
#### **Logical Agents**



Your AI Journey Starts Here



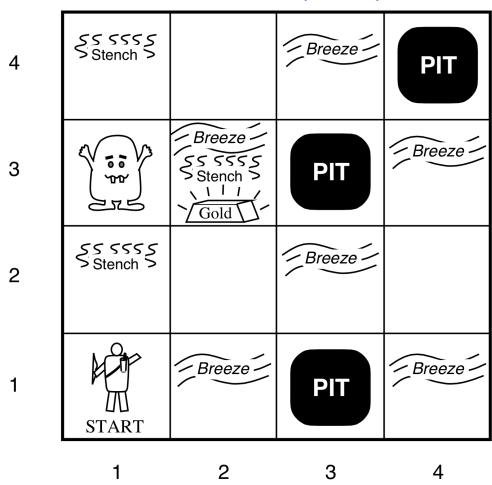
#### **Knowledge-Based Agents**



### **Knowledge-Based Agents**

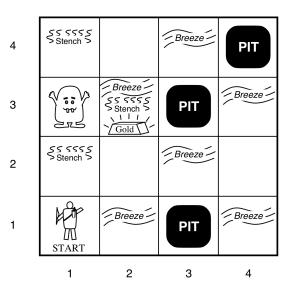
"The idea is that an agent can represent knowledge of its world, its goals and the current situation by sentences in logic and decide what to do by inferring that a certain action or course of action is appropriate to achieve its goals."

—John McCarthy in Concepts of Logical AI, 2000


http://www-formal.stanford.edu/jmc/concepts-ai/concepts-ai.html

### **Knowledge-Based Agents**

- Intelligent agents need **knowledge** about the world to choose good actions/decisions.
- Knowledge is a set of sentences in a knowledge representation language (formal language).
- A sentence is an assertion about the world.
- A knowledge-based agent is composed of:
  - 1. Knowledge base —domain-specific content
  - 2. Inference mechanism —domain-independent algorithms


### The Wumpus World

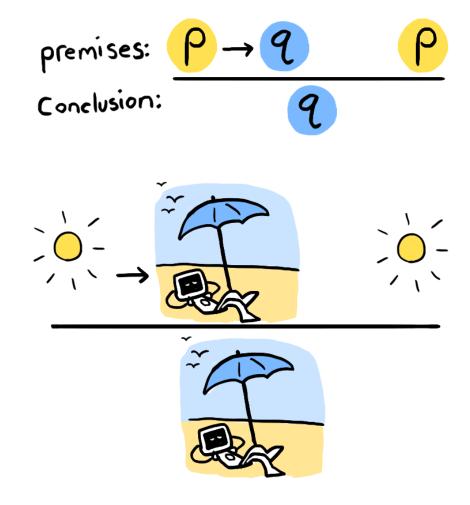
#### Gregory Yob (1975)



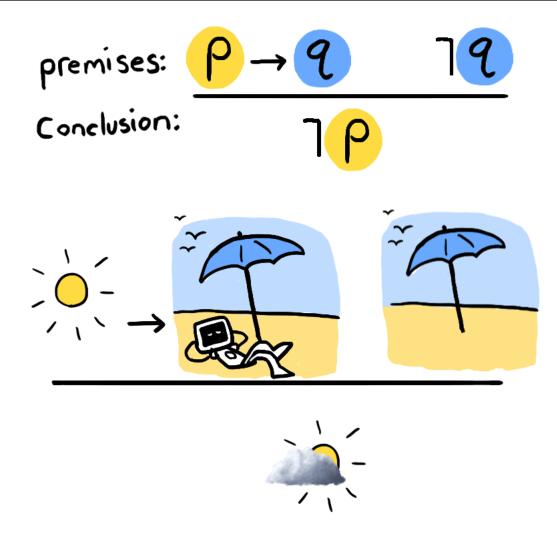
#### The Wumpus World

- 4 X 4 grid of rooms
- Rooms adjacent to Wumpus smelly, and squares adjacent to pit(s) are breezy
- Glitter if and only if gold is in the same square
- Shooting kills Wumpus if you are facing it; uses up the only arrow
- Wumpus emits a horrible scream Gregory Yob (1975) when it is killed that can be heard anywhere
- Grabbing picks up gold if in same square




### Logic: Review

- Knowledge base: a set of sentences in a formal representation, logic
- Logic: formal language for representing knowledge
  - Syntax: defines well-formed sentences in the language
  - Semantic: defines the truth or meaning of sentences in a world
- Inference: a procedure to derive a new sentence from other ones
- Logical entailment: a relationship between sentences; it means that a sentence follows logically from other sentences


#### Rules of Inference

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Rules of inference |          |   |     |  |  |  |  |  |
|--------------------------------------------------------|--------------------|----------|---|-----|--|--|--|--|--|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <u>P</u>           | •        |   | ' ' |  |  |  |  |  |
| ·                                                      | <u>P→q q→r</u>     | ρνα ¬ρνι | ' |     |  |  |  |  |  |

## Inference (Modus Ponens)



# Inference (Modus Tollens)



#### Soundness & Completeness

- We want an inference algorithm that is:
  - 1. **Sound:** does not infer false formulas, that is, derives only entailed sentences
  - 2. Complete: derives all entailed sentences

#### Wumpus World Inference

Let's build the KB for the reduced Wumpus world.

| 1,4            | 2,4              | 3,4       | 4,4 |
|----------------|------------------|-----------|-----|
| 1,3            | 2,3              | 3,3       | 4,3 |
| 1,2<br>OK      | 2,2<br>P?        | 3,2       | 4,2 |
| 1,1<br>V<br>OK | 2,1 A<br>B<br>OK | 3,1<br>P? | 4,1 |

- Let  $P_{i,j}$  be true if there is a pit in [i,j].
- Let  $B_{i,j}$  be true if there is a breeze in [i,j].

$$R_1: \neg P_{1,1}$$

• "A square is breezy if and only if there is an adjacent pit".

$$R_2: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$$

$$R_3$$
:  $B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$ 

$$R_4$$
:  $\neg B_{1,1}$ 

$$R_5$$
:  $B_{2,1}$ 

### Wumpus World Inference

Questions:  $KB \models P_{1,2}$ ?  $KB \models P_{2,2}$ ?

 $R_1: \neg P_{1,1}$ 

 $R_2: B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$ 

 $R_3: B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2}$ 

 $R_4$ :  $\neg B_{1,1}$ 

R<sub>5</sub>: B<sub>2,1</sub>

## **Model Checking**

- Truth table for inference
- Model: assignment of true or false to every propositional symbol
- ullet Check that lpha is true in every model in which KB is true

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$ | $R_1$ | $R_2$ | $R_3$ | $R_4$ | $R_5$ | KB          |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-------|-------|-------|-------|-------------|
| false     | true  | true  | true  | true  | false | false       |
| false     | false     | false     | false     | false     | false     | true      | true  | true  | false | true  | false | false       |
| :         | :         | :         | :         | :         | :         | :         | :     | :     | :     | :     | :     | :           |
| false     | true      | false     | false     | false     | false     | false     | true  | true  | false | true  | true  | false       |
| false     | true      | false     | false     | false     | false     | true      | true  | true  | true  | true  | true  | <u>true</u> |
| false     | true      | false     | false     | false     | true      | false     | true  | true  | true  | true  | true  | <u>true</u> |
| false     | true      | false     | false     | false     | true      | true      | true  | true  | true  | true  | true  | <u>true</u> |
| false     | true      | false     | false     | true      | false     | false     | true  | false | false | true  | true  | false       |
| :         | :         | :         | :         | :         | :         | :         | :     | :     | :     | :     | :     | :           |
| true      | false | true  | true  | false | true  | false       |

### **Summary**

- Building logical agents was a main research trend in AI before the mid-1990s
- Logic is used in AI to represent the environment of the agent and reason about that environment
- PL is not expressive enough to describe all the world around us.
- PL is not compact. It can't express a fact for a set of objects without enumerating all of them.
- Do not handle uncertainty, probability does
  - Rule-based and do not use data, machine learning does
  - It is hard to model every aspect of the world
  - + Intelligibility of models: models are encoded explicitly

#### **APPENDIX**

Wumpus world: PEAS and Environment

**Logical Agents** 

#### Wumpus World PEAS

#### Performance measure

- Gold +1000, death (eaten or falling in a pit) -1000, -1 per action taken, -10 for using the arrow
- The games ends either when the agent dies or comes out of the cave

#### Environment

- 4 X 4 grid of rooms
- Agent starts in square [1,1] facing to the right
- Locations of the gold and Wumpus are chosen randomly with a uniform distribution from all squares except [1,1]
- Each square other than the start can be a pit with probability of 0.2

#### Wumpus World PEAS

#### Actuators

Left turn, right turn, forward, grab, release, shoot

#### Sensors

- Stench, breeze, glitter, bump, scream
- Represented as a five-element list
- Example: stench, breeze, none, none, none

### Wumpus World Environment

- Partially observable
- Static
- Discrete
- Single-agent
- Deterministic
- Sequential