Appendix: Perceptron

Perceptron Algorithm

Input: A set of examples, $(x_1, y_1), \dots, (x_n, y_n)$ **Output:** A perceptron defined by (w_0, w_1, \dots, w_d)

Begin

- 2. Initialize the weights w_j to $0 \forall j \in \{0, \dots, d\}$
- 3. Repeat until convergence
 - 4. For each example $x_i \ \forall i \in \{1, \cdots, n\}$

5. if
$$y_i f(x_i) \leq 0$$
 #an error?

6. update all w_j with $w_j := w_j + \alpha y_i x_{ij} \#$ adjust the weights

End

Perceptron

Some observations:

- The weights w_1, \ldots, w_d determine the slope of the decision boundary.
- w_0 determines the offset of the decision boundary (sometimes noted b).
- Line 6 corresponds to: Mistake on positive: add x to weight vector. Mistake on negative: substract x from weight vector. Some other variants of the algorithm add or subtract 1.
- α is the learning rate.
- Convergence happen when the weights do not change anymore (difference between the last two weight vectors is 0).

Perceptron

- The w_i determine the contribution of x_i to the label.
- $-w_0$ is a quantity that $\sum_{j=1}^d w_j x_{ij}$ needs to exceed for the perceptron to output 1.
- Can be used to represent many Boolean functions: AND, OR, NAND, NOR, NOT but not all of them (e.g., XOR).

First what is the perceptron of the OR?

Similarly, we obtain the perceptrons for the AND and NAND:

Similarly, we obtain the perceptrons for the AND and NAND:

Note: how the weights in the NAND are the inverse weights of the AND.

Let's try to create a MLP for the XOR function using elementary perceptrons.

x_1	x_2	$x_1 \text{ XOR } x_2$	$(x_1 \text{ OR } x_2) \text{ AND } (x_1 \text{ NAND } x_2)$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0