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1 Vectors
A vector space is a set V along with addition and scalar multiplication operations on V . Elements
of a vector space are called vectors. A vector is a quantity that has a direction and magnitude,
which we will see shortly.
Now, we must first define the elementary operations that we can perform on vectors. Addition and
scalar multiplication is performed component-wise:[

x1

y1

]
+

[
x2

y2

]
=

[
x1 + x2

y1 + y2

]

λ

[
x1

y1

]
=

[
λx1

λy1

]

A common notation for indicating that a quantity is vector-valued is by including a small
arrow above the variable, such as u⃗, to indicate that the quantity has a direction.

Note:

• Vector addition:

1. Commutative: v⃗ + u⃗ = u⃗+ v⃗

2. Associative: (v⃗ + u⃗) + w⃗ = v⃗ + (u⃗+ w⃗)

3. Identity: v⃗ + 0⃗ = v⃗

• Scalar multiplication:

1. Associative: (ab)v⃗ = a(bv⃗)

2. Identity: 1⃗v⃗ = v⃗

3. A positive-valued scalar stretches the vector in its current direction, with the magnitude
of the scalar dictating how much to “pull"

4. A negative-valued scalar stretches the vector by the same magnitude, just in the oppo-
site direction

• Magnitude: |v⃗| =
√

x2
1 + x2

2 + · · ·+ x2
n for v⃗ ∈ Rn
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1.1 Visualizing Vectors
A vector contains information about the x and y components, namely,[

vx
vy

]
So say we wanted to visualize the vector u⃗ = [ 12 ]. We therefore have to move one unit in the
positive direction in the x axis (right) and two units in the positive direction in the y axis (up), like
so:

x

y

u⃗ = [1, 2]

Now say you wanted to visualize another vector, v⃗ =
[ −2
−1

]
. Therefore, we need to move two units

in the negative direction in the x axis (left) and one unit in the negative direction in the y axis
(down):

x

y

v⃗ = [−2,−1]

1.2 Vector Addition
Now we will explore how to visualize the addition of vectors. In order to add together the following
two vectors in the coordinate space, we will use the traditional “tip-to-tail" method. This involves
orienting the first vector you wish to add at the origin, and then placing the “tail" of the second
vector at the “tip" of the first, and orienting the second vector from there. Then we create a triangle
from the tail of the first vector to the tip of the second, which expresses the total sum of the vectors
and is aptly named the resultant.
The figure below illustrates the addition of the following two vectors, yielding the resultant vector
[ 33 ]. [

1
2

]
+

[
2
1

]
=

[
3
3

]
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x

y

[1, 2]

[2, 1]

[3, 3]

Vector subtracting is performed in a similar fashion except that we orient the vector we wish
to add in the opposite direction.

Note:

2 Matrices
A matrix is an array A of m rows and n columns. The size of a matrix A can be denoted by
the notation m × n, which indicates a matrix with m rows and n columns, and we can denote a
specific entry of A through the indexes i and j, where i is the row index and j is the column index.
Hence, we can formalize the elements of a matrix A ∈ Rm×n as aij ∈ R for i = 1, . . . ,m and
j = 1, . . . , n.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


2.1 Matrix Operations
We can now define the elementary operation that we can perform on vectors. Suppose we wanted
to add together two matrices, A+B. This can be done in an element-wise fashion as follows:

A+B =


a11 + b11 . . . a1n + b1n
a21 + b21 . . . a2n + b2n

...
...

am1 + bm1 . . . amn + bmn



Matrices must be of the same dimension for the addition operation to be compatible, that is,
both A and B must have the same number of rows and columns.

Note:

3



To multiply A by some real-valued scalar λ, we similarly multiply the scalar element-wise:

λA =


λa11 . . . λa1n
λa21 . . . λa2n

...
...

λam1 . . . λamn


Scalar multiplication:

1. Associative: (λγ)A = λ(γA) for λ, γ ∈ R and A ∈ Rm×n

2. Distributive: (λ+ γ)A = λA+ γA for λ, γ ∈ R and A ∈ Rm×n

In order to multiply together two matrices, we must define a new operation called the dot product.
Suppose we wish to multiply together matrices A ∈ Rm×n and B ∈ Rn×k. Their product, C ∈
Rm×k, is formally defined as follows:

cij =
n∑

l=1

ailblj

for i = 1, . . . ,m and j = 1, . . . , k. Informally, this notation simply takes the ith row of matrix A
and multiplies it with the jth column of matrix B, and add all these entries together to fill the ijth
entry of the resulting matrix C.

Matrices must have the same inner dimension for the dot product operation to be compatible,
that is, the number of columns of A must be equal to the number of rows of B. We can
see this easily in our example above where matrix A ∈ Rm×n has n columns and matrix
B ∈ Rn×k has n rows. The resulting matrix C ∈ Rm×k has dimensions equal to the outer
left and outer right dimensions of A and B, respectively.

Note:

Matrices also have a multiplicative identity defined as a matrix with ones along the diagonal and
zeros everywhere else. Below is the square (n× n) identity matrix:

In =



1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
...

... . . . ... . . . ...
0 0 . . . 1 . . . 0
...

... . . . ... . . . ...
0 0 . . . 0 . . . 1


Now we can proceed to define some more properties of matrix multiplication:
Matrix multiplication:

1. Associative: (AB)C = A(BC) for A ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×q

2. Distributive: (A+B)C = AC+BC for A ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×q
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3. Identity: ImA = AIn = A for A ∈ Rm×n

Matrices are generally not commutative, that is, AB ̸= BA!
Note:

2.2 Inverses and Determinants
Similar to how you can “undo" a product by multiplying by an integer’s reciprocal to get back 1,
such as 4× 1

4
= 1, we can do a very similar thing with matrices by finding the inverse of a matrix.

Suppose we have the square matrix A ∈ Rn×n. Then we call the square matrix B ∈ Rn×n the
inverse of A if the following holds:

AB = In = BA

We can denote the inverse of A as A−1. Unfortunately, not every matrix has an inverse. Firstly,
you may have noted that we required our matrix A to be square, otherwise an inverse would not
exist! Secondly, a property of the matrix called the determinant must be non-zero in order for the
inverse to exist. If the determinant of a matrix A is zero, we say that A is noninvertible or singular,
and therefore has no inverse. Otherwise, if A has an inverse, we call it invertible or nonsingular.

At this point, you may be wondering what is this magical property called the determinant. Despite
the fancy name, computing the determinant of a matrix is relatively straightforward for 2 × 2
matrices. Suppose we have the following matrix:

A =

[
a b
c d

]
The determinant of A, which we denote by det(A) is computed as follows:

det(A) = ad− cb

If we think about the determinant geometrically, it is computing the area of the parallelogram
spanned by the column vectors of A:

x

y

(c,d)

(a,b)

5



Another important property of a matrix is its transpose. The transpose of a matrix A ∈ Rm×n is
found by simply flipping the position of its rows by the position of its columns, which can formally
be expressed as bij = aji, after transposing matrix A into matrix B, A⊤ = B. So if we were to
take the transpose of matrix A below:

A =

1 2 3
4 5 6
7 8 9


We simply “reflect" the entries across the diagonal to flip the positions between row and column
elements:

A⊤ =

1 4 7
2 5 8
3 6 9


Below we present some useful properties of inverses and transposes:
Inverse Properties:

• AA−1 = I = A−1A

• (AB)−1 = B−1A−1

Transpose Properties:

• (A⊤)⊤ = A

• (AB)⊤ = B⊤A⊤

• (A+B)⊤ = A⊤ +B⊤

The inverse cannot be “distributed" across addition, so (A+B)−1 ̸= A−1 +B−1.
Note:

3 Span and Linear Independence
The vector space V of elements x1, . . . , xn ∈ V are called linearly dependent if there exists
scalars λ ∈ R that are not all zero such that:

n∑
i=1

λixi = λ1x1 + . . . λnxn = 0⃗

If only the trivial linear combination of λ1 = · · · = λn = 0 holds such that
∑n

i=1 λixi = 0⃗, then
the vectors x1, . . . , xn are linearly independent.
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We call the span of a set of vectors X = {x1, x2, . . . , xn} all linear combinations of these vectors,
of the form λ1x1 + λ2x2 + λ3x3 + · · ·+ λnxn

Example: Consider the following set of vectors:

X =

21
3

 ,

31
2

 ,

11
4


Is this is a linearly independent set?

Observe that we can choose λ1 = 2, λ2 = −1, and λ3 = −1 such that:

2

21
3

+ (−1)

31
2

+ (−1)

11
4

 =

00
0


Therefore X is not a linearly independent set and is, therefore, linearly dependent.

4 Linear Systems
Suppose we have a set of n unknowns with a set of constraints. We can solve for this set of
unknowns by defining a system of linear equations, for which we can express the general form
as follows:

a11x1 + . . .+ a1nxn = b1
...

am1x1 + . . .+ amnxn = bm

Where x1, . . . , xn ∈ Rn is the set of n unknowns and aij ∈ R and bi ∈ R are constants. Every
n-tuple (x1, . . . , xn) ∈ Rn that satisfies the system above is a solution of the linear system.

There are three types of linear systems, depending on the number of unknowns relative to the
number of equations in the system.

• Infinite solutions (under-determined): More unknowns that knowns

• No solution (over-determined): More knowns than unknowns

• Unique solution: same number of knowns and unknowns
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(a) Unique Solution
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(b) No Solution

2 4 6

4

6

8

x

y

(c) Infinite Solutions

5 Solving Systems of Linear Equations
In order to solve the system of linear equations, first we collect the coefficients aij of each term
and the corresponding solutions to each linear equation and express it as an augmented matrix,
as follows:

x1 + x2 + x3 = 3

x1 − x2 + 2x3 = 2

x2 + x3 = 2

We can translate the system into matrix format by keeping the coefficients of each term:1 1 1
∣∣ 3

1 −1 2
∣∣ 2

0 1 1
∣∣ 2


In order to solve the system of equations, we use the following rules to reduce the augmented
matrix into row-echelon form.

1. Interchange any two rows

2. Multiply row by a non-zero constant

3. Add a multiple of one row to another

The final goal is to convert the matrix into an upper-triangular form:
1 ∗ ∗ ∗

∣∣ ∗
0 1 ∗ ∗

∣∣ ∗
0 0 1 ∗

∣∣ ∗
0 0 0 1

∣∣ ∗


Example: Solve the following linear system:

x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

5x1 − 5x3 = 10
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1 −2 1
∣∣ 0

0 2 −8
∣∣ 8

5 0 −5
∣∣ 10


Now, to express that we wish to subtract fives times the first row (r1) to the third row (r3) and
replace that with row 3, using rules 2 and 3, we can denote this as follows:

r3 ← r3 + (−5)r1: 1 −2 1
∣∣ 0

0 2 −8
∣∣ 8

0 10 −10
∣∣ 10


r3 ← r3 + (−5)r2: 1 −2 1

∣∣ 0
0 2 −8

∣∣ 8
0 0 30

∣∣ −30


r2 ← 1
2
r2: 1 −2 1

∣∣ 0
0 1 −4

∣∣ 4
0 0 30

∣∣ −30


r3 ← 1
30
r3: 1 −2 1

∣∣ 0
0 1 −4

∣∣ 4
0 0 1

∣∣ −1


r2 ← r2 + 4r3: 1 −2 1
∣∣ 0

0 1 0
∣∣ 0

0 0 1
∣∣ −1


r1 ← r1 + (−1)r3: 1 −2 0

∣∣ 1
0 1 0

∣∣ 0
0 0 1

∣∣ −1


r1 ← r1 + 2r2: 1 0 0
∣∣ 1

0 1 0
∣∣ 0

0 0 1
∣∣ −1



So in the end, we get the following solution to our set of unknowns: x1 = 1, x2 = 0, x3 = −1.

There are cases in which the final row-echelon form has an upper-triangular form does not yield
a single solution. Such a scenario would fall under either the under-determined or the over-
determined case:
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Infinite Solutions (under-determined):
1 ∗ ∗ ∗

∣∣ ∗
0 1 ∗ ∗

∣∣ ∗
0 0 0 1

∣∣ ∗
0 0 0 0

∣∣ 0


No Solutions (over-determined): 

1 ∗ ∗ ∗
∣∣ ∗

0 1 ∗ ∗
∣∣ ∗

0 0 1 0
∣∣ ∗

0 0 0 0
∣∣ ∗


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