classifier.

Example: approve credit yes/no, spam/ham, banana/orange

Methods: support vector machines, neural networks, decision trees, k-nearest neighbors, Naive Bayes, etc.

Classification

Training data: "examples" \vec{x} with "labels" y

$$(\vec{x_1}, y_1), \dots, (\vec{x_n}, y_n) / \vec{x_i} \in \mathbb{R}^d$$

• Regression: y is a real value, $y \in \mathbb{R}$

$$f: \mathbb{R}^d \longrightarrow \mathbb{R}$$
 f is called a **regressor**.

Example: amount of credit, weight of fruit

Regression

Example: income in function of age, weight of the fruit in function of its length

Regression:

Regression:

Regression:

